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A decomposition of Γ-bands

Attila Nagy

Abstract. In this paper we define the notion of the rectangular Γ-band, and give
equivalent conditions on a Γ-semigroup to be a rectangular Γ-band. Moreover, we show
that every Γ-band is a Γ-semilattice of rectangular Γ-bands.

1. Introduction and motivation

A nonempty set together with an associative binary operation is called a
semigroup. The notion of Γ-semigroup is a generalization of the notion of a
semigroup. Let Γ be a nonempty set. Using the terminology of [4], we say
that a nonempty set S is a Γ-semigroup if there exists a mapping of S×Γ×S
into S written as (a, α, b) 7→ aαb satisfying the identity (aαb)βc = aα(bβc).
One of the central topics in the theory of semigroups is the decomposition
of semigroups into different types of semigroups. The readers are referred
to the books [1, 2, 3]. The main result of this area is that every semigroup
is a semilattice of semilattice indecomposable semigroups. Especially, every
band is a semilattice of rectangular bands. In this paper we extend this
last result to Γ-bands. In Section 3, we define the notion of the rectangular
Γ-band and give equivalent conditions for a Γ-semigroup to be a rectangular
Γ-band. In Section 4, we define a binary relation ηS on a Γ-band S, and show
that ηS is the least Γ-congruence on S such that the factor Γ-semigroup S/ηS
is a Γ-semilattice. We also show that the ηS-classes of S are rectangular
Γ-bands. Thus every Γ-band is a Γ-semilattice of rectangular Γ-bands.

2. Preliminaires

Let S be a Γ-semigroup and α ∈ Γ be an arbitrary element. We say that
an element e of S is an α-idempotent if eαe = e. An element e of a Γ-
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semigroup S is called a Γ-idempotent if e is an α-idempotent for all α ∈ Γ.
A Γ-semigroup S will be called a Γ-band if every element of S is a Γ-
idempotent.

A Γ-semigroup S in which aαb = bαa is satisfied for every a, b ∈ S and
every α ∈ Γ is called a commutative Γ-semigroup. A commutative Γ-band
is called a Γ-semilattice. By a nowhere commutative Γ-semigroup we mean
a Γ-semigroup in which aαb = bαa implies a = b for every a, b ∈ S and
α ∈ Γ.

A mapping ϕ of a Γ-semigroup S1 into a Γ-semigroup S2 is said to be a
Γ-homomorphism if ϕ(aαb) = ϕ(a)αϕ(b) is satisfied for every a, b ∈ S1 and
every α ∈ Γ. A bijective Γ-homomorphism is called a Γ-isomorphism.

An equivalence relation σ on a Γ-semigroup is called a Γ-congruence on
S if aσc and bσd imply aαbσcαd for every a, b, c, d ∈ S and α ∈ Γ. An
equivalence relation σ on a Γ-semigroup is called a left Γ-congruence on S
if aσb implies cαaσcαb for every a, b, c ∈ S and α ∈ Γ. The notion of right
Γ-congruence is the dual of the notion of a left Γ-congruence. It is easy to
see that an equivalence relation of a Γ-semigroup S is a Γ-congruence if and
only if it is a left Γ-congruence on S and a right Γ-congruence on S.

If σ is a Γ-congruence on a Γ-semigroup S, then the factor set S/σ is
also a Γ-semigroup: for arbitrary α ∈ Γ and arbitrary σ-classes A and B of
S, AαB = C, where C is the σ-class of S which contains the elements of
AαB. This Γ-semigroup is called the factor Γ-semigroup of S (modulo σ).

We say that σ is a Γ-semilattice Γ-congruence on a Γ-semigroup S if σ is
a Γ-congruence on S such that the factor Γ-semigroup S/σ is a Γ-semilattice.

Let S be a Γ-semigroup, and let Si (i ∈ I) be pairwise disjoint Γ-
subsemigroups of S such that S = ∪i∈ISi. If the equivalence relation on S
whose classes are the subsets Si (i ∈ I) is a semilattice Γ-congruence on S,
then we say that S is a Γ-semilattice of Γ-semigroups Si (i ∈ I).

3. Rectangular Γ-bands

Definition 3.1. A Γ-band S will said to be a rectangular Γ-band if it
satisfies the identity aαbαa = a, that is, aαbαa = a is satisfied for all
a, b ∈ S and all α ∈ Γ.

The next theorem gives equivalent conditions for a Γ-semigroup to be a
rectangular Γ-band.

Theorem 3.2. The following conditions on a Γ-semigroup S are equivalent.
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(1) S is a rectangular Γ-band.

(2) S is a Γ-band satisfying the identity aαbβa = a.

(3) S is a Γ-band satisfying the identity aαbβc = aγc.

(4) S is a Γ-band satisfying the identity aαbαc = aαc.

(5) S is Γ-isomorphic to the direct product of a left zero Γ-semigroup L
and a right zero Γ-semigroup R.

(6) S is a nowhere commutative Γ-semigroup.

Proof. (1)⇒ (2): Assume that S is a rectangular Γ-band. Let a, b ∈ S and
α, β ∈ Γ be arbitrary elements. Then

aαbβa = aαbβ(aαa) = aα(bβa)αa = a.

(2)⇒ (3): Assume that S is a Γ-band satisfying the identity aαbβa = a.
Let a, b, c ∈ S and α, β, γ ∈ Γ be arbitrary elements. Then

aαbβc = aαbβ(cγaγc) = (aα(bβc)γa)γc = aγc.

Thus (3) is satisfied.
(3)⇒ (4): It is obvious.
(4) ⇒ (5): Assume that S is a Γ-band satisfying the identity aαbαc =

aαc. Let e ∈ S and α ∈ Γ be arbitrary elements. Let

L = Sαe and R = eαS.

For arbitrary a, b ∈ S and β ∈ Γ, we have

(aαe)β(bαe) = aα(eβb)αe = aαe

which implies that L is a left zero Γ-semigroup. Similarly, R is a right zero
Γ-semigroup.

We show that S is Γ-isomorphic to the direct product L×R. Let ϕ be
a mapping of L × R into S defined by the following way: for an element
(sαe, eαt) ∈ L×R, let

ϕ(sαe, eαt) = sαeαt.

For every s ∈ S, we have

s = sαs = sαeαs = ϕ(sαe, eαs),
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and hence ϕ is surjective.
We show that ϕ is injective. Assume

ϕ(sαe, eαt) = ϕ(uαe, eαv)

for some s, t, u, v ∈ S. Then

sαeαt = uαeαv.

Applying this equation, we get

sαe = sα(eαtαe) = (sαeαt)αe = (uαeαv)αe = uα(eαvαe) = uαe

and

eαt = (eαsαe)αt = eα(sαeαt) = eα(uαeαv) = (eαuαe)αv = eαv.

Thus
(sαe, eαt) = (uαe, eαv).

Hence ϕ is injective.
It remains to show that ϕ is a Γ-homomorphism. Let (sαe, eαt) and

(uαe, eαv) be arbitrary elements of L × R. Then, for an arbitrary β ∈ Γ,
we have

ϕ((sαe, eαt)β(uαe, eαv)) = ϕ((sαe)β(uαe), (eαt)β(eαv)) =

= ϕ(sαe, eαv) = sαeαv = sα(eα(tβu)αe)αv =

= (sαeαt)β(uαeαv) = ϕ(sαe, eαt)βϕ(uαe, eαv).

Thus ϕ is a Γ-homomorphism. Consequently S is Γ-isomorphic to L × R.
Hence (5) is satisfied.

(5)⇒ (6): Assume that the Γ-semigroup S is Γ-isomorphic to the direct
product of a left zero Γ-semigroup L and a right zero Γ-semigroup R. If

(a1, b1)α(a2, b2) = (a2, b2)α(a1, b1)

for some a1, a2 ∈ L, b1, b2 ∈ R and α ∈ Γ, then

(a1, b2) = (a1αa2, b1αb2) = (a1, b1)α(a2, b2) =

= (a2, b2)α(a1, b1) = (a2αa1, b2αb1) = (a2, b1)
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from which we get
a1 = a2 and b1 = b2,

that is,
(a1, b1) = (a2, b2).

Thus S is nowhere commutative.
(6)⇒ (1): Assume that S is a nowhere commutative Γ-semigroup. Let

a ∈ S and α ∈ Γ be arbitrary elements. Since

aα(aαa) = aα(aαa),

that is, a and aαa commute with each other, we get

aαa = a.

Thus every element of S is a Γ-idempotent, that is, S is a Γ-band. For
arbitrary a, b ∈ S and α ∈ Γ, we have

aα(aαbαa) = (aαa)α(bαa) = aαbαa = (aαb)α(aαa) = (aαbαa)αa,

that is, a and aαbαa commute with each other. Thus

aαbαa = a.

Consequently S is a rectangular Γ-band, and hence (1) is satisfied.

An element e of a semigroup S is called an idempotent element if e2 = e.
A semigroup S is called a band if every element of S is an idempotent
element. A band satisfying the identity aba = a is called a rectangular
band.

Theorem 3.3. Let S and Γ be arbitrary non-empty sets. Then S is a
rectangular Γ-band if and only if there is a binary operation ? on S such
that (S; ?) is a rectangular band.

Proof. Assume that S is a rectangular Γ-band. By Theorem 3.2 S satisfies
the identity aαbαc = aαc. Let a, b ∈ S and α, β ∈ Γ be arbitrary elements.
Then

aαb = (aβa)α(bβb) = aβ(aαb)βb = aβb.

Thus
|aΓb| = 1.
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Let ? be the binary operation on S defined by the following way: for arbi-
trary a, b ∈ S, let

a ? b = aΓb.

It is a matter of checking to see that (S; ?) is a rectangular band.
Conversely, assume that there is a binary operation ? on S such that

(S; ?) is a rectangular band. For every a, b ∈ S and α ∈ Γ, let

aαb = a ? b.

It is easy to see that S becomes a rectangular Γ-band.

4. Γ-bands

Theorem 4.1. On an arbitrary Γ-band S,

ηS = {(a, b) ∈ S × S : (∀α ∈ Γ) aαbαa = a, bαaαb = b}

is the least Γ-semilattice Γ-congruence on S such that the ηS-classes of S
are rectangular Γ-bands.

Proof. Let S be a Γ-band. As every element a of S is a Γ-idempotent, we
have

aαaαa = aαa = a

for every α ∈ Γ, and hence a ηS a. Thus ηS is reflexive. It is obvious that
ηS is symmetric. To show that ηS is transitive, let a, b, c ∈ S be arbitrary
elements such that a ηS b and b ηS c. Then, for every α ∈ Γ,

a = aαbαa = aα(bαcαb)αa = (aαb)α(cαbαa) =

= (aαb)α(cαbαa)α(cαbαa) = aα(bαcαb)αaα(cαbαa) =

= (aαbαa)α(cαbαa) = aαcαbαa

(1)

and

a = aαbαa = aα(bαcαb)αa = (aαbαc)α(bαa) =

= (aαbαc)α(aαbαc)α(bαa) = (aαbαc)αaα(bαcαb)αa =

= (aαbαc)α(aαbαa) = aαbαcαa.

(2)

From (1) and (2), we get

a = aαa = (aαcαbαa)α(aαbαcαa) = (aαc)α(bαaαaαb)α(cαa) =

= (aαc)α(bαaαb)α(cαa) = (aαc)αbα(cαa) =

= aα(cαbαc)αa = aαcαa.

(3)
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By symmetry, we have
c = cαaαc. (4)

Equations (3) and (4) together imply that, for every α ∈ Γ,

a = aαcαa and c = cαaαc

which means that a ηS c. Thus ηS is transitive.
We show that ηS is a right Γ-congruence on S. Assume a ηS b for

elements a, b ∈ S. Let c ∈ S and α, ξ, κ ∈ Γ be arbitrary elements. Then

(aξc)κ(aαbξc)κ(aξc) = (aξc)κ(aαbξc)κ((aαbαa)ξc) =

aξ(cκaαb)ξ(cκaαb)α(aξc) = aξ(cκaαb)α(aξc) =

= (aξc)κ(aαbαa)ξc = (aξc)κ(aξc) = (aξc).

(5)

Moreover,

(aαbξc)κ(aξc)κ(aαbξc) = (aαb)ξ((cκa)ξ(cκa))α(bξc) =

= (aαb)ξ(cκa)α(bξc) = (aαbξc)κ(aαbξc) = aαbξc.
(6)

Equations (5) and (6) together imply

(aξc) ηS (aαbξc). (7)

Since

(bξc)κ(aαbξc)κ(bξc) = (bξc)κ(aαbξc)κ((bαaαb)ξc) =

((bαaαb)ξc)κ(aαbξc)κ(bξc) =

= bα(aαbξc)κ(aαbξc)κ(bξc) =

= (bαbαa)ξcκ(bξc) = (bξc)κ(bξc) = bξc

(8)

and

(aαbξc)κ(bξc)κ(aαbξc) = aα(bξc)κ(bξc)κ(aαbξc) =

aα(bξc)κ(aαbξc) = (aαbξc)κ(aαbξc) = aαbξc,
(9)

equations (8) and (9) together imply

(bξc) ηS (aαbξc). (10)

By (7) and (10), we have

(aξc) ηS (aαbξc) ηS (bξc).
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Since ηS is transitive, we get

(aξc) ηS (bξc).

Consequently ηS is a right Γ-congruence on S . We can prove in a similar
way that ηS is a left Γ-congruence on S. Thus ηS is a Γ-congruence on S.

For arbitrary a, b ∈ S and α, β ∈ Γ,

(aαb)β(bαa)β(aαb) = aα(bβb)α(aβa)αb =

= (aαb)α(aαb) = aαb.
(11)

We can prove in a similar way that

(bαa)β(aαb)β(bαa) = bαa. (12)

By (11) and (12), we get
(aαb) ηS (bαa),

from which it follows that the factor Γ-semigroup S/ηS is commutative.
It is clear that every ηS-class of S is α-idempotent in S/ηS for every

α ∈ Γ. Thus S/ηS is a Γ-semilattice. In other words, ηS is a Γ-semilattice
Γ-congruence on S.

We show that ηS is the least Γ-semilattice Γ-congruence on S. Let σ be
a Γ-semilattice Γ-congruence on S. Let a and b be elements of S such that
a ηS b. Let α ∈ Γ be an arbitrary element. Then

a = aαbαa σ aα(bαb)αa σ (aαa)α(bαb) σ aα(bαb) σ bαaαb = b.

Thus
a σ b,

and hence
ηS ⊆ σ.

Consequently ηS is the least Γ-semilattice Γ-congruence on S.
It remains to show that every ηS-class of S is a rectangular Γ-band. Let

A be an arbitrary ηS-class of S. As every element of S is Γ-idempotent, A
is a Γ-band. Let a, b ∈ A, and let α ∈ Γ be arbitrary elements. Then

a ηS b

which implies
aαbαa = a.
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Thus the Γ-band A satisfies the identity

aαbαa = a.

By Theorem 1, A is a rectangular Γ-band.

Corollary 4.2. Every Γ-band is a Γ-semilattice of rectangular Γ-bands.

Proof. By Theorem 4.1, it is obvious.

Corollary 4.3. Every Γ-band is a Γ-semilattice of semigroups, which semi-
groups are rectangular bands.

Proof. By Corollary 4.2 and Theorem 3.3, it is obvious.

5. Examples

Example 5.1. Let

S =

{
a =

[
1 1 1
1 1 1

]
, b =

[
0 0 0
0 0 0

]}
and

Γ =

α =

 1 −1
−1 1
1 0

 , β =

−1 1
0 0
0 1

 .

It is a matter of checking to see that S is a Γ-semigroup such that a and
b are Γ-idempotents. In other words, S is a Γ-band. It is easy to see that
S has two ηS classes; these are the one-element sets {a} and {b}. Thus S
is Γ-isomorphic to the factor semigroup S/ηS . By Theorem 3.3, S/ηS is a
Γ-semilattice. Thus S is a Γ-semilattice. It can be directly shown that S is
a Γ-semilattice.

Example 5.2. Let

S =

{
a =

[
1 1 1
1 1 1

]
, b =

[
2 2 1
2 2 1

]
, c =

[
0 0 0
0 0 0

]}
and

Γ =


 1 −1
−1 1
1 0

 .

It is a matter of checking to see that S is a Γ-band, in which the classes of
ηS are {a, b} and {c}. It is easy to see that {a, b} is a right zero Γ-semigroup.
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Example 5.3. Let

S =

{
a =

[
1 1 1
1 1 1

]
, b =

[
2 2 1
2 2 1

]
, c =

[
0 0 0
0 0 0

]}
and

Γ =

α =

 1 −1
−1 1
1 0

 , β =

−1 1
0 0
0 1

 .

It is a matter of checking to see that S is a Γ-band, in which the classes
of ηS are {a, b} and {c}. Moreover, {a, b} is a right zero Γ-semigroup.
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