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On fully dense acts

Mohammad Roueentan, Roghaieh Khosravi, Mohammad Ali Naghipoor

Abstract. Over a monoid S fully dense S-acts as a generalization of monoids for
which any right ideal is a generator are introduced and investigated. First some general
properties on fully dense S-acts are mentioned and then monoids over which all free
(projective) S-acts are fully dense are characterized. Moreover the relation between
these kinds of S-acts and some other classes of S-acts such as prime and strongly prime
S-acts is studied.

1. Introduction

In this paper, S is a monoid and an S-act AS (or A) is a unitary right S-
act. In [5] some classes of monoids in which every right ideal is a generator
are studied and investigated. As a generalization of these monoids, in this
paper we define the concept of fully dense S-acts. Let A be a right S-act
and let B be a subact of A. From [5], B is said to be a dense subact of
A if the trace of B in A is equal to A, i.e., Tr(B,A) :=

⋃
ϕ∈Hom(B,A)

ϕ(B)=A

where Hom(B,A) denotes the set of homomorphisms from A to B. Also
A is called fully dense if any subact of A is dense. In Section 2 of this
paper, we study some properties of fully dense acts. Moreover in Section
3, as a generalization of strongly faithful S-acts, we introduce the notion of
strongly prime S-acts and several equivalent conditions to being strongly
prime are given. We study the interrelationship between (strongly) prime
and fully dense acts. It is shown that over a commutative monoid S an S-
act A is (strongly) prime if and only if A is contained in any fully invariant
subact of E(A), where E(A) is the injective envelope of A.

Recall that an S-act A is called injective if for any S-act B, any subact
C of B and any homomorphism f : C −→ A, there exists a homomorphism
f̄ : B −→ A such that f̄ |C= f (see [3]). Also the S-act A is called quasi-
injective (cyclic quasi-injective) if it is injective relative to all inclusions
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from its subacts (cyclic subacts). For the sake of simplicity, we denote
"cyclic quasi-injective", by "CQ-injective". Moreover an S-act A is called
projective if for any S-acts D,C, every homomorphism f : A −→ D can
be lifted with respect to any epimorphism h : C −→ D, i.e., there exists a
homomorphism g : A −→ C such that f = hg.

An element θ ∈ A is called a zero element if θs = θ for every s ∈ S.
Moreover the one element act is denoted by Θ = {θ}. Recall that an S-act
is called simple if it contains no subacts other than itself. For an S-act A,
by E(A) and Z(A), we mean the injective envelope and the zero elements
of A respectively. For an S-act A, an equivalence relation ρ on A is called
a congruence on A, if a ρ b implies as ρ bs for a, b ∈ A and s ∈ S ([3]).
We denote the set of all congruences on A by Con(A). Also for an S-act
A, by ∆A and 5A we mean the congruences {(a, a) : a ∈ A} and A × A,
respectivley. For a thorough account on the preliminaries, the reader is
referred to [3].

2. Fully dense acts

In this section, we introduce the notions of fully dense acts and cyclically
fully dense acts. We also bring out preliminary and basic properties of fully
dense acts. From [3], recall that the trace of an S-act B in an S-act A is
defined by Tr(B,A) :=

⋃
ϕ∈Hom(B,A)

ϕ(B). Also recall that an S-act G is a

generator if SS is a retract of G or equivalently, Tr(G,S) = S (see Theorem
2.3.16 of [3]).

Definition 2.1. Let S be a monoid and B ≤ A be S-acts. Then

(i) B is called a dense subact of A and is denoted by B ⊆d A, if
Tr(B,A) = A (see [5]).

(ii) The S-act A is called (cyclically) fully dense if every (cyclic) sub-
act of A is a dense subact. In particular if the right S-act SS is a
(cyclically) fully dense act, then we say that S is a (cyclically) fully
dense monoid.

It is clear that for a non-trivial right ideal I of a monoid S, I ⊆d S if
and only if I is a generator. In [5], some classes of fully dense monoids are
investigated and their structures have been determined. Trivially, if Θ is a
subact of an S-act A, then A is a cyclically fully dense act if and only if A =
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Z(A) and so every (cyclically) fully dense monoid S which contains a left
zero is trivial. The following proposition includes some general properties
of fully dense acts.

Proposition 2.2. The following hold for a monoid S.

(i) Let {Ai}i∈I be a family of S-acts. If
∐
i∈I Ai is a (cyclically) fully

dense act, then each Ai is a (cyclically) fully dense act.
(ii) (cyclically) fully dense acts are preserved under products.
(iii) If {Ai}i∈I is a family of (cyclically) fully dense acts and for any i, j ∈

I, there exists an epimorphism ϕij : Ai −→ Aj, then A =
∐
i∈I

Ai is a

(cyclically) fully dense act.

Proof. (i). Let {Ai}i∈I be a family of S-acts such that A =
∐
i∈I Ai is a

fully dense act. Suppose that i ∈ I, B is a subact of Ai and a ∈ Ai. By
assumption, there exists a homomorphism f : B −→ A such that f(b) = a.
We have B =

∐
j∈J Bj such that each Bj is indecomposable. So b ∈ Bk for

some k ∈ J . First, we show that f(Bk) ⊆ Ai. Let c ∈ Bk. Since b, c ∈ Bk,
b = b1s1, b1t1 = b2s2, ..., bntn = c

for some bi ∈ Bk, si, ti ∈ S, i ∈ N. Then
f(b) = f(b1)s1, f(b1)t1 = f(b2)s2, ..., f(bn)tn = f(c).

So f(b), f(c) are in one component. Thus f(c) ∈ Ai, and so f(Bk) ⊆ Ai.
Now, define g : B −→ Ai by

g(c) =

{
f(c) ; c ∈ Bk
c otherwise.

(1)

Clearly, g is a homomorphism and g(b) = a. Therefore, Ai is a fully dense
act.

(ii). Let {Ai}i∈I be a family of fully dense acts, and A =
∏
i∈I Ai.

Suppose that B is a subact of A and a = {ai}i∈I ∈ A. Let j ∈ I and
Bj = {c ∈ Aj | ∃b = {bi}i∈I ∈ B, c = bj}. Clearly, Bj is a subact of Aj .
So there exists a homomorphism fj : Bj −→ Aj such that fj(cj) = aj for
some cj in Bj . Define f : B −→ A by f({bi}i∈I) = {fi(bi)}i∈I . It is easily
checked that f is a homomorphism and f({ci}i∈I) = {fi(ai)}i∈I = {ai}i∈I ,
and we are done.

(iii). Let a ∈ A and B =
∐
l∈L

Bl is a subact of A. If a ∈ Ai for some

i ∈ I and Bk = B ∩Ak 6= ∅ for some k ∈ L, then by assumption, a = g(ak)
where g : Ak −→ Ai is an epimorphism and ak ∈ Ak. Since Ak is a fully
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dense act, ak = fk(bk), for some homomorphism fk : Bk −→ Ak and some
bk ∈ Bk. Now define the homomorphism f : B −→ A, by

f(b) =

{
(gofk)(b) ; b ∈ Bk
b ; otherwise

(2)

It is clear that f(bk) = a and so A is a fully dense act. One can prove for
cyclically fully dense act similarly.

It is easy to see that a retract of a (cyclically) fully dense act is a
(cyclically) fully dense act. Now using part (iii) of Proposition 2.2, the
next corollary holds. Note that an S-act F is a free S-act if and only if
F ∼=

∐
i∈I Si where for any i ∈ I, Si ∼= SS (see Theorem 1.5.13 of [3]).

Corollary 2.3. The following statements are equivalent for a monoid S:

(i) Every projective S-act is a (cyclically) fully dense act.

(ii) Every free S-act is a (cyclically) fully dense act.

(iii) S is a (cyclically) fully dense monoid.

(iv) Every (principal) right ideal of S is a generator.

Regarding the concepts of dense subacts and CQ-injective acts, the proof
of the following proposition is straightforward.

Proposition 2.4. Let S be a monoid and B ⊆ C ⊆ A be S-acts. Then the
following hold:

(i) If B ⊆d A and A is CQ-injective, then C ⊆d A.
(ii) If B ⊆d A and C is CQ-injective, then B ⊆d C.
(iii) Any CQ-injective subact of any fully dense act is a fully dense act.

Now, we study conditions under which a cyclic S-act is a cyclically fully
dense act. Recall that for every right congruence ρ on S and for every s ∈ S,
the right congruence ρs is defined by (x, y) ∈ ρs ⇐⇒ (sx, sy) ∈ ρ.

Proposition 2.5. For a right congruence ρ on S, S/ρ is a cyclically fully
dense act if and only if for each s ∈ S there exist t, u ∈ S such that ρs 6 ρt
and tu ρ 1.
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Proof. Necessity. If s ∈ S, then by assumption S/ρ = Tr([s]S, S/ρ) and
consequently [1] = f([s]u) for some u ∈ S and some homomorphism f :
[s]S −→ S/ρ. If f([s]) = [t], then [1] = f([s]u) = [t]u, and so tu ρ 1. To show
that ρs 6 ρt, let xρsy. So [s]x = [s]y. Thus [t]x = f([s]x) = f([s]y) = [t]y
which means that tx ρ ty. Therefore, xρty , and we are done.

Sufficiency. Suppose that s ∈ S. By assumption, there exist t, u ∈ S
such that ρs 6 ρt and tu ρ 1. Define f : [s]S −→ S/ρ by f([s]v) = [t]v for
each v ∈ S. Since ρs 6 ρt, clearly f is a well-defined S-homomorphism.
Moreover, from tu ρ 1 we conclude that f is an epimorphism, and the result
follows.

3. Prime and strongly prime S-acts

In this section we introduce the notions of prime and strongly prime S-
acts and the interrelationship between (strongly) prime acts and fully dense
acts is investigated. Recall that an S-act A is called strongly faithful if the
equality as = at implies that s = t for s, t ∈ S and a ∈ A. In what follows
as an over class of strongly faithful acts, we define the notion of strongly
prime acts. Recall that for an element a of an S-act A, the annihilator
of a is defined by ann(a):={(s, t) ∈ S × S| as = at} = ker(λa) where
λa : SS −→ A is defined by λa(s) = as for every s ∈ S. Also the annihilator
of A is defined by ann(A)=

⋂
a∈A

ann(a) (see [1]).

Definition 3.1. Let S be a monoid and A be an S-act. Then A is called
strongly prime, if for any elements a, b ∈ A, ann(a)=ann(b). Also A is said
to be prime, if for any subact B of A, ann(B) = ann(A).

It is obvious that for a monoid S, an S-act A is prime if and only if for
each a ∈ A, ann(aS)=ann(A). Also (strongly) prime S-acts are preserved
under product and the right S-act, SS is strongly prime if and only if S is
left cancellative. Evidently, we have the following implications:
(strongly faithful → strongly prime → prime) and also (faithful strongly
prime ↔ strongly faithful).

The following example shows that the implications, (strongly faithful→
strongly prime → prime) are strict.

Example 3.2. (i)] Suppose S is a non-trivial monoid and A = ΘqΘ. Then
obviously A is strongly prime which is not strongly faithful.
(ii) Suppose S = T 1 where T is a right zero semigroup with at least two
elements. It is clear that for any x ∈ T , ann(x) ={(1, x), (x, 1)}∪∆S . Now
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if x, y ∈ T and A = xS ∪ yS, then we can easily see that A is a prime S-act
which is not strongly prime.

Proposition 3.3. All S-acts are (strongly) prime if and only if S = {1}.

Proof. Since S
∐

Θ is prime, we have
5S = S × S = ann(Θ) = ann(S

∐
Θ) ⊆ ann(S) = ∆S

which implies that S = {1}. The converse is clear.

Lemma 3.4. Suppose A and B are isomorphic strongly prime S-acts over
a monoid S. Then for any elements a ∈ A, b ∈ B, ann(a) = ann(b).

Proof. Suppose f : A −→ B is an isomorphism and a ∈ A, b ∈ B. Thus
for some x ∈ A, f(x) = b which implies that ann(x) = ann(b). Since A is
strongly prime, ann(x) = ann(a) and so ann(a) = ann(b).

Recall from [3], that over a monoid S an S-act A satisfies Condition
(E), if for all a ∈ A, s, t ∈ S, as = at implies that there exist b ∈ A, z ∈ S
such that a = bz and zs = zt

Proposition 3.5. The following statements are equivalent for a monoid S:

(i) Every projective S-act is strongly prime.
(ii) Every free S-act is strongly prime.
(iii) Every S-act which satisfies Condition E is strongly prime.
(iv) SS is strongly prime.

Proof. (ii) ⇒ (i). Clearly a retract of a strongly prime S-act is strongly
prime. Also by Proposition 3.17.4 of [3], every projective S-act is a retract
of a free S-act and so the result follows.

(iv) ⇒ (ii). Holds by the above lemma and Theorem 1.5.13 of [3].
(iv) ⇒ (iii). Let an S-act A satisfy Condition (E). If (s, t) ∈ ann(a),

then as = at and by assumption there exist u ∈ S and a′ ∈ A such that
a = a′u, us = ut. By assumption, s = t and hence ann(a) = ∆S . The
other implications are clear.

By a routine argument, we can see that SS is a prime S-act if and only
if for each s, u, v ∈ S, if for all t ∈ S, stu = stv, then u = v. Thus by a
similar proof of the previous proposition, we have the following proposition.

Proposition 3.6. The following statements are equivalent for a monoid S:



Fully dense acts 127

(i) Every projective S-act is prime.
(ii) Every free S-act is prime.
(iii) SS is prime.
(iv) For each s, u, v ∈ S, if for all t ∈ S, stu = stv, then u = v.

Proposition 3.7. Let S be a non-trivial commutative monoid. Then the
following conditions are equivalent:

(i) For every S-act A and for any non-zero elements a and b of A,
ann(a)=ann(b).

(ii) S ∼= Zp, where Zp denotes a cyclic group of prime order.

Proof. (i) ⇒ (ii). Suppose λ 6= S × S is a right congruence on S. If
A = S ∪ S

λ , then by assumption, ∆S = ann(S) = ann(Sλ ) = λ. Thus
Con(S) = {5S ,∆S} and by Theorem 11 of [1], the result follows.

(ii) ⇒ (i). By a routine argument, we can see that for a commutative
group S, Con(S) = {5S ,∆S}. Thus for any non-zero element a of an S-act
A, ann(a) = ∆S and the result follows.

Next we consider (strongly) prime cyclic S-acts.

Proposition 3.8. Let ρ be a right congruence on S. Then the following
hold:

(i) The act S/ρ is prime if and only if for each s ∈ S, (u, v) ∈ 5S if
(∀t ∈ S, stu ρ stv), then (∀t ∈ S, tu ρ tv).

(ii) The act S/ρ is strongly prime if and only if for each s ∈ S if su ρ sv
for some (u, v) ∈ 5S, then tu ρ tv for each t ∈ S.

Proof. We only prove part (i). The proof of part (ii) is simillar.
Necessity. Let s ∈ S and (u, v) ∈ 5S . Suppose that for all t ∈ S, stu ρ stv.
So (u, v) ∈ ann([s]t) for each t ∈ S. Then (u, v) ∈ ann([s]S). Since
ann([s]S) = ann(S/ρ), (u, v) ∈ ann(S/ρ) =

⋂
t∈S ann([t]) which means

that tu ρ tv for each t ∈ S.
Sufficiency. Let [s] ∈ S/ρ, and (u, v) ∈ ann([s]S). Since ann([s]S) =⋂

t∈S ann([s]t), stu ρ stv for all t ∈ S. By assumption, tu ρ tv for all
t ∈ S. So (u, v) ∈

⋂
t∈S ann([t]) = ann(S/ρ). Therefore, ann([s]S) =

ann(S/ρ).

The next proposition connects the notions of prime S-acts and fully
dense acts.
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Proposition 3.9. Let S be a monoid, then the following hold:

(i) For S-acts A,B if B ⊆d A, then ann(B) = ann(A).
(ii) Every cyclically fully dense act is prime.
(iii) Every CQ-injective strongly prime S-act is a fully dense act.

Proof. (i). It is clear that ann(A) ⊆ ann(B). Suppose that (s, t) ∈ ann(B)
and a ∈ A. By assumption there exist a homomorphism f : B −→ A and
b ∈ B such that a = f(b). Hence ann(B) ⊆ ann(b) ⊆ ann(a) for each a ∈ A,
and then ann(B) ⊆ ann(A).

(ii). Clearly an S-act A is prime if for any cyclic subact aS, ann(aS) =
ann(A). Now by part (i), the result follows. (iii). Considering the fact that,
in every strongly prime act, all cyclic subacts are isomorphic, the condition
CQ-injectivity implies the result.

For an S-act A the set of endomorphisms of A is denoted by End(A)
which forms a monoid under composition of mapping (see [3]).

Corollary 3.10. Suppose S is a commutative monoid and A is a CQ-
injective S-act. If T = End(A), then the following conditions are equivalent:

(i) A is strongly prime.
(ii) A is a fully dense act.
(iii) If a ∈ A, then A = Ta, where Ta = {f(a) | f ∈ T}.
(iv) A is a simple T -act.

Proof. (i) ⇔ (ii). This is clear by Proposition 3.9.
(i)⇔ (iii). A same technique to the proof of Proposition 3.9(iii), can be

used.
(iii) ⇔ (iv). Trivial.

From [4], a subact B of an S-act A is fully invariant if for any homo-
morphism f : A −→ A, f(B) ⊆ B. Also A is called duo if any subact of A
is fully invariant. Recall that a subact D of an S-act A is called essential
in A and is denoted by D ⊆′ A, if any homomorphism h : A −→ C such
that h|D is a monomorphism is itself a monomorphism (see [3]).

Lemma 3.11. Let A be an S-act over a monoid S. Then the following
conditions are equivalent:
(i) For any a, b ∈ A there exists t ∈ S such that ann(at) ⊆ ann(b).
(ii) A is contained in any fully invariant subact of E(A).
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Proof. (i) ⇒ (ii). Let Q be a fully invariant subact of E(A) and b ∈ A.
Since A is an essential subact of E(A), there exists θ 6= a ∈ A ∩ Q. By
assumption, for some t ∈ S, ann(at) ⊆ ann(b). Thus f : atS −→ bS is
defined by f(atx) = bx for any x ∈ S is a well-defined homomorphism
which can be extended to an endomorphism of E(A). Now since at ∈ Q
and Q is a fully invariant in E(A), b = f(at) = f̄(at) ∈ Q and the result
follows.

(ii)⇒ (i). Suppose a, b ∈ A. If Q :=
⋃

f∈End(E(A))

f(aS), then Q is a fully

invariant subact of E(A) and so by assumption A ⊆ Q. Thus b = f(at) for
some t ∈ S and consequently ann(at) ⊆ ann(b).

In the next theorem, we present more information concerning prime acts
over commutative monoids.

Theorem 3.12. Suppose S is a commutative monoid and A is an S-act.
Then the following statements are equivalent:

(i) A is strongly prime.

(ii) A is prime.

(iii) ann(A) = ann(a) for every element a ∈ A.
(iv) A is a cyclically fully dense act.

(v) aS ⊆d aS ∪ bS for any elements a, b ∈ A.
(vi) aS ∼= bS for any elements a, b ∈ A.
(vii) A is contained in any fully invariant subact of E(A).

Proof. (i) ⇒ (ii), (i) ⇒ (iii) and (i) ⇒ (vi) are clear.
(vi) ⇒ (i). Let f : aS −→ bS be an isomorphism for elements a, b ∈ A.

If f(a) = bt for some t ∈ S then ann(a) ⊆ ann(bt). Thus since S is
commutative, ann(a) ⊆ ann(bS) = ann(b) and the result follows.

(vi) ⇒ (iv). Suppose a, b ∈ A and aS ∼= bS, then b ∈ Tr(aS,A). Thus
A ⊆ Tr(aS,A).

(iv) ⇒ (iii) It follows by part (i) of Proposition 3.9.
(vi) ⇒ (v). If aS ∼= bS, then bS ⊆d Tr(aS, aS ∪ bS) = bS ∪ aS.
(v) ⇒ (vi). By assumption and by Proposition 3.9, for any elements

a, b ∈ A, ann(aS) = ann(bS) and since S is commutative, ann(a) = ann(b).
Thus clearly aS ∼= bS.

(i) ⇐⇒ (vii). Apply Lemma 2.16.
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From [2] an S-act A is called Rees artinian if it satisfies the descending
chain condition on its subacts. In particular a monoid S is said to be right
Rees artinian if the right S-act SS is Rees artinian.

Since SS is a projective (cyclic) S-act, by Proposition 2.8 of [5] and by
part (iii) of Proposition 2.2, we obtain the following result. Note that over
a group S any cyclic S-act is a simple act (fully dense act ).

Corollary 3.13. Let S be a right Rees artinian monoid. Then the following
conditions are equivalent:
(i) Every cyclic S-act is a fully dense act.
(ii) Every projective S-act is a fully dense act.
(iii) S is a group.
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