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Eventually semi strongly torsion free acts
over monoids

Abbas Zareh and Hossein Mohammadzadeh Saany

Abstract. We present eventually semi strongly torsion freeness of acts over monoids,
which is a generalization of strongly torsion freeness. We say that a right S-act AS is
eventually semi strongly torsion free if for every s ∈ S, there exists a natural number
n = n(s,AS) ∈ N such that asn = a′sn for any a, a′ ∈ AS , implies ar = a′r and rsn = sn,
for some r ∈ S. We show that eventually semi strongly torsion freeness implies GPW-
flatness. Also we give some general properties of eventually semi strongly torsion freeness
and characterizations of monoids for which this property of their acts implies some other
properties and vice versa.

1. Introduction
Throughout this paper we used S to denote a monoid. We refer [7, 10] for basic results,
definitions and terminologies relating to semigroups and acts over monoids, and to [11]
for definitions and results on flatness which are used in the paper.

S is called right (left) reversible if for every s, s′ ∈ S, there exist u, v ∈ S such that
us = vs′(su = s′v).

An element s of S is called right e-cancellable, for an idempotent e ∈ S, if s = es
and kerρs 6 kerρe, i.e. ts = t′s, t, t′ ∈ S, implies te = t′e. S is called left PP if every
element s ∈ S is right e-cancellable, for some idempotent e ∈ S. It is easy to see that S
is left PP if and only if for every s ∈ S there exsits e ∈ E(S), such that kerρs = kerρe.
This is equivalent to saying that every principal left ideal of S is projective. Similarly
a right PP is defined. An element s ∈ S is called right semi-cancellative if ts = t′s,
t, t′ ∈ S, implies there exists r ∈ S such that s = rs and tr = t′r. S is called left PSF if
all principal left ideals of S are strongly flat. It is easy to see that S is left PSF if and
only if every element s ∈ S is right semi-cancellable.

An element s ∈ S is called regular, if sxs = s, for some x ∈ S. S is called regular if all
its elements are regular. An element s of S is called left almost regular if there exist ele-
ments r, r1, ..., rm, s1, ..., sm ∈ S and right cancellable elements c1, c2, ..., cm ∈ S such that

s1c1 = sr1
s2c2 = s1r2
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...
smcm = sm−1rm

s = smrs

If all elements of S are left almost regular, then S is called left almost regular. We
can see that every left almost regular monoid is left PP [10, IV, Proposition 1.3].

A non-empty set A is a right S-act, usually denoted by AS , on which S acts unitarian
from the right, that is, (as)t = a(st) and a1 = a, for every a ∈ A , s, t ∈ S, where 1 is
the identity of S. A right S-act AS satisfies Condition (P ) if for all a, a′ ∈ AS , s, s′ ∈ S,
as = a′s′, implies that there exist b ∈ AS , u, v ∈ S such that a = bu, a′ = bv and
us = vs′. Recall, from [6] that a right S-act AS satisfies Condition (P ′) if for all
a, a′ ∈ AS ,s, t, z ∈ S, as = a′t and sz = tz imply the existence b ∈ A and u, v ∈ S
such that a = bu, a′ = bv and us = vt. AS is said to satisfy Condition (E) if whenever
as = as′ with a ∈ AS , s, s

′ ∈ S, there exist a′ ∈ AS , u ∈ S such that a = a′u and
us = us′. Recall, from [4, 5] that a right S-act AS satisfies Condition (E′) if as = as′

and sz = s′z, for a ∈ AS and s, s′, z ∈ S, imply the existence a′ ∈ A and u ∈ S such that
a = a′u and us = us′. A right S-act AS satisfies Condition (EP ) if as = at, for a ∈ AS ,
s, t ∈ S, implies the existence a′ ∈ AS and u, v ∈ S such that a = a′u = a′v and us = vt.
Also, we say that AS satisfies Condition (E′P ) if as = at and sz = tz, for a ∈ AS and
s, t, z ∈ S, imply the existence a′ ∈ AS and u, v ∈ S such that a = a′u = a′v and us = vt.
It is obvious that (P ) ⇒ (EP ) ⇒ (E′P ), (E) ⇒ (E′) ⇒ (E′P ), (P ) ⇒ (P ′) ⇒ (E′P )
and (E)⇒ (EP ). We recall from [2, 11] that:

The S-act AS is weakly pullback flat (WPF), if the corresponding φ is bijective for
every pullback diagram P (S, S, f, g, S).

The S-act AS is weakly kernel flat (WKF), if the corresponding φ is bijective for
every pullback diagram P (I, I, f, f, S), where I is a left ideal of S.

The S-act AS is principally weakly kernel flat (PWKF), if the corresponding φ is
bijective for every pullback diagram P (Ss, Ss, f, f, S), where s ∈ S.

The S-act AS is translation kernel flat (TKF), if the corresponding φ is bijective for
every pullback diagram P (S, S, f, f, S).

The S-act AS is weakly homoflat (WP), if for all elements s, t ∈ S, all homomor-
phisms f : S(Ss ∪ St) → SS, all a, a′ ∈ AS , if af(s) = a′f(t) then there exist a′′ ∈ AS ,
u, v ∈ S, s′, t′ ∈ {s, t} such that a⊗ s = a′′ ⊗ us′ and a′ ⊗ t = a′′ ⊗ vt′ in A⊗S (Ss∪ St)
and f(us′) = f(vt′).

The S-act AS is principally weakly homoflat (PWP), if as = a′s, for a, a′ ∈ AS ,
s ∈ S, implies the existence of a′′ ∈ AS and u, v ∈ S such that a = a′′u, a′ = a′′v and
us = vs.

The S-act AS is called torsion free if for any a, a′ ∈ AS and for any right cancellable
element c ∈ S the equality ac = a′c implies a = a′.

Recall from [14] that the right S-act AS is called strongly torsion free, if for any
a, b ∈ AS and any s ∈ S, as = bs implies a = b.

Recall from [9] that the right S-act AS satisfies Condition (PWPssc), if for a, a′ ∈ AS ,
s ∈ S, as = a′s implies that there exist u ∈ S such that au = a′u and us = s.

Recall from [8] that the right S-act AS is called GP -flat if as = a′s for a, a′ ∈ AS ,
s ∈ S implies that there exists n ∈ N, such that a ⊗ sn = a′ ⊗ sn in AS ⊗ Ssn. A right
S-act AS is called GPW -flat if for every s ∈ S, there exists n = n(s,AS) ∈ N, such that
for any a, a′ ∈ AS , asn = a′sn implies a⊗ sn = a′ ⊗ sn in A⊗S (Ssn).(see [12])
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2. General properties
In this section, we introduce eventually semi strongly torsion freeness and give some of
its general properties.

Definition 2.1. An element s ∈ S is called eventually right semi-cancellative if there
exists a natural number n ∈ N such that tsn = t′sn for any t, t′ ∈ S, implies tr = t′r and
rsn = sn, for some r ∈ S. If all elements of S are eventually right semi-cancellative then
S is called eventually right semi-cancellative. A monoid S is called eventually left PSF if
for all s ∈ S there exists n ∈ N such that left ideal Ssn is strongly flat.

It is easy to see that S is eventually right semi-cancellative if and only if S is even-
tually left PSF. The concepts eventually left semi-cancellative and eventually right PSF
can be defined similarly.

It is clear that every left PSF monoid is eventually left PSF . The next example
shows that the converse is not true in general.

Example 2.2. Consider the monoid S = {0, 1, a, b, c} with the multiplication table

0 1 a b c

0 0 0 0 0 0
1 0 1 a b c
a 0 a b c b
b 0 b c b c
c 0 c b c b

We have aa = ca and r = 1 be the only element of S such that ra = a. But a1 6= c1.
Thus S is not left PSF monoid. Let s ∈ S.

Case 1: If s = a and xa2 = ya2, for x, y ∈ S, then for r = b = a2, we have
xr = xa2 = ya2 = yr and ra2 = bb = b = a2.

Case 2: If s = b and xb = yb, for x, y ∈ S, then for r = b, we have xr = xb = yb = yr
and rb = bb = b.

Case 3: If s = c and xc2 = yc2, for x, y ∈ S, then for r = b = c2, we have
xr = xc2 = yc2 = yr and rc2 = bb = b = c2.

Thus S is eventually left PSF monoid.

Definition 2.3. A right S-act AS is called eventually semi strongly torsion free if for
any s ∈ S there exists a natural number n = n(s,AS) ∈ N such that asn = a′sn for any
a, a′ ∈ AS , implies ar = a′r and rsn = sn, for some r ∈ S. We use the abbreviation
ES − STF for eventually semi strongly torsion freeness.

The proof of the next Lemma is a direct consequence of Definitions 2.1 and 2.3.

Lemma 2.4. SS is ES − STF if and only if S is eventually left PSF monoid.

Now we establish some general properties.

Theorem 2.5. The following statements are true.

(1) ΘS is ES − STF .
(2) If an act is ES − STF , then all its subacts are ES − STF .
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(3) Any retract of an ES − STF right S-act is ES − STF .

(4) If A =
∐
i∈I Ai, where each Ai is a right S-act, is ES−STF then Ai is ES−STF

for every i ∈ I.

Proof. (1), (2) and (4) are obvious.
(3). Suppose that the right S-act BS is ES − STF . Also, assume that AS is a

retract of BS . Then there exist homomorphisms f : BS → AS and f ′ : AS → BS ,
such that ff ′ = idAS . Let s ∈ S. Since BS is ES − STF , there exists n ∈ N such
that bsn = b′sn, for b, b′ ∈ BS , implies br = b′r and rsn = sn, for some r ∈ S. Let
asn = a′sn for a, a′ ∈ AS . Then, f ′(asn) = f ′(a′sn) and so, f ′(a)sn = f ′(a′)sn. Since
f ′(a), f ′(a′) ∈ BS and BS is ES − STF , there exists r ∈ S such that f ′(a)r = f ′(a′)r
and rsn = sn. Now we have f(f ′(ar)) = f(f ′(a′r)) and so ar = a′r, which means that
AS is ES − STF .

Theorem 2.6. The following statmentes are true.

(1) If a right S-act is ES − STF , then it is GPW -flat.

(2) If S is eventually left PSF monoid then every GPW -flat act is ES − STF .

Proof. (1). Let s ∈ S. Suppose n ∈ N corresponds to s in the definition of eventually
semi strongly torsion free. Let asn = a′sn, for a, a′ ∈ AS . Thus there exists r ∈ S such
that ar = a′r and rsn = sn. We have:

a⊗ sn = a⊗ rsn = ar ⊗ sn = a′r ⊗ sn = a′ ⊗ rsn = a′ ⊗ sn

in A⊗S Ssn. Hence AS is GPW -flat.
(2). Let S be a eventually left PSF monoid and AS be a GPW -flat right S-act and

s ∈ S. Since S is eventually left PSF , there exists n ∈ N such that tsn = t′sn, for any
t, t′ ∈ S, implies tr = t′r and rsn = sn for some r ∈ S. Let asn = a′sn for a, a′ ∈ AS .
Hence by [12, Proposition 2.3],

a = a1s1
a1t1 = a2s2 s1s

n = t1s
n

a2t2 = a3s3 s2s
n = t2s

n

... ...
aktk = a′ sks

n = tks
n,

for k ∈ N, a1, ..., ak ∈ AS and s1, t1, ..., sk, tk ∈ S. Since S is eventually left PSF , the
equality s1sn = t1s

n implies there exists r1 ∈ S such that s1r1 = t1r1 and r1sn = sn. The
equality s2sn = t2s

n implies that s2r1sn = t2r1s
n. Thus there exists r2 ∈ S such that

s2r1r2 = t2r1r2 and r2sn = sn, by assumption. Let r = r1r2. Thus rsn = r1r2s
n = sn.

Also s1r = s1r1r2 = t1r1r2 = t1r and s2r = t2r. By continuing this process, we
can find l ∈ S such that lsn = sn and sil = til for every i,(1 6 i 6 k). Therefore
al = a1s1l = a1t1l = a2s2l = ... = aktkl = a′l, as required.

The following example shows that the converse of part (1) of Theorem 2.6, is not
true in general. This shows also flatness does not imply eventually semi strongly torsion
freeness.
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Example 2.7. Let K be a proper right ideal of S. If x, y and z denote elements not
belonging to S, define A(K) = ({x, y}× (S \K))∪ ({z}×K), and define a right S-action
on A(K) by

(x, u)s =

{
(x, us), if us /∈ K
(z, us), if us ∈ K.

(y, u)s =

{
(y, us), if us /∈ K
(z, us), if us ∈ K.

(z, u)s = (z, us).

Then clearly A(K) is a right S-act. Let S = {an | n ∈ N} ∪ {e, f, 0} where e2 = e, f2 =
f, ef = fe = 0 and ane = ean = fan = anf = 0 for all n ∈ N. If J = {0, e}, then J is a
right ideal of S. Because 0 ∈ J0 and e ∈ Je, A(J), by [10, III, Proposition 12.19], is a
flat S-act and so is GPW -flat, but it does not ES−STF . Otherwise (x, f)an = (y, f)an

implies that there exists r ∈ S such that (x, f)r = (y, f)r and ran = an. But r = 1 is
the only element of S such that rs = s and (x, f)1 6= (y, f)1, which is contradiction.

Theorem 2.8. For any family {Ai}i∈I of right S-acts, if
∏
i∈I Ai is ES − STF , then

Ai is ES − STF , for every i ∈ I.

Proof. Let s ∈ S and i ∈ I. By our assumption there exists n ∈ N such that asn = a′sn,
for a, a′ ∈

∏
i∈I Ai, implies ar = a′r and rsn = sn, for some r ∈ S. Let aisn = a′is

n for
any ai, a′i ∈ Ai, and let aj be an arbitrary in (Aj)S for j 6= i. If

ck =

{
ai if k = i
ak if k 6= i

c′k =

{
a′i if k = i
ak if k 6= i

then (ck)Is
n = (c′k)Is

n and so, by assumption (ck)Ir = (c′k)Ir and rsn = sn, for r ∈ S.
Now we have air = a′ir, rsn = sn and hence, Ai is ES − STF .

Lemma 2.9. Let S be a commutative monoid, AS a right S-act and s ∈ S. Suppose that
there exists n ∈ N such that asn = a′sn, a, a′ ∈ AS, implies ar = a′r and rsn = sn. Let
m ∈ N and m > n. If asm = a′sm, a, a′ ∈ AS, then ar = a′r and rsm = sm for some
r ∈ S.

Proof. Since m > n there exists k ∈ N such that kn 6 m < (k + 1)n. Suppose that
asm = a′sm, for a, a′ ∈ S. Thus (as(m−n))sn = (a′s(m−n))sn. By assumption there exists
r1 ∈ S such that (as(m−n))r1 = (a′s(m−n))r1 and r1sn = sn. By the equality r1sn = sn

we gain r1s
m = sm. Since S is commutative, we have ar1s(m−n) = a′r1s

(m−n). By
the equality ar1s

(m−n) = a′r1s
(m−n) we have (ar1s

(m−2n))sn = (a′r1s
(m−2n))sn. By

assumption there exists r2 ∈ S such that as(m−2n)r1r2 = a′s(m−2n)r1r2 and r2sn = sn.
By the equality r2s

n = sn we gain r2s
m = sm. Also r1r2sm = sm. Continuing this

procedure there exist r1, r2, ..., rk ∈ S such that as(m−kn)r1r2...rk = a′s(m−kn)r1r2...rk
and r1r2...rksm = sm. We have two cases:

Case 1. Ifm = kn then by as(m−kn)r1r2...rk = a′s(m−kn)r1r2...rk we have ar1r2...rk =
a′r1r2...rk. Let r = r1r2...rk. Then ar = a′r and rsm = sm and we are done.

Case 2. If m 6= kn then by multiplying the equality

ar1r2...rks
(m−kn) = a′r1r2...rks

(m−kn)
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by s(k+1)n−m we gain ar1r2...rksn = a′r1r2...rks
n and so there exists rk+1 ∈ S such that

ar1r2...rkrk+1 = a′r1r2...rkrk+1 and rk+1s
n = sn. By the equality rk+1s

n = sn we gain
rk+1s

m = sm. Also r1r2...rk+1s
m = sm. Let r = r1r2...rkrk+1. Then ar = a′r and

rsm = sm, and so we are done.

Theorem 2.10. For a commutative monoid S,
∏m
i=1Ai, where Ai, 1 6 i 6 m are right

S-acts, is ES − STF if and only if Ai is ES − STF for every 1 6 i 6 m.

Proof. Necessity. It is obvious by Theorem 2.8.
Sufficiency. Suppose Ai is ES − STF , for every 1 6 i 6 m, and let s ∈ S. Then, there
exists ni ∈ N such that aisni = a′is

ni for ai, a′i ∈ Ai implies that air = a′ir and rsni = sni

for some r ∈ S. Let n = max{n1, n2, ..., nm}. If (a1, a2, ..., am)sn = (a′1, a
′
2, ..., a

′
m)sn

for ai, a′i ∈ Ai, 1 6 i 6 m. By Lemma 2.9 the equality a1sn = a′1s
n implies that there

exists r1 ∈ S such that a1r1 = a′1r1 and r1sn = sn. The equality a2sn = a′2s
n implies

a2r1s
n = a′2r1s

n and so by Lemma 2.9, implies a2r1r2 = a′2r1r2 and r2sn = sn for some
r2 ∈ S. Therefor a1r1r2 = a′1r1r2, a2r1r2 = a′2r1r2 and r1r2s

n = sn. Continuing this
procedure after m steps, there exist r1, r2, ..., rm ∈ S such that for each i, air1r2...rm =
a′ir1r2...rm, and r1r2...rms

n = sn. Let r = r1r2...rm. Then for each i, air = a′ir and
rsn = sn. Hence (a1, a2, ..., am)r = (a′1, a

′
2, ..., a

′
m)r and rsn = sn, as required.

Theorem 2.11. S is eventually left PSF monoid if and only if the right S-act SmS is
ES − STF for any m ∈ N.

Proof. Necessity. Suppose that S is eventually left PSF monoid. Let s ∈ S. Then there
exist n ∈ N such that tsn = t′sn for any t, t′ ∈ S, implies tr = t′r and rsn = sn, for some
r ∈ S. If (a1, a2, ..., am)sn = (a′1, a

′
2, ..., a

′
m)sn for ai, a′i ∈ S, 1 6 i 6 m, then aisn = a′is

n

for any 1 6 i 6 m. By assumption, there exists r1 ∈ S such that a1r1 = a′1r1 and
r1s

n = sn. The equalities a2sn = a′2s
n and r1s

n = sn imply a2r1sn = a′2r1s
n. Again

by assumption there exists r2 ∈ S such that a2r1r2 = a′2r1r2 and r2sn = sn. Therefore
a1r1r2 = a′1r1r2, a2r1r2 = a′2r1r2 and r1r2sn = sn. Continuing this procedure after m
steps, there exist r1, r2, ..., rm ∈ S such that for each i, air1r2...rm = a′ir1r2...rm, and
r1r2...rms

n = sn. Let r = r1r2...rm. Then for each i, air = a′ir and rsn = sn. Hence
(a1, a2, ..., am)r = (a′1, a

′
2, ..., a

′
m)r and rsn = sn, as required.

Sufficiency. If the right S-act Sm is ES − STF then SS is ES − STF , by Theorem 2.8.
Thus S is eventually left PSF monoid, by Lemma 2.4.

Recall, from [1] that for S, the cartesian product S × S equipped with the right
S-action (s, t)u = (su, tu), s, t, u ∈ S, is called the diagonal act of S and it is denoted by
D(S).

In the following theorem we obtain equivalent condition for SnS to be ES − STF .

Theorem 2.12. The following statements are equivalent:

(1) SnS is ES − STF , for any n ∈ N.

(2) There exists n ∈ N such that SnS is ES − STF .

(3) D(S) is ES − STF .

(4) S is eventually left PSF .
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Proof. Implications (1)⇒ (2) and (1)⇒ (3) are obvious.
(2) ⇒ (4). Define ψ : SS → SnS by ψ(s) = (s, s, ..., s). It is obvious that ψ is

monomorphism. Thus SS ∼= Imψ 6 SnS and so, by part (2) of Theorem 2.5, Imψ is
ES − STF . Thus SS is ES − STF and so, S is eventually left PSF by Lemma 2.4.

(3)⇒ (4). This easily follows from proof (2)⇒ (4).
(4)⇒ (1). It follows from Theorem 2.11.

We recall from [10], that a right ideal K of a monoid S is called left stabilizing if for
every k ∈ K, there exists l ∈ K such that lk = k.

Definition 2.13. A right ideal K of S is called GPW -left stabilizing if for every s ∈ S
there exists n ∈ N such that lsn ∈ K, for l ∈ S \ K, implies that lsn = ksn for some
k ∈ K.

It is clear that every left stabilizing right ideal of S is GPW -left stabilizing.

Theorem 2.14. Let K be a proper right ideal of S. Then the following statements are
equivalent:

(1) AS = S
K∐
S is ES − STF .

(2) K is GPW -left stabilizing and S is eventually left PSF .

Proof. (1) ⇒ (2). By part (1) of Theorem 2.6, AS = S
K∐
S is GPW -flat and so, by [12,

Theorem 2.10], K is GPW -left stabilizing. On the other hand AS = S
K∐
S = BS ∪ CS ,

where BS = {(l, x)|l ∈ S \ K} ∪ K, C = {(t, y)|t ∈ S \ K} ∪ K, BS , CS 6 AS and
BS ∼= SS ∼= CS . By part (2) of Theorem 2.5, BS is ES−STF . Therefore by isomorphism
BS ∼= SS , SS is ES − STF and so, S is eventually left PSF , by Lemma 2.4.

(2) ⇒ (1). Since K is GPW -left stabilizing, it follows by [12, Theorem 2.10] that

AS = S
K∐
S is GPW -flat. On the other hand since S is eventually left PSF , GPW -

flatness and eventually semi strongly torsion freeness are equivalent by part (2) of The-

orem 2.6. Hence AS = S
K∐
S is ES − STF .

The following example shows that if S be eventually left PSF , then any right ideal
of S is not GPW -left stabilizing, in general.

Example 2.15. Let S = ( N, .). Thus S is cancellative and commutative. Hence S is
left PSF and so eventually left PSF. But K = N \ {1} is not GPW -left stabilizing ideal.

Golchin in [3] showed that if S = G
·
∪I, where G is a group and I is an ideal of S, and

A is a right S-act such that it is ((principaly) weakly) flat, torsion free, satisfies Condition
(P ) or (PE) as a right I1-act, then it has these properties as a right S-act. Similarly, we
can show the following theorem for eventually semi strongly torsion freeness.

Theorem 2.16. Let S = G
·
∪ I where G is a group and I is an ideal of S and A be a

right S-act. A is ES − STF as a right I1-act if and only if it is ES − STF as a right
S-act.
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Proof. Necessity. Suppose A is ES − STF as a right I1-act and s ∈ S. Then there are
two cases as follows:

Case 1. s ∈ G. Then Ss = S and so, for every n ∈ N, Ssn = Ss = S. If as = a′s for
a, a′ ∈ A, then a = a′. By putting r = 1 the result follows.

Case 2. s ∈ I ⊆ I1. Since A is ES − STF as a right I1-act, there exists a natural
number n ∈ N such that for a, a′ ∈ A, asn = a′sn implies ar = a′r and rsn = sn, for
r ∈ I1 ⊆ S. Hence A is ES − STF as a right S-act.

Sufficiency. Suppose A is ES − STF as right S-act. Let i ∈ I1 ⊆ S. By assumption
there exists n ∈ N such that ain = a′in, for a, a′ ∈ A, implies ar = a′r and rin = in for
some r ∈ S. We have two cases:

Case 1. If r ∈ I1 then we are done.
Case 2. If r ∈ G then equality ar = a′r implies a = a′. Let r′ = 1 ∈ I1. Hence

ar′ = a′r′ and r′in = in and so we are done.

Corollary 2.17. Let S = G
·
∪ I where G is a group and I is an ideal of S. If all right

I1-acts are ES − STF , then all right S-acts are ES − STF .

3. Eventually semi strongly torsion free cyclic acts
Theorem 3.1. Let ρ be a right congruence on S. Then the right S-act S/ρ is ES−STF
if and only if for every s ∈ S, there exists n ∈ N such that for x, y ∈ S, (xsn)ρ(ysn)
implies (xr)ρ(yr) and rsn = sn for some r ∈ S.

The proof of Theorem 3.1 is clear.

Corollary 3.2. The principal right ideal zS is ES−STF if and only if for every s ∈ S,
there exists n ∈ N such that for any x, y ∈ S, zxsn = zysn implies zxr = zyr and
rsn = sn, for some r ∈ S.

Proof. Since zS ∼= S/kerλz, apply Theorem 3.1 with ρ = kerλz.

Now we give an equivalence for Rees factor S-acts that are ES − STF .

Theorem 3.3. Let K be a right ideal of S. The right Rees factor S-act S/K is ES−STF
if and only if for every s ∈ S there exists a natural number n ∈ N such that K fulfills
conditions

(I) (∀x, y ∈ S) [(xsn = ysn ∈ S \K)⇒ (∃r ∈ S)(rsn = sn ∧ xr = yr)],

(II) (∀x, y ∈ S) [(xsn, ysn ∈ K)⇒ (∃r ∈ S)(rsn = sn ∧ (xr = yr ∨ xr, yr ∈ K))].

Proof. Necessity. Suppose that the right Rees factor S-act S/K is ES−STF and s ∈ S.
Then there exists a natural n ∈ N such that (xsn)ρK(ysn), for all x, y ∈ S, implies
(xr)ρK(yr) and rsn = sn, for some r ∈ S. Let xsn = ysn ∈ S \K, for x, y ∈ S. Then
(xsn)ρK(ysn), which implies the existance of r ∈ S such that (xr)ρK(yr) and rsn = sn,
by Theorem 3.1. If xr, yr ∈ K then ysn = xsn = xrsn ∈ K which is contradiction.
Hence xr = yr and rsn = sn and so, (I) is obtained. Now let xsn, ysn ∈ K, for x, y ∈ S.
Thus (xsn)ρK(ysn), and so there exists r ∈ S such that (xr)ρK(yr) and rsn = sn by
Theorem 3.1. Hence xr = yr or xr, yr ∈ K, as required.
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Sufficiency. Note that if K = S then by Theorem 2.5, S/K ∼= ΘS is ES − STF .
Assume K be a proper right ideal of S and s ∈ S. By assumption there exists a natural
number n ∈ N such that conditions (I), (II) are satisfied. Let (xsn)ρK(ysn), for x, y ∈ S.
Then xsn, ysn ∈ K or xsn = ysn. If xsn, ysn ∈ K then by condition (II), there exists
r ∈ S such that rsn = sn and (xr)ρK(yr), as required. If xsn = ysn then there are two
cases as follows:

Case 1: xsn = ysn ∈ K. We again have the before case.
Case 2: xsn = ysn ∈ S \K. By condition (I), there exists r ∈ S such that rsn = sn

and xr = yr. Hence rsn = sn and (xr)ρK(yr). Therefore by Theorem 3.1, S/K is
ES − STF .

4. Classification
In this section we give a classification of monoids when acts with other properties are
ES − STF and vice versa. We also give a classification of monoids when all their acts
are ES − STF .

Recall, from [12] that an element s ∈ S is called eventually regular if sn is regular
for some n ∈ N. That is, sn = snxsn for some n ∈ N and x ∈ S. S is called eventually
regular if every s ∈ S is eventually regular. Obviously every regular monoid is eventually
regular. But the converse of it is not true in general.

An element s ∈ S is called eventually left almost regular if

s1c1 = snr1
s2c2 = s1r2

...
smcm = sm−1rm
sn = smrs

n,

for some n ∈ N, elements s1, s2, ..., sm, r, r1, ..., rm ∈ S and right cancellable elements
c1, c2, ..., cm ∈ S. In other words s ∈ S is called eventually left almost regular if sn is left
almost regular for some n ∈ N.

If every element of S is eventually left almost regular, then S is called eventually left
almost regular.

It is clear that every left almost regular is eventually left almost regular and also
every eventually regular is eventually left almost regular.

Lemma 4.1. Every eventually left almost regular is eventually left PSF .

Proof. Let S be eventually left almost regular and s ∈ S. By definition,

s1c1 = snr1
s2c2 = s1r2

...
smcm = sm−1rm
sn = smrs

n,

for some n ∈ N, elements s1, s2, ..., sm, r, r1, ..., rm ∈ S and right cancellable elements
c1, c2, ..., cm ∈ S. Suppose that t1sn = t2s

n, t1, t2 ∈ S. Hence we conclude that
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t1s
nr1 = t2s

nr1 ⇒ t1s1c1 = t2s1c1 ⇒ t1s1 = t2s1 ⇒ t1s1r2 = t2s1r2
⇒ t1s2c2 = t2s2c2 ⇒ t1s2 = t2s2.

Continuing in this manner we finally obtain t1si = t2si, for every 1 6 i 6 m, which
implies t1sm = t2sm. Thus t1smr = t2smr. Since sn = smrs

n, so S is eventually left
PSF .

Theorem 4.2. The following statments are equivalent:

(1) All right S-acts are ES − STF .

(2) All cyclic right S-acts are ES − STF .

(3) All right Rees factor acts of S are ES − STF .

(4) All divisible right S-acts are ES − STF .

(5) All principally weakly injective right S-acts are ES − STF .

(6) All fg-weakly injective right S-acts are ES − STF .

(7) All weakly injective right S-acts are ES − STF .

(8) All injective right S-acts are ES − STF .

(9) All cofree right S-acts are ES − STF .

(10) S is eventually regular.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
Since cofree ⇒ injective ⇒ weakly injective ⇒ fg-weakly injective ⇒ principally

weakly injective ⇒ divisible, implications (1)⇒ (4)⇒ (5)⇒ (6)⇒ (7)⇒ (8)⇒ (9) are
obtained immediately.

(3)⇒ (10). By part (1) of Theorem 2.6, all right Rees factor acts of S are GPW -flat.
It follows by [12, Theorem 4.5] that S is eventually regular.

(9) ⇒ (10). Since every right S-act can be embedded in a cofree right S-act, by
assumption, every right S-act is a subact of ES − STF right S-act. By part (2) of
Theorem 2.5, all right S-acts are ES − STF . It follows, by Theorem 2.6, that all right
S-acts are GPW -flat. Thus by [12, Theorem 4.5], S is eventually regular.

(10) ⇒ (1). By [12, Theorem 4.5], all right S-acts are GPW -flat. Since every
eventually regular monoid is eventually left almost regular and by Lemma 4.1, every
eventually left almost regular monoid is eventually left PSF , by part (2) of Theorem 2.6,
all right S-acts are ES − STF .

Theorem 4.3. Suppose that (U) be a property of S-acts which implies Condition (PWP )
and SS satisfies the property (U). Then the following statements are equivalent:

(1) All right S-acts satisfying property (U), are ES − STF .

(2) All finitely generated right S-acts satisfying property (U), are ES − STF .

(3) All cyclic right S-acts satisfying property (U), are ES − STF .

(4) S is eventually left PSF .
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Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4). Since SS is a cyclic act satisfying property (U), by assumption SS is

ES − STF and so, by Lemma 2.4, S is eventually left PSF .
(4) ⇒ (1). Suppose that AS be a right S-act satisfying property (U). Let s ∈ S.

Since S is eventually left PSF , there exists a natural number n ∈ N such that tsn = t′sn,
t, t′ ∈ S, implies tr = t′r and rsn = sn for some r ∈ S. Let asn = a′sn, for a, a′ ∈ AS .
Since AS satisfies Condition (PWP ), there exist a′′ ∈ AS and u, v ∈ S such that a = a′′u,
a′ = a′′v and usn = vsn. Using assumption for usn = vsn, we get r ∈ S such that ur = vr
and rsn = sn. Thus, ar = a′′ur = a′′vr = a′r and so, AS is ES − STF .

Notice that in the above theorem Property (U) can be replaced by free, projective,
projective generator, strongly flat, WPF , WKF , PWKF , TKF , (WP ), Condition (P ),
Condition (P ′) and Condition (PWP ).

Theorem 4.4. The following statements are equivalent:

(1) All right S-acts are ES − STF .

(2) All generators right S-acts are ES − STF .

(3) S ×AS is ES − STF for every right S-act AS.

(4) S ×AS is ES − STF for every generator right S-act AS.

(5) The right S-act AS is ES − STF if Hom(AS , SS) 6= ∅.

(6) S is eventually regular.

Proof. Implications (1)⇒ (2), (3)⇒ (4) and (1)⇒ (5) are obvious.
(1)⇔ (6). This follows from Theorem 4.2.
(2)⇒ (3). Suppose that AS be a right S-act. Indeed, the mapping π : S×AS → SS ,

where π(s, a) = s, for a ∈ AS and s ∈ S, is an epimorphism in Act− S. Then by [10, II,
Theorem 3.16], S ×AS is generator. Thus by assumption S ×AS is ES − STF .

(3)⇒ (1). This statement immediatly follows from Theorem 2.8.
(4) ⇒ (3). Suppose that AS be a right S-act. By proof (2) ⇒ (3), S × AS is a

generator right S-act and so, by assumption, S× (S×AS) is ES−STF . Then Theorem
2.8, shows that, S ×AS is ES − STF .

(5) ⇒ (3). Suppose AS be a right S-act. By proof (2) ⇒ (3), π : S × AS → SS ,
where π(s, a) = s, for all a ∈ AS and s ∈ S, is an epimorphism in Act − S. Then
Hom(S ×AS , SS) 6= ∅. Thus S ×AS is ES − STF by assumption.

Theorem 4.5. The following statements are equivalent:

(1) All torsion free right S-acts are ES − STF .

(2) All torsion free finitely generated right S-acts are ES − STF .

(3) All torsion free cyclic right S-acts are ES − STF .

(4) All torsion free right Rees factor acts of S are ES − STF .

(5) S is eventually left almost regular.
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Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.
(4) ⇒ (5). By (1) of Theorem 2.6, all torsion free right Ress factor acts of S are

GPW -flat. This follows from [12, Theorem 4.4] that S is eventually left almost regular.
(5)⇒ (1). By [12, Theorem 4.4], all torsion free right S-acts are GPW -flat. On the

other hand, by Lemma 4.1, every eventually left almost regular monoid is eventually left
PSF . So by part (2) of Theorem 2.6, all torsion free right S-acts are ES − STF .

Recall, from [13] that the right S-act AS is called R-torsion free, if for any a, b ∈ AS
and for any right cancellable element c ∈ S, ac = bc and aRb imply a = b, where R is a
Green relation that is aRb if and only if aS = bS.(a, b ∈ AS)

Theorem 4.6. The following statments are equivalent:

(1) All R-torsion free right S-acts are ES − STF .
(2) All R-torsion free finitely generated right S-acts are ES − STF .
(3) All R-torsion free right S-acts generated by at most two elements are ES −STF .
(4) S is eventually regular.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4). Let s ∈ S. Since SS is R-torsion free right S-act, by Lemma 2.4, it is

eventually left PSF . Then there exists n ∈ N such that tsn = t′sn for t, t′ ∈ S, implies
tr = t′r and rsn = sn for some r ∈ S. If snS = S, then there exists x ∈ S such that
snx = 1 and so, snxsn = sn. Thus s is eventually regular element. Now assume that
snS 6= S. Set

AS = S
snS∐

S = {(l, x)|l ∈ S \ snS}
·
∪ snS

·
∪ {(t, y)|t ∈ S \ snS}.

Indeed,

BS = {(l, x)|l ∈ S \ snS}
·
∪ snS ∼= SS ∼= {(t, y)|t ∈ S \ snS}

·
∪ snS = CS .

Since AS = BS ∪CS , AS is generated by different two elements (1, x) and (1, y). By the
above isomorphism, BS and CS satisfy Condition (E) and so, AS satisfies Condition (E).
By [13, Proposition 1.2], AS is R-torsion free and so, by assumption, AS is ES − STF .
Therefore the equality (1, x)sn = (1, y)sn implies that there exists r ∈ S such that
rsn = sn and (1, x)r = (1, y)r. The last equality implies that r ∈ snS and so, there
exists x ∈ S such that r = snx. Therefore sn = rsn = snxsn. Hence S is eventually
regular.

(4)⇒ (1). By Theorem 4.2, the result follows.

Theorem 4.7. The following statements are equivalent:

(1) All right S-acts are ES − STF .
(2) All right S-acts satisfying Condition (E′P ), are ES − STF .
(3) All right S-acts satisfying Condition (EP ), are ES − STF .
(4) All right S-acts satisfying Condition (E′), are ES − STF .
(5) All right S-acts satisfying Condition (E), are ES − STF .
(6) S is eventually regular.
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Proof. Implications (1) ⇒ (2) ⇒ (3) ⇒ (5) and (1) ⇒ (4) ⇒ (5) are obvious because
(E)⇒ (EP )⇒ (E′P ) and (E)⇒ (E′).

(5) ⇒ (6). Since SS satisfies Condition (E), similar to Theorem 4.6, the result is
obtained.

(6)⇒ (1). This follows by Theorem 4.2.

Similar to Theorem 4.6, it can be resulted that Theorem 4.7, is true for finitely
generated S-acts and S-acts generated by at most two elements.

We recall, from [10] that a right S-act AS is (strongly) faithful if for s, t ∈ S, the
validity of as = at, for (some)all a ∈ A, implies the equality s = t.

Theorem 4.8. The following statements are equivalent:

(1) All right S-acts are ES − STF .
(2) All faithful right S-acts are ES − STF .
(3) All finitely generated faithful right S-acts are ES − STF .
(4) All faithful right S-acts generated by at most two elements are ES − STF .
(5) S is eventually regular.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.
(4) ⇒ (5). Since SS is faithful right S-act, similar to Theorem 4.6, the result is

obtained.
(5)⇒ (1). By Theorem 4.2, the result follows.

A right S-act AS is called decomposable if there exist two subacts BS , CS ⊆ AS
such that AS = BS ∪ CS and BS ∩ CS = ∅. In this case AS = BS ∪ CS is called a
decomposition of AS . Otherwise AS is called indecomposable. AS is called locally cyclic
if for any a, a′ ∈ AS there exists a′′ ∈ AS such that a, a′ ∈ a′′S.

Theorem 4.9. The following statements are equivalent:

(1) All right S-acts are ES − STF .
(2) All indecomposable right S-acts are ES − STF .
(3) All finitely generated indecomposable right S-acts are ES − STF .
(4) All indecomposable right S-acts generated by at most two elements are ES−STF .
(5) All locally cyclic S-acts are ES − STF .
(6) All finitely generated locally cyclic right S-acts are ES − STF .
(7) All locally cyclic right S-acts generated by at most two elements are ES − STF .
(8) S is eventually regular.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) and (1)⇒ (5)⇒ (6)⇒ (7) are obvious.

(4)⇒ (8). Since SS is indecomposable right S-act also S
I∐
S is indecomposable, for

every proper right ideal I of S, similar to Theorem 4.6, the result is obtained.
(7)⇒ (8). By assumption all cyclic right S-acts are ES−STF and so, S is eventually

regular by Theorem 4.2.
(8)⇒ (1). By Theorem 4.2, the result follows.
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Theorem 4.10. The following statements are equivalent:

(1) All ES − STF right S-acts are (strongly) faithful.

(2) All ES − STF finitely generated right S-acts are (strongly) faithful.

(3) All ES − STF cyclic right S-acts are (strongly) faithful.

(4) All ES − STF right Rees factor acts of S are (strongly) faithful.

(5) S = {1}.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.
(4) ⇒ (5). It follows by part (1) of Theorem 2.5, that S/SS ∼= ΘS is ES − STF .

Thus by assumption, ΘS is (strongly) faithful. Let s, t ∈ S. Then θs = θt implies s = t
and so, S = {1}.

(5) ⇒ (1). If S = {1} then all right S-acts are strongly faithful and so, (1) is
obtained.

Theorem 4.11. The following statements are equivalent:

(1) All ES − STF right S-acts are (projective) generators.

(2) All ES − STF finitely generated right S-acts are (projective) generators.

(3) All ES − STF cyclic right S-acts are (projective) generators.

(4) All ES − STF right Rees factor acts of S are (projective) generators.

(5) S = {1}.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.
(4) ⇒ (5). By part (1) of Theorem 2.5, the right Rees factor S-act S/SS ∼= ΘS is

ES−STF . Thus by assumption, ΘS is (projective) generator. By [10, II, Theorem 3.16]
there exists an epimorphism φ : ΘS → SS . Thus S = {1}.

(5) ⇒ (1). If S = {1} then all right S-acts are (projective) generators and so, the
result is obtained.

Theorem 4.12. The following statements are equivalent:

(1) All ES − STF right S-acts are free.

(2) All ES − STF finitely generated right S-acts are free.

(3) All ES − STF cyclic right S-acts are free.

(4) All ES − STF right Rees factor acts of S are free.

(5) S = {1}.

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4) are obvious.
(4)⇒ (5). By assumption, all ES − STF right Rees factor acts of S are generators.

This follows from the previous theorem, that S = {1}.
(5)⇒ (1). If S = {1} then all right S-acts are free and so, (1) is obtained.

Theorem 4.13. The following statements are equivalent:

(1) All strongly faithful right S-acts are ES − STF .
(2) All finitely generated strongly faithful right S-acts are ES − STF .
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(3) All strongly faithful right S-acts generated by at most two elements are ES−STF .

(4) Either S is not left cancellative or it is eventually regular.

(5) Either S is not left cancellative or S is a group.

Proof. Implications (1)⇒ (2)⇒ (3) are obvious.
(3) ⇒ (4). Let S be left cancellative and s ∈ S. Then by [9, Lemma 3.7], SS is

strongly faithful. Now by assumption, similar to proof of Theorem 4.6, the result is
obtained.

(3) ⇒ (5). Let S be left cancellative and s ∈ S. Then by [9, Lemma 3.7], SS is
strongly faithful. Now by assumption, similar to proof of Theorem 4.6, there exist n ∈ N
and x ∈ S such that sn = snxsn. Since S is left cancellative, we have xsn = 1 and so s
is left invertible. Thus S is a group.

(4)⇒ (1). If S is not left cancellative then by [9, Lemma 3.7], there exists no strongly
faithful right S-act and so, the result follows. If S is left cancellative, then by assumption
S is eventually regular. Thus by Theorem 4.2, all right S-acts are ES − STF .

(5) ⇒ (1). If S is not left cancellative then by [9, Lemma 3.7], there exists no
strongly faithful right S-act and so, the result follows. If S is left cancellative, then by
assumption S is a group and so eventually regular. Thus by Theorem 4.2, all right S-acts
are ES − STF .

Theorem 4.14. The following statements are equivalent:

(1) All strongly faithful cyclic right S-acts are ES − STF .

(2) All strongly faithful monocyclic right S-acts are ES − STF .

(3) Either S is not left cancellative or it is eventually left PSF .

Proof. Implication (1)⇒ (2) are obvious.
(2) ⇒ (3). Suppose that S be left cancellative. Then by [9, Lemma 3.7], SS is

strongly faithful. Now by isomorphisms S/ρ(1, 1) ∼= S/∆S
∼= SS and assumption, SS is

ES − STF and so, by Lemma 2.4, S is eventually left PSF .
(3)⇒ (1). Suppose that S is not left cancellative. Then by [9, Lemma 3.7], there exist

no strongly faithful right S-act and so, the result follows. Now let S be left cancellative
and so is eventually left PSF by assumption. Since S is eventually left PSF , by Lemma
2.4, SS is ES − STF . Let AS = aS be a cyclic strongly faithful right S-act, we
define f : aS → SS by f(as) = s. Then f is an isomorphism of right S-acts. Now by
isomorphism aS ∼= SS , the result follows.

Theorem 4.15. The following statements are equivalent:

(1) There exists at least a strongly faithful cyclic right S-act such that is ES − STF .

(2) There exists at least a strongly faithful monocyclic right S-act such that is ES −
STF .

(3) S is left cancellative and each strongly faithful cyclic right S-act is ES − STF .

(4) S is left cancellative and each strongly faithful monocyclic right S-act is ES−STF .

(5) S is left cancellative and eventually left PFS.
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Proof. Implications (2)⇒ (1) and (3)⇒ (4) are obvious.
(1) ⇒ (3). By assumption and [9, Lemma 3.7], S is left cancellative. If S/ρ be

a strongly faithful cyclic right S-act then ρ = ∆S , by [9, Lemma 3.9]. Hence S/ρ =
S/∆S

∼= SS . Then SS is ES − STF . So S is eventually left PSF by Lemma 2.4. Then
each strongly faithful cyclic right S-act is ES − STF , by Theorem 4.14.

(4)⇒ (5). By Theorem 4.14 it is obvious.
(5) ⇒ (2). Since S is left cancellative, SS is strongly faithful by [9, Lemma 3.7].

Since S/ρ(1, 1) ∼= SS , there exists at least a strongly faithful monocyclic S-act. Since S
is eventually left PSF , S/ρ(1, 1) ∼= SS is ES − STF , by Lemma 2.4.

Recall, from [10], if ρ be a right congruence on S and s ∈ S, then by ρs we denote
the right congruence on S define by

x(ρs)y ⇔ (sx)ρ(sy)

for x, y ∈ S.
If λ be a left congruence on S and s ∈ S, then by sλ we denote the left congruence

on S define by
x(sλ)y ⇔ (xs)λ(ys)

for x, y ∈ S.
It is clear that if ρ be a right congruence then ρs is right congruence and if λ be a

left congruence, sλ is left congruence for s ∈ S.

Lemma 4.16. Let ρ ∈ Con(SS). Then the following statments are equivalent:

(1) The cyclic right S-act S/ρ is faithful.

(2) ρ does not contain any left congruence τ on S such that τ 6= ∆S.

(3)
⋂
u∈S ρu = ∆S.

Proof. (1)⇒ (2). It is obvious by [10, I, Proposition 5.24].
(2)⇒ (3). Let σ =

⋂
u∈S ρu. Since for each u ∈ S, ρu ∈ Con(SS) so, it is clear that

σ ∈ Con(SS). Now we show that σ is a left congruence on S. Let x, y ∈ S, then we have:

(x, y) ∈ σ ⇔ (∀u ∈ S)(x, y) ∈ ρu⇔ (∀u ∈ S)(ux, uy) ∈ ρ

Now if l ∈ S, then we have:

(x, y) ∈ σ ⇔ (∀u ∈ S)(ux, uy) ∈ ρ⇒ (∀u ∈ S)(ulx, uly) ∈ ρ
⇒ (∀u ∈ S)(lx, ly) ∈ ρu⇒ (lx, ly) ∈

⋂
u∈S ρu = σ.

Therefore σ is a left congruence on S and clearly
⋂
u∈S ρu ⊆ ρ. On the other hand ρ

does not contain any nontrivial left congruence on S by assumption. Hence σ = ∆S .
(3)⇒ (1). Let S/ρ does not faithful. Then we have:

∃x, y ∈ S, x 6= y,∀u ∈ S, [u]ρx = [u]ρy ⇒ (∀u ∈ S)(ux, uy) ∈ ρ⇒ (∀u ∈ S)(x, y) ∈ ρu
⇒ (x, y) ∈

⋂
u∈S ρu.

Therefore σ =
⋂
u∈S ρu 6= ∆S , which is contradiction by assumption and so, S/ρ is

faithful.

Theorem 4.17. The following statments are equivalent:
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(1) All faithful cyclic right S-acts are ES − STF .
(2) For any ρ ∈ Con(SS), ρ contains any nontrivial left congruence τ on S or the

right act S/ρ is ES − STF .
(3) For any ρ ∈ Con(SS),

⋂
u∈S ρu 6= ∆S or the cyclic right S-act S/ρ is ES−STF .

Proof. (1)⇒ (2). Let ρ be a right congruence on S that does not contain any nontrivial
left congruence on S. Then by Lemma 4.16, S/ρ is faithful and so, S/ρ is ES − STF by
assumption.

(2) ⇒ (3). Let ρ be a right congruence on S such that
⋂
u∈S ρu = ∆S . Then by

Lemma 4.16, and assumption S/ρ is ES − STF .
(3) ⇒ (1). Let ρ be a right congruence on S such that the cyclic right S-act S/ρ is

faithful. So by Lemma 4.16,
⋂
u∈S ρu = ∆S and so, by assumption S/ρ is ES−STF .

Since

free ⇒ projective generator ⇒ projective ⇒ strongly flat ⇒ WPF ⇒ Condition (P)

we have the following theorem.

Theorem 4.18. The following statments are equivalent:

(1) All right Rees factor acts of S satisfying Condition (P ) are ES − STF .
(2) All WPF right Rees factor acts of S are ES − STF .
(3) All srtongly flat right Rees factor acts of S are ES − STF .
(4) All projective right Rees factor acts of S are ES − STF .
(5) All projective generator right Rees factor acts of S are ES − STF .
(6) All free right Rees factor acts of S are ES − STF .
(7) Either S does not contain a left zero or it is eventually left PSF .

Proof. Implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (6) are obvious.
(6) ⇒ (7). Let S contains a left zero such as z. Let KS = zS = {z} and so, KS is

a right ideal such that |KS | = 1. Therefore S/KS
∼= SS is free and so, by assumption

S/KS
∼= SS is ES − STF . Hence S is eventually left PSF by Lemma 2.4.

(7) ⇒ (1). Let K be a right ideal of S such that S/K satisfies Condition (P ). If
K = S, then S/K = S/SS ∼= ΘS . Hence by Theorem 2.5, S/K ∼= ΘS is ES − STF .
If K 6= S then by [10, III, Proposition 13.9], |K| = 1. If z ∈ K then K = zS = {z}.
Therefore z is a left zero of S and so, S is eventually left PSF by assumption. Hence SS
is ES − STF and so, S/K ∼= SS is ES − STF .

We will use Cl(Cr) to denote the set of all left (right) cancellable elements of S.

Lemma 4.19. Let S 6= Cr. Then the following statments hold:

(1) I = S \ Cr is a proper right ideal of S.

(2) S/I(I = S \ Cr) is a torsion free S-act.

(3) If S be eventually left PSF , then I = S \ Cr is a GPW -left stabilizing right ideal

and so, AS = S
I∐
S is ES − STF .
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Proof. For proof (1) and (2), we can refer to [9, Lemma 3.12].
(3). Let s ∈ S. Since S is eventually left PSF , there exists n ∈ N such that

tsn = t′sn for t, t′ ∈ S, implies tr = t′r and rsn = sn for some r ∈ S. Let r ∈ S \ I = Cr
such that rsn ∈ I. Since I = S \ Cr, rsn is not right cancellable. Thus there exist
l1, l2 ∈ S such that l1 6= l2 and l1rsn = l2rs

n. Now by assumption there exists r′ ∈ S
such that l1rr′ = l2rr

′ and r′sn = sn. Therefore rr′sn = rsn. Since l1 6= l2, so the
equality l1rr′ = l2rr

′ implies that rr′ ∈ S \ Cr = I. Let i = rr′ ∈ I, thus rsn = isn and

so I = S \Cr is GPW -left stablizing right ideal. Hence by Theorem 2.14, AS = S
I∐
S is

ES − STF .

Lemma 4.20. Let S be right cancellative. Then for every right S-act we have:
strongly torsion free ⇔ torsion free ⇔ GP -flat ⇔ principally weakly flat ⇔

Condition (PWP ) ⇔ ES − STF ⇔ Condition (P ′) ⇔ Condition (PWPE) ⇔
Condition (PWPssc) ⇔ TKF ⇔ PWKF.

Proof. Implications strongly torsion free⇔ torsion free⇔ GP -flat⇔ principally weakly
flat⇔ Condition (PWP)⇔ Condition (P ′)⇔ Condition (PWPE)⇔ Condition (PWPssc)
⇔ TKF ⇔ PWKF follow from [9, Lemma 3.13].

Condition (PWP)⇒ ES−STF . Suppose that the right S-act AS satisfies Condition
(PWP ) and s ∈ S. If as = a′s, for a, a′ ∈ AS , then there exist u, v ∈ S and b ∈ AS
such that a = bu, a′ = bv and us = vs. Since S is right cancellative, the equality us = vs
implies u = v. Hence a = bu = bv = a′, and so AS is ES − STF .

ES − STF ⇒ Condition (PWP). Let AS be a ES − STF right S-act. Assume that
as = a′s, for s ∈ S, a, a′ ∈ AS . Since AS is ES − STF , there exists n ∈ N such that
bsn = b′sn, for b, b′ ∈ AS , implies br = b′r and rsn = sn for some r ∈ S. We get from
as = a′s the equality asn = a′sn which implies ar = a′r and rsn = sn for some r ∈ S.
Since S is right cancellative the equality rsn = sn implies r = 1. Thus a = a′ and so AS
satisfies Condition (PWP ).

Since
PWKF ⇒ TKF ⇒ Condition (PWP ) and Condition (P ′) ⇒ Condition (PWP )

we have the following two theorems.

Theorem 4.21. Let (U) be a property on S-acts such that

ES − STF ⇒ Property (U) ⇒ torsion free

Then the following statments are equivalent:

(1) S is eventually left PSF and property (U) implies PWKF.

(2) S is eventually left PSF and property (U) implies TKF.

(3) S is eventually left PSF and property (U) implies Condition (PWP).

(4) S is eventually left PSF and property (U) implies Codition (P ′).

(5) S is right cancellative.

Proof. Implications (1)⇒ (2)⇒ (3) and (4)⇒ (3) are obvious.
(3) ⇒ (5). Let S does not be a right cancellative and I = S \ Cr. Then I is a

GPW -left stabilizing right ideal of S by Lemma 4.19, and
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AS = S
I∐
S = {(l, x)|l ∈ S \ I}

·
∪ {(t, y)|t ∈ S \ I}

·
∪ I = (1, x)S ∪ (1, y)S,

is ES − STF . By assumption, AS satisfies Condition (PWP). If i ∈ I then the equality
(1, x)i = (1, y)i implies that there exist a ∈ AS and u, v ∈ S such that (1, x) = au,
(1, y) = av and ui = vi. Therefore there exist t, l ∈ S \ I such that (l, x) = a = (t, y)
which is a contradiction. Hence S is right cancellative, as required.

(5) ⇒ (1). Since S is right cancellative, it is eventually left PSF . Also by Lemma
4.20, for every right S-act, properties torsion free, PWKF and ES−STF are equivalent.
Thus by assumption, every right S-act satisfying in property (U) is PWKF.

(5) ⇒ (4). Since S is right cancellative, S is eventually left PSF . Also by Lemma
4.20, torsion free, Condition (P ′) and eventually semi strongly torsion freeness are equiva-
lent. Thus by assumption every right S-act satisfying in property (U), satisfies Condition
(P ′).

Notice that in the above theorem Property (U) can be replaced by GP -flat and
GPW -flat.

Theorem 4.22. Let (U) be a property on S-acts such that

GPW-flat ⇒ property (U) ⇒ torsion free

Then the following statments are equivalent:

(1) All right S-acts satisfying property (U) are PWKF and ES − STF .

(2) All right S-acts satisfying property (U) are TKF and ES − STF .

(3) All right S-acts satisfying property (U) are (PWP) and ES − STF .

(4) All right S-acts satisfying property (U) are (P ′) and ES − STF .

(5) S is right cancellative.

Proof. Implications (1)⇒ (2)⇒ (3) and (4)⇒ (3) are obviouse.
(3) ⇒ (5). By [12, Proposition 2.8], SS is GPW-flat and so satisfies property (U),

by assumption. Therefore SS is ES − STF . Thus S is eventually left PSF . Since by
assumption every right S-act satisfying property (U) satisfies Condition (PWP), so by
Theorem 4.21, S is right cancellative.

(5) ⇒ (1). Let S be right cancellative and so, by Theorem 4.21, every right S-act
satisfying property (U) is PWKF. On the other hand since S is right cancellative, S
is eventually left almost regular and so, by Theorem 4.5, every torsion free right S-act
is ES − STF . Therefore every right S-act satisfying property (U), is ES − STF , by
assumption.

(5) ⇒ (4). Let S be right cancellative. Thus by Lemma 4.20, Conditions (P ′) and
PWKF are equivalent and so, by proof (5)⇒ (1), the result follows.

Notice that in the above theorem Property (U) can be replaced by GP -flat and
GPW -flat.
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