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Semi-cross product and extension theory
of gyrogroups

Akshay Kumar, Mani Shankar Pandey, Seema Kushwaha

and Sumit Kumar Upadhyay

Abstract. We present the concept of a semi-cross product between a group and a gy-
rogroup, offering a means to construct a broader range of gyrogroups. Also, we develop
the Schrier’s extension theory of gyrogroups. Consequently, we prove that a 2-fold exten-
sion {e} → H → G → K → {e} of a group H by a gyrogroup K splits if and only if G is
a semi-cross product of H and K. Furthermore, we establish an equivalence between the
category GEXT of group-gyro extensions, and the category GFAC of group-gyro factor
systems.

1. Introduction

The relativistic velocities do not follow the usual vector addition. Einstein
addition of relativistically admissible velocities was introduced by Einstein
in 1905 paper ([4], p. 141]). Let c denote the speed of light in vacuum, and
let R3(c) = {v ∈ R3 | ‖v‖ ≤ c} be the c-ball of relativistically admissible
velocities in R3. The Einstein addition ⊕E in R3(c) is given by

u⊕E v =
1

1 + 〈u,v〉
c2

{
u+

1

γu
v +

1

c2
γu

1 + γu
〈u, v〉u

}
,

where γu is the Lorentz factor or gamma factor given by γu = 1√
1− ‖u‖

2

c2

. This

addition is neither associative nor commutative in R3(c). Ungar showed
that (R3(c),⊕E) is not a group but holds nice algebraic properties. In
1988, Ungar [13, 14] introduced a non-associative algebraic structure, gy-
rogroup, which is a generalization of groups. In [10, 11, 12], authors have
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shown that most of the results of the group theory like Lagrange theorem,
the fundamental isomorphism theorem, Cayley theorem are still hold for
gyrogroups. In a similar vein to group theory, Foguel and Ungar [5] intro-
duced the concept of a normal subgroup within the context of gyrogroups.
In this framework, a normal subgroup of a gyrogroup is defined such that
the quotient of a gyrogroup by a normal subgroup remains a gyrogroup.

It is evident that while every group qualifies as a gyrogroup, the converse
is not always true. Such gyrogroups that are not groups are known as non-
degenerate gyrogroups. This prompts the following question: for any given
natural number n does there exist a non-degenerate gyrogroup of order n?
In [9], the authors showed that gyrogroups are Bol loops. Given that every
Bol loop of order p, p2, and 2p (as per [2]) is a group, it follows that there
are no non-degenerate gyrogroups of order p, p2, and 2p, where p is a prime.

In this paper, we introduce the concept of a semi-cross product between
a group and a gyrogroup, which extends the notion of a semi-direct prod-
uct of groups. Specifically, we provide examples of gyrogroups of order 24
and 32, as well as gyrogroups of infinite order. While the existing notion
of a gyrosemidirect product in [14] of a group and a gyrogroup results in a
group only, our novelty lies in demonstrating that semi-cross products yield
non-degenerate gyrogroups. Thus, the outcomes presented in this paper
offer a method for constructing non-degenerate gyrogroups. Furthermore,
we endeavor to develop an extension theory for gyrogroups, analogous to
the extension theory established for groups. Schreier’s extension theory for
groups was devised to classify all groups G having H as a normal subgroup,
such that G/H is isomorphic to K, for any two groups H and K (for further
elucidation, refer to [6]). Given that gyrogroups constitute a generalization
of groups and considering the well-established theory of Schreier’s exten-
sion for groups, it is intriguing to explore Schreier’s extension theory for
gyrogroups.

In this context, we present the following questions regarding gyrogroups:

1. Given a group H, how can we classify all gyrogroups G such that
G/H forms a gyrogroup?

2. Given a gyrogroup H, how can we classify all gyrogroups G such that
G/H becomes a group?

3. Given a gyrogroup H, how can we classify all gyrogroups G such that
G/H remains a gyrogroup?
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In [1], Bruck explored extensions of loops, providing a framework for
obtaining additional examples of gyrocommutative gyrogroups. In 2000,
Rozga [8] investigated central extensions for gyrocommutative gyrogroups,
identifying a natural emergence of a cocycle equation for a subset of these
gyrogroups. More recently, Lal and Kakkar [7] discussed several results
on extensions for group-based gyrogroups. In section 3, we endeavor to
extend Schreier’s extension theory to categorize all gyrogroups G with H
as a normal subgroup, such that G/H is isomorphic to K, for any arbitrary
group H and gyrogroup K. Additionally, we observe that for an extension

E ≡ {e} // H
i // G

β
// K // {e}

of a group H by gyrogroup K, the extension splits if and only if G is a
semi-cross product of H and K.

Now, we revisit some fundamental definitions and terminology related
to gyrogroups, which will be used later in this paper.

Definition 1.1. [14] A pair (G, ·) consisting of a non-empty set G and a
binary operation “ · ” on G is called a gyrogroup if the binary operation “ · ”
satisfies the following axioms.

1. There exists an element e ∈ G, called a left identity, such that

e · a = a for all a ∈ G.
2. For each a ∈ G, there exists an element a−1 ∈ G, called a left inverse

of a, such that a−1 · a = e.
3. For a, b ∈ G, there exists an automorphism gyr[a, b] such that

a · (b · c) = (a · b) · gyr[a, b](c)
for all a, b, c ∈ G. This is called the left gyroassociative law.

4. gyr[a · b, b] = gyr[a, b] for all a, b ∈ G. This is called the left loop
property.

Definition 1.2. [5, 12] Let (G, ·) be a gyrogroup. Then

1. A gyrogroup which not a group is called a non-degenerate gyrogroup.
2. G is said to be gyrocommutative if a · b = gyr[a, b](b · a) (gyrocommu-

tative law) holds for all a, b ∈ G.
3. A nonempty subset H of G is a subgyrogroup of G if H forms a gy-

rogroup under the operation inherited from G, and the restriction of
gyr[a, b] to H is an automorphism of H for all a, b ∈ H.
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4. A subgyrogroup H of G is said to be a L-subgyrogroup of G if it
satisfies, gyr[a, h](H) = H for all a ∈ G and h ∈ H.

5. A subgroup H of G is said to be normal in G if the following axioms
hold:
(a) gyr[g, h] = IG for all h ∈ H and g ∈ G;

(b) gyr[g, g′](H) ⊆ (H) for all g, g′ ∈ G;

(c) gH = Hg for all g ∈ G.

Note: By (a) and (c) of Definition 1.2 (4), we have (gh)g−1 = g(hg−1) ∈ H.
Also, gyr[gh, g−1] = IG.

Lemma 1.3 ([5]). If H is a normal subgroup of a gyrogroup G, then G
H

forms a factor gyrogroup.

Definition 1.4.

1. A short exact sequence

E ≡ {e} // H
i // G

β
// K // {e}

of gyrogroups is called an extension ofH byK, where i is the inclusion
map. Here, ker(β) = i(H) = H. A map t : K −→ G is called a section
of E if β ◦ t = IK and t(e) = e.

2. A morphism from an extension of gyrogroups

E ≡ {e} // H
i1 // G

β
// K // {e}

to another extension of gyrogroups

E′ ≡ {e} // H ′
i2 // G′

β′
// K ′ // {e}

is a triple (λ, µ, ν), where λ : H → H ′, µ : G → G′ and ν : K → K ′

are gyrogroup homomorphisms such that the following diagram

E ≡ {e} // H
i1 //

λ
��

G
β
//

µ

��

K //

ν

��

{e}

E′ ≡ {e} // H ′
i2 // G′

β′
// K ′ // {e}

is commutative.
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Now, we present several gyrogroup identities here for further reference.
Note that we use the notation ab instead of a ·b for all a, b ∈ G. Throughout
this paper, G denotes a gyrogroup unless otherwise specified.

Proposition 1.5 ([14]). Let (G, ·) be a gyrogroup. Then, for all a, b, c ∈ G,

1. (a−1)(ab) = b (left cancellation);

2. ab = e⇔ ba = e;

3. gyr[ab, a−1] = gyr[a, b];

4. gyr[a, b](c) = (ab)−1(a(bc)) (gyrator identity);

5. gyr−1[a, b] = gyr[b, a];

6. (ab)−1 = gyr[a, b](b−1a−1);

7. (ab)c = a(b gyr[b, a](c)).

2. Semi-cross product and examples of gyrogroups

In this section, we introduce the concept of a semi-cross product between a
group and a gyrogroup. Leveraging this semi-cross product, we construct
several examples of gyrogroups with both finite and infinite orders.

Proposition 2.1. Let H be a group and K be a gyrogroup. Suppose that
σ : K −→ Aut(H) is a map such that

1. σe = IH , where e denotes the identity element of K and IH denotes
the identity map on H,

2. σx−1 = σ−1x ;

3. σ((xy)y)−1 ◦ σxy = σ(xy)−1 ◦ σx.

for all x, y ∈ K, where σx denotes the image of x under σ. Then H ×K is
a gyrogroup with the binary operation ∗ given by

(h, x) ∗ (k, y) = (hσx(k), xy)

and the gyroautomorphism

gyr[(h, x), (k, y)](l, z) =
(
(σ(xy)−1 ◦ σx ◦ σy)(l), gyr[x, y](z)

)
.
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Proof. 1. Identity: (e, e) is the identity element.
2. Inverse: Let (h, x) ∈ H ×K. Then (σx−1(h−1), x−1) is the inverse.
3. Left gyroassociative law: Let (h, x), (k, y), (l, z) ∈ H ×K. Then

(h, x) ∗ ((k, y) ∗ (l, z)) = (h, x) ∗ (kσy(l), yz) = (hσx(kσy(l)), x(yz))

On the other hand,

((h, x) ∗ (k, y)) ∗ gyr[(h, x), (k, y)](l, z)

= (hσx(k), xy) ∗ ((σ(xy)−1 ◦ σx ◦ σy)(l), gyr[x, y](z))

= (hσx(k)(σ(xy) ◦ σ(xy)−1 ◦ σx ◦ σy)(l), (xy)gyr[x, y](z))

= (hσx(kσy(l)), x(yz)).

Therefore, (h, x)∗((k, y)∗(l, z)) = ((h, x)∗(k, y))∗gyr[(h, x), (k, y)](l, z).
4. Left loop property: Let (h, x), (k, y), (l, z) ∈ H ×K. Then

gyr[(h, x) ∗ (k, y), (k, y)](l, z) = gyr[(hσx(k), xy), (k, y)](l, z)

= ((σ((xy)y)−1 ◦ σxy ◦ σy)(l), gyr[xy, y](z))

= ((σ(xy)−1 ◦ σx ◦ σy)(l), gyr[x, y](z))

= gyr[(h, x), (k, y)](l, z).

Remark 2.2. We refer to this structure as the semi-cross product of H
and K (defined in Proposition 2.1), denoted by H on K.

Let G = H on K. Then, we have the following observations:

1. The set H̃ = {(h, e) | h ∈ H} is a normal subgroup of G and the set
K̃ = {(e, k) | k ∈ K} is a L-subgyrogroup of G.

2. H ∼= H̃ and K ∼= K̃.

3. H ∩K = {e}.

4. σx(k) = xhx−1, for all x ∈ K and h ∈ H.

By Proposition 2.1, one can deduce the following results analogous to
group extension.

Theorem 2.3. Let G be a gyrogroup with H as a normal subgroup and
K as an L-subgyrogroup. Suppose σ : K −→ Aut(H) is a map defined by
σx(h) = xhx−1 with H ∩K = {e} and G = HK. Then, G ∼= H on K.
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Proof. Since H is a normal subgroup, H ∩ K = {e} and G = HK, every
element of G can be uniquely written in the form hk, for some h ∈ H and
k ∈ K.

Now, since H is normal, gyr[g, h] = IG, for all g ∈ G and h ∈ H. By
using this, we have σx−1 = σ−1x , for all x ∈ K.

σ(xy)−1 ◦ σx(h) = (xy)−1((xhx−1)(xy))

= (xy)−1(x((hx−1)(xy))) (∵ gyr[hx−1, x] = IG)

= (xy)−1(x(hy)) = (xy)−1(x(y(y−1hy))) (∵ H is normal)

= gyr[x, y](y−1hy) (by gyrator identity)

= gyr[xy, y](y−1hy) (by loop identity)

= ((xy)y)−1((xy)(y(y−1hy))) = ((xy)y)−1((xy)(hy)))

= ((xy)y)−1(((xy)h)y) (∵ since H is normal)

= ((xy)y)−1((((xy)h(xy)−1)(xy))y) (∵ H is normal)

= ((xy)y)−1(((σ(xy)(h))(xy))y)

= ((xy)y)−1((σ(xy)(h))((xy)y)) (∵ H is normal)

= σ((xy)y)−1 ◦ σxy(h).

Now, it is evident that the map φ : HK −→ H on K defined by φ(hk) =
(h, k) is a gyrogroup isomorphism. Therefore, G ∼= H on K.

Remark 2.4. 1. If K is a group and σ is a group homomorphism, then the
semi-cross product is equivalent to the semi-direct product of H and K.

2. Suppose Aut(H) is an abelian group where every element is its own
inverse. Let σ : K −→ Aut(H) be a map satisfying the first two conditions
of Proposition 2.1. Then, the third condition becomes σ(

(xy)y
) = σx for

all x, y ∈ K. Moreover, if K is a group, then the third condition becomes
σxy2 = σx for all x, y ∈ K.

3. Suppose K = {0, 1, 2, 3, 4, 5, 6, 7} is the gyrogroup given in Example 3.2
in [3]. The table for the element (xy)y is as follows:
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0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 1 1 6 1 1 6 1 1
2 2 5 1 2 2 2 5 2
3 3 4 4 3 3 4 4 3
4 4 3 3 4 4 3 3 4
5 5 2 5 5 5 5 2 5
6 6 6 1 6 6 1 6 6
7 7 7 7 3 7 7 7 7

The first column and the first row stand for the values of x and y,
respectively.

Suppose K is the quaternion group Q8 = {1,−1, i,−i, j,−j, k,−k}. The
table for the element (xy)y = xy2 is as follows:

1 -1 i -i j -j k -k
1 1 1 -1 -1 -1 -1 -1 -1
-1 -1 -1 1 1 1 1 1 1
i i i -i -i -i -i -i -i
-i -i -i i i i i i i
j j j -j -j -j -j -j -j
-j -j -j j j j j j j
k k k -k -k -k -k -k -k
-k -k -k k k k k k k

The first column and the first row stand for the values of x and y,
respectively.

Example 2.5. [Gyrogroups of order 24]
1. Let H = Z3 = {0̄, 1̄, 2̄} be the cyclic group of order 3 and K =
{0, 1, 2, 3, 4, 5, 6, 7} be the gyrogroup given in Example 3.2 in [3]. Then
Aut(H) = {IH , f}, where f : H −→ H defined by f(0̄) = 0̄, f(1̄) =
2̄, f(2̄) = 1̄.

(a) If σ : K −→ Aut(H) is the trivial map (σ(x) = IH , for all x), then
G = H on K is a gyrogroup of order 24 with the given binary operation
and gyroautomorphisms:

(h, x) ∗ (k, y) = (hk, xy)

and
gyr[(h, x), (k, y)] = (IH , gyr[x, y]).
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(b) Let σ : K −→ Aut(H) be a map defined by

σ(x) =

{
f, if x = 7

IH , otherwise.

Clearly, σ(0) = IH and σ(x−1) = σ−1(x), for all x. By the defini-
tion of K, every element of K is its own inverse. Since f is its own inverse,
σ(x−1) = σ(x). Hence, by Remark 2.4 (2) and (3), σ((xy)y) = σx ∀ x, y ∈ K.
Thus G = H on K is a gyrogroup of order 24. The table for the element
σxy ◦σx ◦σy (we need to calculate this for gyroautomorphims) is as follows:

0 1 2 3 4 5 6 7
0 IH IH IH IH IH IH IH IH
1 IH IH IH IH IH IH f f
2 IH IH IH IH IH f IH f
3 IH IH IH IH f IH IH f
4 IH IH IH f IH IH IH f
5 IH IH f IH IH IH IH f
6 IH f IH IH IH IH IH f
7 IH f f f f f f IH

The first column and the first row stand for the values of x and y, respec-
tively. More precisely, the binary operation on G and gyroautomorphisms
are given below:

(h, x) ∗ (k, y) =

{
(hf(k), 7y), if x = 7

(hk, xy), otherwise

and

gyr[(h, x), (k, y)] =


(f, I), if (x, y) ∈ X
(IH , A), (x, y) ∈ Y
(IH , I), otherwise

where X = {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3), (1, 7), (7, 1), (2, 7),

(7, 2), (3, 7), (7, 3), (7, 6), (6, 7), (7, 5), (5, 7), (7, 4), (4, 7)} and
Y = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 6), (3, 1),

(3, 2), (3, 5), (3, 6), (4, 1), (4, 2), (4, 5), (4, 6), (5, 1), (5, 3), (5, 4),

(5, 6), (6, 2), (6, 3), (6, 4), (6, 5)}.
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2. Let H = Z3 = {0̄, 1̄, 2̄} be the cyclic group of order 3 and K = Q8,
where Q8 is the quaternion group of order 8. Then Aut(H) = {IH , f},
where f : H −→ H defined by f(0̄) = 0̄, f(1̄) = 2̄, f(2̄) = 1̄. Define a map
σ : K −→ Aut(H) by

σ(x) =

{
f, if x = ±i
IH , otherwise.

Clearly, σ(0) = IH and σ(x−1) = σ−1(x), for all x. Since f is its own in-
verse, σ(x−1) = σ(x). Hence by Remark 2.4 (2) and (3), σxy2 = σx ∀ x, y ∈
K. Thus G = H on K is a gyrogroup of order 24. The table for the element
σxy ◦σx ◦σy (we need to calculate this for gyroautomorphims) is as follows:

1 -1 i -i j -j k -k
1 IH IH IH IH IH IH IH IH
-1 IH IH IH IH IH IH IH IH
i IH IH IH IH f f f f
-i IH IH IH IH f f f f
j IH IH f f IH IH f f
-j IH IH f f IH IH f f
k IH IH f f f f IH IH
-k IH IH f f f f IH IH

The first column and the first row stand for the values of x and y, respec-
tively. More precisely, the binary operation on G and gyroautomorphisms
are given below:

(h, x) ∗ (k, y) =

{
(hf(k), xy), if x = ±i
(hk, xy), otherwise

and

gyr[(h, x), (k, y)] = (σxy ◦ σx ◦ σy, IK) =

{
(f, IK), if (x, y) ∈ A
(IH , IK), otherwise

where A is

{(j, k), (j,−k), (−j, k), (−j,−k), (k, j), (k,−j), (−k, j), (−k,−j), (i, k),

(i,−k), (−i, k), (−i,−k), (i, j), (i,−j), (−i, j), (−i,−j), (j, k), (j,−k),

(−j, k), (−j,−k), (k, j), (k,−j), (−k, j), (−k,−j)}.
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Example 2.6. [Gyrogroups of order 32]
Let H = Z4 = {0̄, 1̄, 2̄, 3̄} be the cyclic group of order 4. Consider the
gyrogroup K = {0, 1, 2, 3, 4, 5, 6, 7} given in Example 3.2 in [3]. Then
Aut(H) = {IH , f}, where f : H −→ H defined by f(0̄) = 0̄, f(1̄) =
3̄, f(2̄) = 2̄, f(3̄) = 1̄.

The maps σ from K to Aut(H) given in Examples 2.5 1(a) and 1(b)
will give two gyrogroups of order 32. Also, the map σ from Q8 to Aut(H)
given in Example 2.5 (2) will give another gyrogroup of order 32.

Example 2.7. [Gyrogroup of infinite order]
Let H = Z be the group of integers and K = {0, 1, 2, 3, 4, 5, 6, 7} be the
gyrogroup given in Example 3.2 in [3]. Then Aut(H) = {IH , f}, where
f : H −→ H defined by f(x) = −x ∀ x ∈ H. The maps σ from K to
Aut(H) given in Examples 2.5 1(a) and 1(b) will give two gyrogroups of
infinite order. Also, the map σ from Q8 to Aut(H) given in Example 2.5
(2) will give another gyrogroup of infinite order.

3. Extension theory of a group by a gyrogroup

The primary objective of this section is to establish Schreier’s extension
theory for gyrogroups under specific conditions.

Let E ≡ {e} H G K {e}i β be a gyrogroup
extension of a gyrogroup H by by another gyrogroup K. Let t be a section
of E and let g ∈ G. Then

β(t(β(g))g−1) = e⇒ t(β(g))g−1 ∈ H.

Thus, there exists a unique h ∈ H such that

t(β(g))g−1 = h−1

⇒ h(t(β(g))g−1) = e

⇒ (ht(x))gyr[h, t(x)](g−1) = e, where β(g) = x ∈ K
⇒ (gyr[h, t(x)](g−1))((ht(x))) = e (since ab = e⇔ ba = e)

⇒ ht(x) = gyr[h, t(x)](g)

⇒ g = gyr[t(x), h](ht(x)).

Therefore, given a gyrogroup extension

E ≡ {e} H G K {e}i β
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of H by K with a choice of section t, every g ∈ G can be written as

g = gyr[t(x), h](ht(x)), for some h ∈ H and x ∈ K.

Now, suppose g = gyr[t(x), h](ht(x)) = gyr[t(x′), h](ht(x′)). Then applying
β on both the sides,

β(gyr[t(x), h](ht(x))) = β(gyr[t(x′), h](ht(x′)))

⇒gyr[β(t(x)), β(h)](β(h)β(t(x))) = gyr[β(t(x′)), β(h)](β(h)β(t(x′)))

⇒gyr[β(t(x)), e](β(t(x))) = gyr[β(t(x′)), e](β(t(x′)))

⇒x = x′ (since gyr[g, e] = IG and βt = IK).

This shows that every g ∈ G has a unique representation of the type
gyr[t(x), h](ht(x)).

Proposition 3.1. Let E ≡ {e} H G K {e}i β be
a gyrogroup extension of H by K with gyr[h, g] = IG, for all h ∈ H and
g ∈ G. Then H is a normal subgroup of G.

Proof. Since H = ker(β) and gyr[h, g] = IG, H is a subgroup. Let g, g′ ∈ G
and h ∈ H. Then β(gyr[g, g′](h)) = e. Therefore, gyr[g, g′](h) ∈ H. Thus,
gyr[g, g′](H) ⊆ H for all g, g′ ∈ G.

Now, let ah ∈ aH. Then β((ah)a−1) = e. This implies, (ah)a−1 = h′

for some h′ ∈ H. The following steps are followed from identities (3), (5)
and (7) of Proposition 1.5.

((ah)a−1)a = h′a

⇒(ah)(a−1gyr[a−1, ah](a)) = h′a

⇒(ah)(a−1gyr[h, a](a)) = h′a

⇒(ah)(a−1a) = h′a

⇒ah = h′a

Thus, ah ∈ Ha, that is, aH ⊆ Ha. Similarly, Ha ⊆ aH. Hence, Ha = aH.
Therefore, H is a normal subgroup.

Now, we study gyrogroup extensions under a special condition.

Definition 3.2. A gyrogroup extension

E ≡ {e} H G K {e}i β



Semi-cross product and extension theory of gyrogroups 47

of H by K is said to be a group-gyro extension if gyr[h, g] = IG, for all
h ∈ H and g ∈ G.

It can be easily seen that if E ≡ {e} H G K {e}i β

is a group-gyro extension of H by K and t is a section of E, then any g ∈ G
can be uniquely expressed as g = ht(x).

Also, for each h∈H and x∈K, we have (t(x)h)t(x)−1 = t(x)(ht(x)−1)∈H.
Thus, for x ∈ K, there exists a map σtx : H → H given by

σtx(h) = (t(x)h)t(x)−1. (1)

In fact, σtx ∈ Aut(H) for each x ∈ K. Let x, y ∈ K. Then

β(t(xy)(t(x)t(y))−1) = e

⇒ t(xy)(t(x)t(y))−1 = f t(x, y)−1 for some f t(x, y) ∈ H
⇒ f t(x, y)(t(xy)(t(x)t(y))−1) = e

⇒ (f t(x, y)t(xy))(t(x)t(y))−1) = e

⇒ (t(x)t(y))−1)(f t(x, y)t(xy)) = e

⇒ t(x)t(y) = f t(x, y)t(xy).

Thus, there exists a map f t : K ×K → H such that

t(x)t(y) = f t(x, y)t(xy). (2)

Since t(e) = (e),

f t(x, e) = e = f t(e, y) for each x, y ∈ K. (3)

Also, for h ∈ H and x, y ∈ K

t(x)(ht(y)) = (t(x)h)gyr[t(x), h](t(y))

= (t(x)ht(x)−1t(x))t(y)

= ((t(x)ht(x)−1)t(x))t(y) (since gyr[t(x)h, t(x)−1] = IG)

= (σtx(h)t(x))t(y)

= σtx(h)(t(x)gyr[t(x), σtx(h)](t(y)))

= σtx(h)(t(x)t(y))

= σtx(h)(f t(x, y)t(xy)) = (σtx(h)f t(x, y))t(xy).
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Similarly,

(t(x)h)t(y) = (σtx(h)f t(x, y))t(xy) = t(x)(ht(y)).
Further,

(ht(x))t(y) = h(t(x)gyr[t(x), h](t(y)))

= h(t(x)t(y)) = h(f t(x, y)t(xy)) = (hf t(x, y))t(xy).

Now, it is easy to observe that

(ht(x))(kt(y)) = (hσtx(k)f t(x, y))t(xy). (4)

By Equation 2, for x ∈ K we have

t(x−1)t(x) = f t(x−1, x)

⇒ (f t(x−1, x))−1(t(x−1)t(x)) = e

⇒ t(x)(f t(x−1, x)−1t(x−1)) = e

⇒ t(x)−1 = f t(x−1, x)−1t(x−1).

So, we have the following equation

t(x)−1 = f t(x−1, x)−1t(x−1). (5)

Now, let h, k, l ∈ H and x, y, z ∈ K. Then by the gyrator identity, we
have

gyr[ht(x), kt(y)](lt(z)) = ((ht(x))(kt(y))−1((ht(x))((kt(y)(lt(z)))

= (hσtx(k)f t(x, y)t(xy))−1((ht(x))(kσty(l)f
t(y, z)t(yz)))

= (t(xy)−1f t(x, y)−1σty(k)−1h−1)(hσtx(kσty(l)f
t(y, z))f t(x, yz)t(x(yz)))

= f t((xy)−1, xy)−1t((xy)−1)f t(x, y)−1σtx(σty(l)f
t(y, z))f t(x, yz)t(x(yz))

= f t((xy)−1, xy)−1(σt(xy)−1(f t(x, y)−1σtx(σty(l)f
t(y, z))f t(x, yz))t((xy)−1))

.t(x(yz))

= f t((xy)−1, xy)−1(σt(xy)−1(f t(x, y)−1σtx(σty(l)f
t(y, z))f t(x, yz)))

.f t((xy)−1, (x(yz))t(gyr[x, y](z))

Here, for x, y ∈ K, we define a function F t(x,y) : H ×K −→ H such that

F t(x,y)(l, z) =

f t((xy)−1, xy)−1(σt(xy)−1(f t(x, y)−1σtx(σty(l)f
t(y, z))f t(x, yz)))

f t((xy)−1, x(yz)). (6)
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Therefore,
gyr[ht(x), kt(y)](lt(z)) = F t(x,y)(l, z)t(gyr[x, y](z)). (7)

Now we see the properties of the function F t which is defined in (6).

Proposition 3.3. For x, y ∈ K, F t(x,y) satisfies the following properties:

1. F t(x,e)(l, z) = l = F t(e,y)(l, z), ∀ l ∈ H and z ∈ K.

2. For l1, l2 ∈ H and z1, z2 ∈ K, F t(x,y)(l1σ
t
z1(l2)f

t(z1, z2), z1z2)

= F t(x,y)(l1, z1)σ
t
(gyr[x,y](z1))(F

t
(x,y)(l2, z2))f

t(gyr[x, y](z1), gyr[x, y](z2)).

3. F t(xy,y) = F t(x,y).

Proof. 1. Since gyr[h, kt(y)] = IG = gyr[ht(x), k], we have

F t(x,e)(l, z) = l = F t(e,y)(l, z), ∀ l ∈ H and x, y, z ∈ H.

2. Note that gyr[x, y] is an automorphism, hence

gyr[ht(x), kt(y)]((l1t(z1))(l2t(z2)))

= gyr[ht(x), kt(y)](l1t(z1))gyr[ht(x), kt(y)](l2t(z2))

= (F t(x,y)(l1, z1)t(gyr[x, y]z1))(F
t
(x,y)(l2, z2)t(gyr[x, y](z2)))

= F t(x,y)(l1, z1)σ
t
gyr[x,y](z1))(F

t
(x,y)(l2, z2))f

t(gyr[x, y](z1), gyr[x, y](z2))

.t(gyr[x, y](z1z2)).

Also, gyr[ht(x), kt(y)]((l1t(z1))(l2t(z2)))

= gyr[ht(x), kt(y)](l1σ
t
z1(l2)f

t(z1, z2)t(z1z2))

= F t(x,y)(l1σ
t
z1(l2)f

t(z1, z2), z1z2)t(gyr[x, y](z1z2)).

On comparing both the expressions for the gyromap, we get

F t(x,y)
(
l1σ

t
z1(l2)f

t(z1, z2), z1z2
)

=

F t(x,y)(l1, z1)σ
t
(gyr[x,y](z1))

(
F t(x,y)(l2, z2)

)
f t(gyr[x, y](z1), gyr[x, y](z2)).

3. Also,
gyr[ht(x)kt(y), kt(y)](lt(z)) = gyr[hσtx(k)f t(x, y)t(xy), kt(y)](lt(z))

= F t(xy,y)(l, z)t(gyr[xy, y](z))

gyr[ht(x), kt(y)](lt(z)) = F t(x,y)(l, z)t(gyr[x, y](z)).

Since gyr[ht(x)kt(y), kt(y)] = gyr[ht(x), kt(y)] and gyr[xy, y] = gyr[x, y],
F t(xy,y) = F t(x,y).
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Also, let h, k, l ∈ H and x, y, z ∈ K,

ht(x)((kt(y))(lt(z))) = ht(x)(kσty(l)f
t(y, z)t(yz))

= hσtx(kσty(l)f
t(y, z))(t(x)t(yz))

= hσtx(kσty(l)f
t(y, z))f t(x, yz)t(x(yz)).

On the other hand,
(ht(x))(kt(y)))gyr[ht(x), kt(y)](lt(z))
= (hσtx(k)f t(x, y)t(xy))(F t(x,y)(l, z)t(gyr[x, y](z)))

= hσtx(k)f t(x, y)σtxy(F
t
(x,y)(l, z))f

t(xy, gyr[x, y](z))t((xy)gyr[x, y](z)).

Since ht(x)((kt(y))(lt(z))) = (ht(x))(kt(y)))gyr[ht(x), kt(y)](lt(z)) and
x(yz) = (xy)gyr[x, y](z),

σtx(σy(l)f
t(y, z))f t(x, yz) = f t(x, y)σtxy(F

t
(x,y)(l, z))f

t(xy, gyr[x, y](z)).
(8)

Remark 3.4. By using the assumption gyr[h, g] = IG, it is easy to see the
following:

1. If ht(x) = h′t(x), then h = h′.

2. σtx
−1

(h) = f t(x−1, x)−1σtx−1(h)f t(x−1, x), for all x ∈ K and h ∈ H.
3. σtx(f t(x−1, x)−1)f t(x, x−1) = e.
4. gyr[t(x)h, t(x)−1] = IG, for all x ∈ K and h ∈ H.

Definition 3.5. Let H be a group and K be a gyrogroup. Then a group-
gyro factor system is a quintuplet (K,H, σ, f, F ), where σ : K −→ Aut(H)
is a map, f is a map from K × K to H and F is a map from K × K to
HH×K satisfying the following relations:

1. σe = IH ;

2. f(x, e) = e = f(e, y) for each x, y ∈ K;

3. f(x, y)σxy(F(x,y)(l, z))f(xy, gyr[x, y](z)) = σx(σy(l)f(y, z))f(x, yz) for
each x, y, z ∈ K;

4. F(x,e)(l, z) = l = F(e,y)(l, z), ∀ l ∈ H and x, y, z ∈ H;

5. F(x,y)(l1σz1(l2)f(z1, z2), z1z2)
= F(x,y)(l1, z1)σgyr[x,y](z1))(F(x,y)(l2, z2))f(gyr[x, y](z1), gyr[x, y](z2));

6. F(xy,y) = F(x,y), ∀ x, y ∈ K.
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Proposition 3.6. Every group-gyro extension E of H by K with a choice of
a section t determines a group-gyro factor system (K,H, σt, f t, F t), where
σt, f t and F t are described by Proposition 3.3 and equations (1), (3), (8).

Conversely, given a group-gyro factor system (K,H, σ, f, F ), there exists
a group-gyro extension E of H by K, and a section t of E such that the
group-gyro factor system associated with E is (K,H, σ, f, F ).

Proof. The proof of the direct implication stems from the preceding dis-
cussion that inspired Definition 3.5. For the converse implication, consider
G = H ×K. Define a binary operation on G as follows:

(a, x) · (b, y) = (aσx(b)f(x, y), xy)

and gyro morphism by

gyr[(a, x), (b, y)](c, z) = (F(x,y)(c, z), gyr[x, y](z)).

Then G is a gyrogroup andH is a normal subgroup of G. By defining section
t by t(x) = (e, x), we have σt = σ, f t = f and F t = F .

3.1. Equivalence between Category GEXT of group-gyro exten-
sion and Category GFAC of group-gyro factor systems

Let (λ, µ, ν) be a morphism from the group-gyro extension E1 to the group-
gyro extension E2. Then we have the following commutative diagram:

E1 ≡ {e} // H1
i1 //

λ
��

G1
β1
//

µ

��

K1
//

ν

��

{e}

E2 ≡ {e} // H2
i2 // G2

β2
// K2

// {e}

Let t1 and t2 be sections ofE1 andE2, respectively. Consider the correspond-
ing group-gyro factor systems (K1,H1,f

t1, σt1, F t1) and (K2, H2, f
t2 , σt2 , F t2)

of E1 and E2, respectively. Then for x ∈ K1, µ(t1(x)) ∈ G2 and β2(µ(t1(x)))
= ν(β1(t1(x))) = ν(x) = β2(t2(ν(x))). Thus t2(ν(x))µ(t1(x))−1 ∈ H2. In
turn, we have a unique g(x) ∈ H2 such that

g(x)−1 = t2(ν(x))µ(t1(x))−1

⇒ g(x)(t2(ν(x))µ(t1(x))−1) = e (by left cancellation)
⇒ (g(x)t2(ν(x)))gyr[g(x), t2(ν(x))](µ(t1(x))−1) = e
⇒ (g(x)t2(ν(x)))µ(t1(x))−1 = e
⇒ µ(t1(x))−1(g(x)t2(ν(x))) = e.
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This implies
µ(t1(x)) = g(x)t2(ν(x)). (9)

Since t1(e) = e = t2(e), it follows that

g(e) = e. (10)

Since µ(t1(x)t1(y)) = µ(t1(x))µ(t1(y)), we have the following equation

λ(f t1(x, y))g(xy) = g(x)σt2ν(x)(g(y))f t2(ν(x), ν(y)). (11)

Also,
µ((t1(x)h)t1(x)−1) = λ(σt1x (h)). (12)

By using the fact that µ is a gyrogroup homomorphism and Equation 9,

µ((t1(x)h)t1(x)−1) = µ(t1(x))λ(h)µ(t1(x)−1)

= (g(x)t2(ν(x)))λ(h)(t2(ν(x))−1g(x)−1)

= g(x)σt2ν(x)(λ(h))g(x)−1

Finally we have

µ((t1(x)h)t1(x)−1) = g(x)σt2ν(x)(λ(h))g(x)−1. (13)

On comparing Equation (12) and (13), we have

λ(σt1x (h)) = g(x)σt2ν(x)(λ(h))g(x)−1. (14)

We know that,
gyr[ht1(x), kt1(y)](lt1(z)) = F t1(x,y)(l, z)t1(gyr[x, y](z)),

µ(gyr[ht1(x), kt1(y)](lt1(z)))=gyr[λ(h)µ(t1(x)),λ(k)µ(t1(y))](λ(l)µ(t1(z)))
= gyr[λ(h)g(x)t2(ν(x)), λ(k)g(y)t2(ν(y))](λ(l)g(z)t2(ν(z)))

= gyr[(λ(h)g(x))t2(ν(x)), (λ(k)g(y))t2(ν(y))]((λ(l)g(z))t2(ν(z)))

= F t2(ν(x),ν(y))(λ(l)g(z)), ν(z))t2(gyr[ν(x), ν(y)](ν(z))).

We have the following equation

µ(gyr[ht1(x), kt1(y)](lt1(z)))

= F t2(ν(x),ν(y))(λ(l)g(z)), ν(z))t2(gyr[ν(x), ν(y)](ν(z))). (15)
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Also we have,

µ(gyr[ht1(x), kt1(y)](lt1(z))) = λ(F t1(x,y)(l, z))µ(t1(gyr[x, y](z)))

= λ(F t1(x,y)(l, z))g(gyr[x, y](z))t2(ν(gyr[x, y](z)).

Finally, we have

µ(gyr[ht1(x), kt1(y)](lt1(z)))

= λ(F t1(x,y)(l, z))g(gyr[x, y]z)t2(gyr[ν(x), ν(y)](ν(z))). (16)

On comparing Equation (15) and (16),

F t2(ν(x),ν(y))(λ(l)g(z), ν(z)) = λ(F t1(x,y)(l, z))g(gyr[x, y](z)). (17)

Thus a morphism (λ, µ, ν) between two group-gyro extensions E1 and E2

together with choices of sections t1 and t2 of the corresponding extensions,
induces a map g from K1 to H2 such that the triple (ν, g, λ) satisfies equa-
tions (10), (11), (14) and (17). It can be seen as a morphism from the factor
system (K1, H1, f

t1 , σt1 , F t1) to (K2, H2, f
t2 , σt2 , F t2).

Let (λ1, µ1, ν1) be a morphism from the group-gyro extension

E1 ≡ {e} // H1
i1 // G1

β1
// K1

// {e}

to the group-gyro extension

E2 ≡ {e} // H2
i2 // G2

β2
// K2

// {e}

and (λ2, µ2, ν2) be another morphism from the group-gyro extension E2 to
the group-gyro extension E3

E3 ≡ {e} // H3
i3 // G3

β3
// K3

// {e} .

Let t1, t2, and t3 be corresponding choices of sections. Then µ1(t1(x)) =
g1(x) t2(ν1(x)) and µ2(t2(x)) = g2(x)t3(ν2(x)), where g1 : K1 −→ H2 and
g2 : K2 −→ H3 are uniquely determined maps same as g in Equation (9).
In turn, we have

µ2(µ1(t1(x))) = λ2(g1(x))µ2(t2(ν1(x)))
= λ2(g1(x)))g2(ν1(x))t3(ν2(ν1(x)))
= λ2(g1(x))g2(ν1(x))t3(ν2(ν1(x)))
= g3(x)t3(ν2(ν1(x))),
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where g3(x) = λ2(g1(x))g2(ν1(x)), for each x ∈ K1. Thus the composition
(λ2 ◦ λ1, µ2 ◦ µ1, ν2 ◦ ν1) induces the triple (ν2 ◦ ν1, g3, λ2 ◦ λ1).

Now we introduce the category GFAC whose objects are group-gyro fac-
tor system, and a morphism from (K1, H1, f

1, σ1, F 1) to (K2, H2, f
2, σ2, F 2)

is a triple (ν, g, λ), where ν : K1 −→ K2 is gyrogroup homomorphism,
λ : H1 −→ H2 is group homomorphism, and g : K1 −→ H2 is a map such
that

1. g(e) = e;

2. λ(f1(x, y))g(xy) = g(x)σ2ν(x)(g(y))f2(ν(x), ν(y));

3. λ(σ1x(h)) = g(x)σ2ν(x)(λ(h))g(x)−1;

4. F 2
(ν(x),ν(y))(λ(l)g(z), ν(z)) = λ(F 1

(x,y)(l, z))g(gyr[x, y](z)).

The composition of two morphisms:

(ν1, g1, λ1) from (K1, H1, f
1, σ1, F 1) to (K2, H2, f

2, σ2, F 2) and

(ν2, g2, λ2) from (K2, H2, f
2, σ2, F 2) to (K3, H3, f

3, σ3, F 3)

is the triple (ν2 o ν1, g3, λ2 o λ1), where g3(x) = λ2(g1(x))g2(ν1(x)) for each
x ∈ K1.

So, finally from the above discussion, we have the following Theorem:

Theorem 3.7. There is an equivalence between the category GEXT of
group-gyro extensions to the category GFAC of group-gyro factor systems.

3.2. Dependency of an extension on sections

Let s and t be two sections of an extension

E ≡ {e} // H
i // G

β
// K // {e} .

Then there exists an identity preserving map g : K → H such that s(x) =
g(x)t(x) (see Equation (9)). Hence by taking λ = IH , µ = IG and ν = IK
in equations (11), (14), (17), we have the following identities:

1. f s(x, y)g(xy) = g(x)σtx(g(y))f t(x, y).

2. σsx(h)) = g(x)σtx(h)g(x)−1.

3. F t(x,y)(lg(z), z) = F s(x,y)(l, z))g(gyr[x, y](z)).
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Definition 3.8. A group-gyro extension

E ≡ {e} // H
i // G

β
// K // {e}

of H by K is called an split extension if there is a section t which is a
gyrogroup homomorphism. Such a section t is called a splitting of the
extension. The corresponding factor system (K,H, f t, σt, F t) is such that
f t is trivial in the sense that f t(x, y) = e, for all x, y ∈ K.

Theorem 3.9. Let H be a group, K be a gyrogroup and

E ≡ 1 // H
i // G

β
// K // 1

of H by K be an split group-gyro extension. Then G ∼= H on K. Conversely,
if G = H on K, then there is a natural projection p from G to K such that

E ≡ {e} // H
i // G

β
// K // {e}

is a split group-gyro extension of H by K.

Proof. Since E is an split extension, we have a section t which is gyrogroup
homomorphism. This implies that f t(x, y) = e, for all x, y ∈ K. Therefore,
by Remark 3.4 and Proposition 3.3, we have σx−1 = σ−1x and σ((xy)y)−1 ◦
σxy = σ(xy)−1 ◦ σx, for all x, y ∈ K. The remaining part of the proof is easy
to see.
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