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Almost groupoids and morphisms

Mihai Ivan

Abstract. We introduce a new algebraic concept of morphism that generalizes the notion
of group morphism, called almost groupoid morphism. The aim of this paper is to prove
some main properties of almost groupoid morphisms that extend to almost groupoids
the corresponding well-known results for groupoids.

1. Introduction

The notion of groupoid from an algebraic point of view was first introduced by
H. Brandt in a 1926 paper [3]. The Brandt groupoids were generalized by C.
Ehresmann in [5]. C. Ehresmann added further structures (topological and differ-
entiable) to groupoids, thereby introducing them as a tool in topology and differ-
ential geometry. After the introduction of topological and differentiable groupoids
by Ehresmann in the 1950’s, they have been studied by many mathematicians with
different approaches ([5]). The topological and differentiable groupoids endowed
with supplementary structures: topological and Lie groupoids ([6, 10, 11]), play
an essential role by their applications in analysis, differential geometry and physics
([13, 16]) and so on.

Another approach to the notion of a groupoid is that of a structured groupoid.
The concept of a structured groupoid is obtained by adding another algebraic
structure such that the composition of groupoid is compatible with the operation of
the added algebraic structure. The most important types of structured groupoids
are: group-groupoid, vector groupoid and vector space-groupoid ([4, 12, 15]).

The notion of almost groupoid from the algebraic point of view is defined in
this paper. It is very important to note that the category of almost groupoids is
a subcategory of groupoids category.

The paper is organized as follows. In Section 2 we recall the concept of
groupoid. In Section 3 we give the definition of the almost groupoid from the
algebraic point of view and recall some of their properties. We also present the
notions of almost groupoid substructures such as: almost subgroupoid, wide and
normal almost subgroupoid. In Section 4, some basic results on almost groupoid
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morphisms are presented. Furthermore, we prove correspondence theorems for
almost groupoids.

2. Preliminaries on groupoids

This section deals with the groupoids in the sense of Brandt. For more details
about groupoids, we refer the reader to ([1, 7, 8]).

A groupoid (in the sense of Brandt) can be thought of as a generalization of
a group, that is, a set in which only certain multiplications are defined and it
contains several units elements.

Definition 2.1. ([13]) A groupoid G over G0 is a pair (G,G0) of nonempty sets
such that G0 ⊆ G endowed with two surjective maps α, β : G → G0 (called
the source) and (target), respectively), a partially binary operation µ : G(2) → G,
(x, y) � µ(x, y) := xy, G(2) = {(x, y) ∈ G×G|β(x) = α(y)} and an injective map
ι : G→ G, x� ι(x) := x−1 satisfying the following properties:
(1) (associativity) (xy)z = x(yz), in the sense that, if one side of the

equation is defined so is the other one and then they are equal;
(2) (identities) (α(x), x), (x, β(x)) ∈ G(2) and α(x)x = xβ(x) = x;
(3) (inverses) (x−1, x), (x, x−1) ∈ G(2) and x−1x = β(x), xx−1 = α(x).

The elements of G(2) are called composable pairs of G. The element α(x)
(resp. β(x) )] is the left unit (resp. right unit) of x ∈ G. The subset G0 =
α(G) = β(G) of G is called the unit set of G.

Remark 2.2. The basic concepts from groupoid theory has been defined and stud-
ied in a series of papers, for instance: subgroupoids, morphisms of groupoids, quo-
tient groupoid, semidirect product and general constructions of Brandt groupoids
([1, 7, 14]). Many works are devoted to the study of important problems related
to finite groupoids ([2, 9]).

3. Almost groupoids

Firstly, we will give the definition of an almost groupoid from a purely algebraic
point of view.

Definition 3.1. An almost groupoid G over G0 (in the sense of Brandt) is a
pair (G,G0) of nonempty sets such that G0 ⊆ G, endowed with a surjective map
θ : G→ G0, a partially binary operation m : G(2) → G, (x, y) 7−→ m(x, y) := x · y,
where G(2) := {(x, y) ∈ G×G|θ(x) = θ(y)} and a map ι : G→ G, x 7−→ ι(x) :=
x−1, satisfying the following properties:
(AG1) (associativity)I (x · y) · z = x · (y · z) in the sense that if one of two

products (x · y) · z and x · (y · z) is defined, then the other product
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is also defined and they are equals;
(AG2) (units): for each x ∈ G, (θ(x), x), (x, θ(x)) ∈ G(2) and θ(x) · x =

x · θ(x) = x;
(AG3) (inverses): for each x ∈ G, (x, x−1), (x−1, x) ∈ G(2) and x · x−1 =

x−1 · x = θ(x).

If G is an almost groupoid over G0, we will sometimes write x · y or xy for
m(x, y). Also, the set G(2) is called the set of composable pairs of G.

An almost groupoid G over G0 with the structure functions θ (units map),m
(multiplication) and ι (inversion), is denoted by (G, θ,m, ι,G0), (G, θ,m,G0) or
(G,G0). G0 is called the units set of G. Whenever we write a product in a given
almost groupoid, we are assuming that it is defined.

In view of Definition 3.1, if x, y, z ∈ G, then:
(i) the product x · y · z := (x · y) · z is true if θ(x · y) = θ(x) and also

θ(y · z) = θ(y).

(ii) θ(x) ∈ G0 is the unit of x and x−1 ∈ G is the inverse of x.

The basic properties of almost groupoids are given in Propositions 3.2 and 3.3.

Proposition 3.2. If (G, θ,m, ι,G0) is an almost groupoid, then:
(i) θ(u) = u, (∀)u ∈ G0.

(ii) u · u = u and ι(u) = u, (∀)u ∈ G0.
(iii) (uniqueness of the units) :

(a) (x, y) ∈ G(2) and x · y = y then x = θ(y);
(b) (x, y) ∈ G(2) and x · y = x then y = θ(x).

(iv) (uniqueness of the inverse) :
if (x, y) ∈ G(2), x · y = θ(x) and y · x = θ(x) then y = x−1.

(v) θ(x · y) = θ(x), (∀)(x, y) ∈ G(2).
(vi) θ(x−1) = θ(x), (∀)x ∈ G.

(vii) If (x, y), (y, z) ∈ G(2) then (x · y, z), (x, y · z) ∈ G(2) and (x · y) · z =
x · (y · z).

Proposition 3.3. If (G, θ,m, ι,G0) is an almost groupoid, then:
(i) if (x, y) ∈ G(2), then (y−1, x−1) ∈ G(2) and (x · y)−1 = y−1 · x−1.

(ii) (x−1)−1 = x, (∀)x ∈ G.
(iii) For each u ∈ G0, the set G(u) := θ−1(u) = {x ∈ G|θ(x) = u} is a

group, called the isotropy group of G at u.

Corollary 3.4. If (G, θ,m, ι,G0) is an almost groupoid, then:
(i) θ(θ(x)) = θ(x), (∀)x ∈ G.

(ii) If x, y ∈ G, then: x · y is defined if and only if y · x is defined.
(iii) For a ∈ G, the products a2 := a · a, a3 := a2 · a are defined.

Proof. (i). By Proposition 3.2 (iii) we have θ(θ(x))
(AG3)

= θ(x · x−1) = θ(x).
(ii)− (iii). These statements follow from definition and Proposition 3.2.



26 M. Ivan

Proposition 3.5. Let (G, θ,m, ι,G0) be an almost groupoid. Then
θ ◦ ι = θ and ι ◦ ι = IdG.

Proof. The first relation is a consequence of equality (iv) in Proposition 3.2. In-
deed, we have θ(x−1) = θ(ι(x)) = (θ ◦ ι)(x). But, θ(x−1) = θ(x). Hence,
(θ ◦ ι)(x) = θ(x), (∀)x ∈ G. Also, we have (ι ◦ ι)(x) = ι(ι(x)) = ι(x−1) =
(x−1)−1 = x. Then ι ◦ ι = IdG, since (ι ◦ ι)(x) = IdG(x), (∀)x ∈ G.

Example 3.6. (i). A group G having e as unity, is an almost groupoid over {e}
with respect to structure functions: θ(x) := e, (∀)x ∈ G; G(2) = G×G, m(x, y) :=
xy, (∀)x, y ∈ G and ι : G→ G, ι(x) := x−1, (∀)x ∈ G.
(ii). A nonempty set G0 may be regarded to be an almost groupoid over G0, called
the null almost groupoid associated to G0. For this, we take θ = ι = IdG0

and
u · u = u, (∀)u ∈ G0.

Remark 3.7. Each almost groupoid (G, θ,m, ι,G0) is a groupoid for which the
structure functions α (source) and β (target) are equal to θ. Clearly, it is not true
in general that every groupoid is an almost groupoid.

Example 3.8. For a, k ∈ R consider the matrix A(a, k) =

(
a ka
0 1

)
. Let G =

{ A(a, k) | a, k ∈ R, a 6= 0} and G0 = { A(1, k) | k ∈ R}. Then (G, θ,�, ι, G0)
is an almost groupoid.

The structure functions θ and ι are defined by:

θ : G → G0, A(a, k) � θ(A(a, k)) := A(1, k) =

(
1 k
0 1

)
;

ι : G→ G,A(a, k) � ι(A(a, k)) := A(a−1, k) =

(
a−1 k
0 1

)
.

The set of composable pairs G(2) is given by:

G(2) = {(A(a1, k1), A(a2, k2)) ∈ G×G | θ(A(a1, k1)) = θ(A(a2, k2))}
= {(A(a1, k1), A(a2, k2)) ∈ G×G | k1 = k2}.

The product � is defined by: A(a1, k1)�A(a2, k1) := A(a1a2, k1), that is:(
a1 k1a1

0 1

)
�
(
a2 k1a2

0 1

)
:=

(
a1a2 k1a1a2

0 1

)
, (∀) k1 ∈ R, a1a2 6= 0.

It is easy to verify that the conditions (AG1)−(AG3) of Definition 3.1 hold. For
this, we consider A,B,C ∈ G, where A = A(a, k), B = A(a1, k1), C = A(a2, k2).
The product A�B � C is defined if and only if k = k1 = k2. We have:

(AG1) (associativity) A�B)� C = (A(a, k)�A(a1, k))�A(a2, k) =
A(aa1, k)�A(a2, k) = A(aa1a2, k) = A� (B � C);

(AG2) (units) A� θ(A) = A(a, k)� θ(A(a, k)) = A(a, k)�A(1, k) =
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A(a, k) = A = θ(A)�A;

(AG3) (inverses) A� ι(A) = A(a, k)� ι(A(a, k)) = A(a, k))�A(a−1, k) =
A(1, k) = θ(A(a, k)) = θ(A) = ι(A)�A.

Let us we present some substructures in almost groupoids and prove several
properties of them which generalize well-known results in group theory.

Definition 3.9. Let (G, θ,m, ι,G0) be an almost groupoid. A pair of nonempty
subsets (H,H0) where H ⊆ G and H0 ⊆ G0, is called almost subgroupoid of G, if:
(i) θ(H) = H0;

(ii) H is closed under multiplication and inversion, that is:
if x, y ∈ H and (x, y) ∈ G(2) then x · y ∈ H;

(iii) if x ∈ H then x−1 ∈ H.

By Definition 3.9, if (H,H0) is an almost sugroupoid of (G, θ,m, ι,G0),
then (H,H0) endowed with the restrictions of θ and ι at H and the restriction of
multiplication m at H(2) = (H ×H) ∩G(2), is an almost groupoid over H0.

Definition 3.10. Let (H,H0) be an almost subgroupoid of (G,G0).

(i) (H,H0) is said to be a wide almost subgroupoid of (G,G0), if H0 = G0,
that is H and G have the same units.

(ii) A wide almost subgrupoid (H,H0) of (G,G0), is called normal almost
subgroupoid, if for all g ∈ G and for all h ∈ H such that g · h · g−1 is
defined, we have g · h · g−1 ∈ H.

Example 3.11. (1). If (G,G0) is an almost groupoid, then G0 is a wide almost
subgroupoid of G. We shall check that the conditions in Definition 3.9 hold.
(i). Clearly, θ(G0) = G0.

(ii). Let u, v ∈ G0 such that (u, v) ∈ G(2). Then θ(u) = θ(v) and it follows
that u = v, since u, v ∈ G0. Therefore, u · v is defined if and only if u = v. By
Proposition 3.2(i) and (ii), we have u·u = u. Hence u·u ∈ G0. Also, from u·u = u
implies that u−1 = u and u−1 ∈ G0. Therefore, (iii) holds.
(2). G0 is a normal almost subgroupoid of the almost groupoid (G,G0), called the
null almost subgroupoid of G. For this, we consider g ∈ G and u ∈ G0 such that
the product g · u · g−1 is defined in G. Then θ(g) = θ(u) = u, since u ∈ G0. But,
θ(g · u · g−1) = θ(g) = u. Hence, g · u · g−1 ∈ G0.

Proposition 3.12. Let (G,G0) be an almost groupoid. Then:
(i) The isotropy group G(u), u ∈ G0 is an almost subgroupoid of G.

(ii) Is(G) = ∪u∈G0G(u) ⊂ G is a normal almost subgroupoid of G.

Proof. (i). By Example 3.6, every group is an almost groupoid.
(ii). Clearly, θ(Is(G)) = G0. We observe that Is(G) is a union disjoint of the
family {(G(u), {u})}u∈G0 of almost subgroupoids of G. According to Corollary
3.4, we get that Is(G) is wide almost subgroupoid over G0.
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Consider now the elements g ∈ G and a ∈ Is(G) such that (∃)g · a · g−1 in
G. Then (∃)u ∈ G0 with θ(a) = u. Hence, g ·a · g−1 ∈ Is(G) since θ(g ·a · g−1) =
θ(g) = θ(a) = u. Therefore, Is(G) is a normal almost subgroupoid of G.

The almost groupoid (Is(G), G0) is called isotropy almost subgroupoid of G.
The following proposition extends to the context of almost groupoids several

elementary results for groups.

Proposition 3.13. Let (Hi, H0,i)i∈I be a family of almost subgroupoids of almost
groupoid (G,G0) such that ∩i∈I H0,i 6= ∅. Then:

(i) (∩i∈IHi,∩i∈IH0,i) is an almost subgroupoid of (G,G0).
(ii) If (Hi, H0,i) is a wide almost subgroupoid for each i ∈ I, then

(∩i∈IHi, H0,i) is a wide almost subgroupoid of (G,G0).
(iii) If (Hi, H0,i) is a normal almost subgroupoid for each i ∈ I, then

(∩i∈IHi, H0,i) is a normal almost subgroupoid of (G,G0).

Proof. To prove this proposition we introduce the notations: H := ∩i∈IHi and
H0 = ∩i∈IH0,i.
(i). We prove that (H,H0) satisfies the conditions of Definition 3.9.
• θ(H) = H0. Indeed, θ(H) = θ(∩i∈IHi) = ∩i∈Iθ(Hi) = ∩i∈IH0,i = H0, since
θ(Hi) = H0,i for each i ∈ I.
• Let x, y ∈ H such that (x, y) ∈ G(2). From x, y ∈ ∩i∈IHi it follows that
x, y ∈ Hi for each i ∈ I. Then x · y ∈ Hi for each i ∈ I, since Hi is an almost
groupoid. Hence x · y ∈ ∩i∈IHi = H.
• Let x ∈ H. Then x ∈ Hi for each i ∈ I. It follows that x−1 ∈ Hi for each
i ∈ I, since Hi is an almost groupoid. Thus, x−1 ∈ ∩i∈IHi = H. Therefore, the
conditions (i) and (ii) of Definition 3.9 hold.

(ii). In view of (i) follows that (H,H0) is an almost subgroupoid of (G,G0). We
have H0 = ∩i∈IH0,i = G0 since H0,i = G0 for each i ∈ I. Therefore, (H,H0)
is a wide almost subgroupoid of (G,G0).

(iii). In view of (ii) we have that (H,H0) is a wide almost subgroupoid of (G,G0).
It remains to prove that the condition (ii) from Definition 3.10 holds.

Let h ∈ H and g ∈ G such that θ(h) = θ(g) and prove that g · h · g−1 ∈ H.
Indeed, we have h ∈ Hi for each i ∈ I. Then the product g ·h·g−1 is defined in G.
Taking account that Hi is normal in G for each i ∈ I implies that g · h · g−1 ∈ Hi

for each i ∈ I. Hence g · h · g−1 ∈ H. Therefore H is normal in G.

Example 3.14. Let G = R∗×R = {(a, b) ∈ R2 | a 6= 0} and G0 = {1}×R. Then
(G, θ,⊗, ι, G0) is an almost groupoid over G0, where the set of composable pairs
G(2) and its structure functions and are given by:

θ : G → G0, (a, b) � θ(a, b) := (1, b
a );

G(2) ={((a, b), (c, d))∈G2 | θ(a, b)=θ(c, d)}={((a, b), (c, d))∈G2 | bc = ad};
(a, b)⊗ (c, d) := (ac, bc) and ι(a, b) := ( 1

a ,
b
a2 ), (∀) a, b, c, d ∈ R, a 6= 0.
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It is easy to verify that the conditions of Definition 3.1. For this, we consider
the elements x, y, z ∈ G, where x = (a, b), y = (a1, b1), z = (a2, b2). The product
x⊗ y ⊗ z is defined if and only if b

a = b1
a1

= b2
a2
. We have:

(AG1) (associativity) (x⊗ y)⊗ z = ((a, b)⊗ (a1, b1))⊗ (a2, b2) =
(aa1, ba1)⊗ (a2, b2) = (aa1a2, ba1a2) = (x⊗ y)⊗ z;

(AG2) (units) x⊗ θ(x) = (a, b)⊗ θ(a, b) = (a, b)⊗ (1, b
a ) = (a, b) = x =

θ(x)⊗ x;

(AG3) (inverse) x⊗ ι(x) = (a, b)⊗ ι(a, b) = (a, b)⊗ ( 1
a ,

b
a2 ) = (1, b

a ) =
θ(a, b) = x = ι(x)⊗ x, (∀)x ∈ G.

4. Almost groupoid morphisms
Let us we present the notion of almost groupoid morphism and prove several prop-
erties of them which generalize well-known results in group theory.

Definition 4.1. Let (G, θ,m, ι,G0) and (G′, θ′,m′, ι′, G′0) be two almost groupoids.
A morphism of almost groupoids or almost groupoid morphism from (G,G0) into
(G′, G′0) is a pair (f, f0) of maps (f, f0) : (G,G0) → (G′, G′0) such that the fol-
lowing conditions hold:
(i) f(m(x, y)) = m′(f(x), f(y)) for all (x, y) ∈ G(2);
(ii) θ′ ◦ f = f0 ◦ θ.

An almost groupoid morphism (f, f0) : (G,G0)→ (G′, G′0) such that f and f0

are bijective maps, is called isomorphism of almost groupoids.

Note that if (f, f0) : (G,G0)→ (G′, G′0) is an almost groupoid morphism then
f commutes with the structure functions ι and ι′ , that is f ◦ ι = ι′ ◦ f.

Proposition 4.2. If (f, f0) : (G,G0) −→ (G′, G′0) is an almost groupoid mor-
phism, then:
(i) f(u) ∈ G′0, for all u ∈ G0.
(ii) f(x−1) = (f(x))−1, for all x ∈ G.
Proof. (i). Let u ∈ G0. Then θ(u) = u. From (θ(u), u) ∈ G(2) it follows that
(f(θ(u)), f(u)) ∈ G′(2) and f(θ(u)) · f(u) = f(θ(u) ·u) = f(u), since f is an almost
groupoid morphism. But, θ′(f(u)) · f(u) = f(u). From θ′(f(u)) · f(u) = f(u)
and f(θ(u)) · f(u) = f(u) it follows θ′(f(u)) = f(θ(u)). Hence θ′(f(u)) = f(u).
Therefore, f(u) ∈ G′0.

(ii). Let x ∈ G. According to (AG3), we have x · x−1 = x−1 · x = θ(x).
Then f(x · x−1) = f(θ(x)). It follows f(x) · f(x−1) = f(θ(x)), since f is an
almost groupoid morphism. Applying (i), since θ(x) ∈ G0, we have f(θ(x)) ∈
G′0 and f(θ(x)) = f0(θ(x)). From the relations f(x) · f(x−1) = f(θ(x)) and
f(θ(x)) = f0(θ(x)) it is obtained that f(x) · f(x−1) = f0(θ(x)). Taking account
that f0 ◦ θ = θ′ ◦ f, we have f(x) · f(x−1) = θ′(f(x)), whence it follows that
f(x−1) is the inverse of f(x) in G′, that is, f(x−1) = (f(x))−1.
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Proposition 4.3. The pair (f, f0) : (G,G0) → (G′, G′0), where f : G → G′,
f0 : G0 → G′0 is an almost groupoid morphism if and only if the following condi-
tions are verified for all (x, y) ∈ G(2) :
(i) (f(x), f(y)) ∈ G′(2);

(ii) f(m(x, y)) = m′(f(x), f(y)).

Proof. Firstly, we suppose that (f, f0) is an almost groupoid morphism. Then,
the conditions (ii) and (iii) from Definition 4.1 are satisfied. The condition (ii)
from Proposition 4.3 is clearly verified. It remains to prove that the condition (i)
of Proposition 4.3 holds. For this, let (x, y) ∈ G(2). Then θ(x) = θ(y). We have
f0(θ(x)) = f0(θ(y), that is, (f0 ◦θ)(x) = (f0 ◦θ). Applying the condition (iii) from
Definition 4.1, it follows that (θ′ ◦ f)(x) = (θ′ ◦ f)(y). Thus, θ′(f(x)) = θ′(f(y)),
and so (f(x), f(y)) ∈ G′(2). Hence, the condition (i) of Proposition 4.3 is verified.

Conversely, let f : G→ G′ verifying the conditions (i) and (ii) from Proposition
4.3. The conditions (ii) of Definition 4.1 is verified. It remains to prove that
θ′ ◦ f = f0 ◦ θ. For this, we define the map f0 : G0 → G′0 by f0(u) := θ′(f(u)),
for all u ∈ G0. For all x ∈ G we have (x, θ(x)) ∈ G(2). By hypothesis we have
(f(x), f(θ(x))) ∈ G′(2) and f(x)·f(θ(x)) = f(x·θ(x)) = f(x). Since f(x)·θ′(f(x)) =

f(x), then f(x) · f(θ(x)) = f(x) · θ′(f(x)) and so f(θ(x)) = θ′(f(x)). But
f(θ(x)) = f0(θ(x)), since θ(x) ∈ G0. Hence θ′(f(x)) = f0(θ(x)) for all x ∈ G, that
is, θ′ ◦ f = f0 ◦ θ. Therefore, the condition (iii) from Definition 4.1 holds.

Proposition 4.4. An almost groupoid morphism (f, f0) is linked with the struc-
ture functions by the following commutative diagrams:

G
f−→ G′ G(2)

f×f−→ G′(2) G
f−→ G′

θ ↓ ↓ θ′ m ↓ ↓ m′ ι ↓ ↓ ι′

G0
f0−→ G′0 G

f−→ G′ G
f−→ G′

where (f × f)(x, y) := (f(x), f(y)), ∀ (x, y) ∈ G×G. More precisely:

θ′ ◦ f = f0 ◦ θ, m′ ◦ (f × f) = f ◦m, ι′ ◦ f = f ◦ ι (1)

Proof. We apply the Propositions 4.2 and 4.3.

The kernel of the almost groupoid morphism (f, f0) : (G,G0) → (G′, G′0) is
defined by: Ker(f) := {x ∈ G | f(x) ∈ G′0} ⊆ G.

Example 4.5. We consider the almost groupoid (G, θ,⊗, ι, G0) given in Example
3.6, where G = R∗ × R = {(a, b) ∈ R2|a 6= 0} and G0 = {(1, x) ∈ R2|x ∈ R}.
Also, let the multiplicative group G′ = R∗. This group is regarded as groupoid
over G′0 = {1} with θ′ : G′ → G′0 given by θ′(a) = 1, (∀)a ∈ R∗ (see Example
3.6(i)).
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• Define the function ϕ : G → G′ by ϕ(a, b) := a, for all (a, b) ∈ G. Then the
function ϕ0 : G0 → G′0 is given by ϕ0(1, b) = 1, (∀)b ∈ R.

The pair (ϕ,ϕ0) : (G,G0) → (G′, G′0) is an almost groupoid morphism. It is
easy to verify that the conditions (ii) and (iii) of Definition 4.1(i) hold.

For this, we consider x, y ∈ G such that the product x⊗y is defined. Then x =
(a, b) and y = (c, bca ) with a, c ∈ R∗ and b ∈ R. Then ϕ(x⊗y) = ϕ(a, b)⊗(c, bca )) =

ϕ(ac, bc) = ac and ϕ(x)·ϕ(y) = ϕ(a, b)·ϕ(c, bca ) = ac, Then ϕ(x⊗y) = ϕ(x)·ϕ(y).

Let x = (a, b) ∈ G. We have (θ′ ◦ ϕ)(x) = θ′(ϕ(a, b)) = θ′(a) = 1 and
(ϕ0 ◦ θ)(x) = ϕ0(θ(a, b)) = ϕ0(1, b

a ) = 1. Hence, θ′ ◦ ϕ = ϕ0 ◦ θ.

• We have Ker(ϕ) = G0. indeed, Ker(ϕ) = {(a, b) ∈ G|ϕ(a, b) ∈ G′0} =
{(1, b)|b ∈ R} = G0, since G′0 = {1} and ϕ(a, b) = 1 if and only if a = 1.

Also, the almost groupoid morphism ϕ is not injective, since there exists
x1, x2 ∈ G such that ϕ(x1) = ϕ(x2) and x1 6= x2. For example, for x1 = (a1, b1)
and x2 = (a1, b2) with b1 6= b2 we have ϕ(a1, b1) = a1 = ϕ(a1, b2).

Proposition 4.6. Let (f, f0) : (G,G0) −→ (G′, G′0) be an almost groupoid mor-
phism. Then:
(i) If (H ′, H ′0) is an almost subgroupoid of (G′, G′0), then (f−1(H

′
), f−1

0 (H ′0))
is an almost subgroupoid of (G,G0).

(ii) If (N ′, G′0) is a normal almost subgroupoid of (G′, G′0), then (f−1(N
′
), G0)

is a normal almost subgroupoid of (G,G0) such that Ker(f) ⊆ f−1(N ′).

Proof. (i). We prove that (f−1(H
′
), f−1

0 (H ′0)) satisfies the conditions of Defini-
tion 3.9.

θ(f−1(H
′
)) = f−1

0 (H ′0). Indeed, if u ∈ θ(f−1(H
′
)) it follows that u = θ(x),

with x ∈ f−1(H
′
). Then f0(u) = f0(θ(x)) = θ′(f(x)) ∈ H ′0, since f(x) ∈ H ′

and θ′(H ′) = H ′0. Hence, u ∈ f−1
0 (H ′0)) and θ(f−1(H

′
)) ⊆ f−1

0 )(H ′0). Clearly,
f−1

0 (H ′0) ⊆ θ(f−1(H
′
)).

Let x, y ∈ f−1(H
′
) such that x · y is defined, i.e. θ(x) = θ(y). It follows that

f(x), f(y) ∈ H ′ and θ′(f(x)) = f0(θ(x)) = f0(θ(y)) = θ′(f(y)). Thus, f(x) · f(y)
is defined in G′ and f(x) · f(y) ∈ H ′ since H ′ is an almost subgroupoid. Then,
f(x · y) = f(x) · f(y) ∈ H ′, that is, x · y ∈ f−1(H ′). Therefore, the conditions (i)
and (ii) of Definition 3.9 hold.

(ii). In view of (i) follows that (f−1(N
′
), G0) is an almost subgroupoid of

(G,G0).
It is easy to prove that θ(f−1(N

′
)) = G0, since θ′(N ′) = G′0.

Let h ∈ f−1(N
′
) and g ∈ G such that θ(h) = θ(g) and prove that g ·

h · g−1 ∈ f−1(N
′
). Indeed, we have f(h) ∈ N ′ and θ′(f(g)) = f0(θ(g)) =

f0(θ(h)) = θ′(f(h)). Then the product f(g) · f(h) · (f(h))−1 is defined in G′.
Taking account that N ′ is normal in G′ implies that f(g) · f(h) · (f(g))−1 ∈ N ′.
Then f(g) · f(h) · (f(g))−1 = fg · h · g−1) ∈ N ′. Hence g · h · g−1 ∈ f−1(N ′).
Therefore f−1(N

′
) is normal in G.
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We have Ker(f) ⊆ f−1(N ′). Indeed, for x ∈ Ker(f), (∃)u′ ∈ N ′0 such that
f(x) = θ′(u′). By assertion (i) of Proposition 3.2, follows f(x) = u′ ∈ N ′0 ⊆ N ′,
i.e. x ∈ f−1(N ′).

According to Proposition 4.6, if (f, f0) : (G,G0) → (G′, G′0) is an almost
groupoid morphism, then the inverse image of an almost subgroupoid (resp., nor-
mal) of G′ by (f, f0) is an almost subgroupoid (resp., normal) of G.

Proposition 4.7. Let (f, f0) be an almost groupoid morphism.
(i) The kernel of (f, f0) is a normal almost subgroupoid of G.

(ii) If (f, f0) is an injective almost groupoid morphism, then Ker(f) = G0.

Proof. (i). G′0 is a normal almost subgroupoid of G′ (see Example 3.11(ii)). We
observe that ker(f) = f−1(G′0). Taking N ′ = G′0 in Proposition 4.6(ii), we deduce
Ker(f) is a normal almost subgroupoid of G.
(ii). We have G0 ⊆ Ker(f). Indeed, if u ∈ G0 then f(u) ∈ G′0 (according to
Proposition 4.2(i)) and u ∈ Ker(f).
Let now x, y ∈ Ker(f) such that x · y is defined. Then f(x), f(y) ∈ G′0 and
θ(x) = θ(y). We have f(x) = θ′(f(x)) = f0(θ(x)) = f0(θ(y)) = θ′(f(y)) = f(y)
and how f is injective, we deduce x = y. Therefore, the only products of Ker(f)
are those of the form x · x. Suppose that x · x = z, for x ∈ Ker(f). Then
f(z) = f(x · x) = f(x) · f(x) = f(x). From f(z) = f(x) implies z = x, because
f is injective. So x · x = x. Therefore, Ker(f) ⊆ G0. Hence, Ker(f) = G0.

Next, we introduce a special type of almost groupoid morphism, called the
strong almost groupoid morphism. Using this new type of morphism, we prove the
correspondence theorem for almost groupoids.

Definition 4.8. A strong almost groupoid morphism is a morphism of almost
groupoids (f, f0) : (G,G0)→ (G′, G′0) satisfying the following condition:

for all x, y ∈ G such that f(x) · f(y) is defined in G′ implies (x, y) ∈ G(2).

Theorem 4.9. Let (f, f0) : (G,G0)→ (G′, G′0) be a strong almost groupoid mor-
phism. The morphism (f, f0) is injective if and only if Ker(f) = G0.

Proof. By Proposition 4.7(ii), if (f, f0) is injective then Ker(f) = G0. Conversely,
suppose that Ker(f) = G0. Let now x, y ∈ G such that f(x) = f(y). Then
θ′(f(x)) = θ′(f(y)) and the product f(x) · f(y) is defined. Taking account that
(f, f0) is strong, it follows (x, y) ∈ G(2), that is, θ(x) = θ(y). By Proposition
3.4(v), x · y−1 and f(x) · (f(y))−1 are defined. If f(x) = f(y) then f(x) ·
(f(y))−1 = f(y) · (f(y))−1. As, f(x) · f(y−1) = θ′(f(y)), then f(x · y−1) ∈ G′0.
From f(x · y−1) ∈ G′0 follows x · y−1 ∈ Ker(f) = G0 and (∃)z ∈ G such that
x · y−1 = θ(z). Hence, θ(x · y−1) = θ(θ(z)) implies θ(x) = θ(z). We have
x · y−1 = θ(y) and x · y−1 = θ(y) then x · y−1 · y = θ(y) · y. That is x · θ(y) = y.
Hence x · θ(x) = y and thus x = y. Therefore, the function f is injective.
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Proposition 4.10. Let (f, f0) : (G,G0) → (G′, G′0) be a strong almost groupoid
morphism. Then:
(i) If (H,H0) is an almost subgroupoid of (G,G0), then (f(H), f0(H0)) is an al-

amost subgroupoid of (G′, G′0). In particular, (Im(f) = f(G), f0(G0)) is an al-
most subroupoid of (G′, G′0).

(ii) If the function f is surjective and (N,G0) is a normal almost subgroupoid of
(G,G0), then (f(N), G′0) is a normal almost subgroupoid of (G′, G′0).

Proof. (i). (f(H), f0(H0)) satisfies the conditions of Definition 3.10. In fact:
θ′(f(H)) ⊆ f0(H0). Indeed, for any u′ ∈ θ′(f(H)), (∃)y′ ∈ f(H) such that

u′ = θ′(y′). For y′ ∈ f(H), (∃)y ∈ H such that f(y) = y′. Then u′ = θ′(y′) =
θ′(f(y)) = f0(θ(y)) ∈ f0(H0), since θ(y) ∈ H0. Also, f0(H0) ⊆ θ′(f(H)). For
this, consider z′ ∈ f0(H0). Then (∃)u ∈ H0 such that z′ = f0(u) and u = θ(x)
for some x ∈ H. We have z′ = f0(u) = f0(θ(x)) = θ′(f(x)) ∈ θ′(f(H)), since
x ∈ H. Hence, θ′(f(H)) = f0(H0).

Let x′, y′ ∈ f(H) such that x′ · y′ is defined. We prove that x′ · y′ ∈ f(H).
Indeed, x′ = f(x), y′ = f(y) with x, y ∈ H. Since x′ ·y′ is defined it implies that
(f(x), f(y)) ∈ G′(2) and follows that (∃)x·y ∈ G, since f is strong. Then x·y ∈ H,
since H is an almost subgroupoid. We have x′ ·y′ = f(x) ·f(y) = f(x ·y) ∈ f(H).

For any x′ ∈ f(H), we prove that (x′)−1 ∈ f(H). For this, let x ∈ H such
that x′ = f(x). Then (x′)−1 = (f(x))−1 = f(x−1) ∈ f(H), since x−1 ∈ H. Hence,
(f(H), f0(H0)) is an almost subgroupoid.

(ii). In view of (i) follows that (f(N), G′0) is an almost subgroupoid of (G′, G′0).

Since θ(N) = G0 it follows θ′(f(N)) = G′0.

Let h′ ∈ f(N) and g′ ∈ G′ such that the product g′ · h′ · (g′)−1 is defined in
G′. We prove that g′ · h′ · (g′)−1 ∈ f(N).

Indeed, for h′ ∈ f(N), (∃)h ∈ N with f(h) = h′. Also, for g′ ∈ G′, (∃)g ∈ G
with f(g) = g′, since f is surjective. We have g′ ·h′ ·(g′)−1 = f(g)·f(h)·(f(g))−1 =
f(g) · f(h) · f(g−1). Then f(g) · f(h) and f(h) · f(g−1) are defined in G′. Since
f is strong, implies that (∃)g · h and h · g−1. Then g · h · g−1 is defined in G and
g ·h ·g−1 ∈ N, since N is normal in G. Then g′ ·h′ ·(g′)−1 = f(g) ·f(h) ·f(g−1) =
f(g · h · g−1) ∈ f(N). Therefore, f(N) is normal.

According to Proposition 4.10, if (f, f0) : (G,G0) → (G′, G′0) is a strong
almost groupoid morphism, then the direct image of an almost subgroupoid (resp.,
normal) of G by (f, f0) is an almost subgroupoid (resp., normal) of G′, if f is
surjective.

Let (f, f0) : (G,G0)→ (G′, G′0) be an almost groupoid morphism.
(i) Denote by S(G) (resp. N (G)) the set of almost subgroupoids (resp., the set
of normal almost subgroupoids) of G which contains the kernel of f, that is :

S(G) := {H |H is an almost subgroupoid of G and ker(f) ⊆ H}, (2)
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N (G) := {N | N is a normal almost subgroupoid of G and ker(f) ⊆ N}. (3)

(ii) Denote by S̄(G) (resp. N̄ (G) ) the set of almost subgroupoids (resp., the
set of normal almost sugroupoids) of G′, that is :

S̄(G′) := {H ′ | H ′ is an almost subgroupoid of G′}, (4)
N̄ (G′) := {N ′ | N ′ is a normal almost subgroupoid of G′}. (5)

Theorem 4.11. (The correspondence theorem for almost subgroupoids)
For any surjective strong almost groupoid morphism (f, f0) : (G,G0) −→ (G′, G′0)
there exists a bijection (one-to-one correspondence) between the set S(G) of
almost subgroupoids of G and the set S̄(G′) of almost sugroupoids of G′.

Proof. We define ϕ : S(G) → S̄(G′) and ψ : S̄(G′) → S(G), given by:
ϕ(H) := f(H), (∀)H ∈ S(G) and ψ(H ′) := f−1(H ′), (∀) H ′ ∈ S̄(G′). (6)

By Proposition 4.10(i), it follows that f(H) is an almost subgroupoid of G′ for
all H ∈ S(G). Hence, ϕ is well-defined. Also, by Proposition 4.6(i), it follows
that f−1(H ′) is an almost subgroupoid of G, for all H ′ ∈ S̄(G′). Hence, ψ
is well-defined. The maps ϕ and ψ given by (6) have the following properties:

ψ ◦ ϕ = IdS(G) and ϕ ◦ ψ = IdS̄(G′). (7)

The equalities (6) are equivalently with:

f−1(f(H)) = H, (∀) H ∈ S(G) and f(f−1(H ′)) = H ′, (∀) H ′ ∈ S̄(G′). (8)

• Let H ∈ S(G).
(1). For any x ∈ H we have f(x) ∈ f(H) and x ∈ f−1(f(H)). Hence, H ⊆
f−1(f(H)).

(2). If x ∈ f−1(f(H)), then f(x) ∈ f(H) and (∃)h ∈ H such that f(x) = f(h).
From f(x) = f(h) follows f(x · h−1) = θ′(f(h)) and x · h−1 ∈ Ker(f) ⊆ H.
Therefore, f−1(f(H)) ⊆ H. From (1) and (2) it follows the first equality of (8).
• Let H ′ ∈ S̄(G′).
(3). Let y ∈ f(f−1(H ′)). Then y = f(x) with x ∈ f−1(H ′) and follows
f(x) ∈ H ′. Hence y ∈ H ′. Therefore, f(f−1(H ′)) ⊆ H ′.
(4). For any x′ ∈ H ′, (∃)x ∈ G such that f(x) = x′, since f is surjective.
Then x ∈ f−1(H ′), since f(x) ∈ H ′. Therefore x′ ∈ f(f−1(H ′)). Hence
H ′ ⊆ f(f−1(H ′)). From (3) and (4) it follows the second equality of (8). Finally,
from (7), it follows that ϕ is a bijection.

Similarly, applying Propositions 4.10(ii) and 4.6(ii), we can prove the following
theorem.

Theorem 4.12. (The correspondence theorem for normal almost sub-
groupoids) For any surjective strong almost groupoid morphism
(f, f0) : (G,G0) −→ (G′, G′0) there exists a bijection between the set N (G) of nor-
mal almost subgroupoids of G and the set N̄ (G′) of normal almost sugroupoids
of G′.
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Remark 4.13. The Teorems 4.11 and 4.12 generalize the correspondence theo-
rems for subgroups and normal subgroups by a surjective morphism of groups.
Using the concept of strong groupoid morphism has been proved the isomorphism
theorems for Brandt groupoids ([1]).

References

[1] J. Ávila, V. Marín, H. Pinedo, Isomorphism theorems for groupoids and
some applications, Int. J. Math. Math. Sci. 2020, ID 3967368, 1− 10.

[2] G. Beier, C. Garcia, W.G. Lautenschlaeger, J. Pedrotti , T. Tamu-
siunas, Generalizations of Lagrange and Sylow theorems for groupoids, Sao
Paulo J. Math. Sci. 17 (2023), 720− 739.
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