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Some properties of gr-n-submodules

Mariam Al-Azaizeh and Khaldoun Al-Zoubi

Abstract. We introduce the concept of graded G.n-submodule, which is a generalization
of the notion of graded n-submodule. We find some characterizations of graded G.n-
submodules and we examine the way the aforementioned notions are related to each

other.

1. Introduction

Throughout this article, we assume that A is a commutative G-graded ring
with identity and D is a unitary graded A-module.

In graded module theory, graded prime submodules are defined simi-
lar to graded prime ideals in graded ring theory and play an important
role. Graded prime submodules of graded modules over graded commu-
tative rings, have been introduced and studied by many authors, (see for
example [3, 6, 16]). Al-Zoubi, Al-Turman and Celikel in [4] introduced and
studied the concepts of graded n-ideals. Recently, M. Al-Azaizeh and K.
Al-Zoubi in [1] introduced and studied the concept of graded n-submodules.
Here, we investigate some properties of graded n-submodules. Furthermore,
we introduce the concept of graded G.n-submodule, which generalizes the
concept of graded n-submodule. Several results are discussed.

2. Preliminaries

In this section we will give the definitions and results which are required in
the next section.

Definition 2.1. (a) Let G be a group with identity e and A be a com-
mutative ring with identity 1 4. Then A is G-graded ring if there exist
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additive subgroups A, of A indexed by the elements g € G such that

A= Ag and Ay Ay, C Ay, for all g,h € G. The elements of A, are
geG
called homogeneous of degree g. The set of all homogeneous elements

of A is denoted by h(A), i.e. h(A) = | Ay, see [15].
geG

Let A = @& Ay be G-graded ring. An ideal P of A is called a graded
geG

ideal if P =Y, o PNAL = e Pr By P < A, we mean that P is
a G-graded ideal of A. Also, by P <@ A, we mean that P is a proper
G-graded ideal of A, see [15].

A left A-module D is said to be a G-graded A-module if D = @GDQ
g€

with AyDy, € Dy, for all g, h € G, where D, is an additive subgroup of
D for all g € G. The elements of D, are called homogeneous of degree
g. The set of all homogeneous elements of D is denoted by h(D), i.e,

h(D)= |J Dy. Note that Dy, is an A.-module for every h € G, see [15].
geG

A submodule K of D is called a graded submodule of D if K =
®nec(K N Dp) = @pegKp. By K <& D, we mean that K is a
G-graded submodule of D. Also, by K <§‘b D, we mean that K is a
proper G-graded submodule of D, see [15].

If K is graded submodule of D, then (K :y D) ={a€ A | aD C K} is
graded ideal of A, (see [8]). Furthermore, the annihilator of K in A is
denoted and defined by Anna(K)={a € A | aK = {0}}, see [8].

The graded radical of a graded ideal I, denoted by Gr(I), is the set of
all t =3 .oty € I such that for each g € G there exists ng € N with
ty? € I. Note that, if 7 is a homogeneous element, then r € Gr(I) if
and only if 7™ € I for some n € N, see [17].

A proper graded submodule P of D is called a graded prime submodule
if whenever a € h(A) and m € h(D) with am € P, then either a €
(P:4D)orme P, see [§].

The graded radical of a graded submodule U of D, denoted by Grp(U),
is defined to be the intersection of all graded prime submodules of D
containing U. If U is not contained in any graded prime submodule of
D, then Grp(U) = D, see [11].
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(i)

A proper graded A-submodule U of a graded module D is called graded
primary (gr-primary) if rm € U, then either meU or r€ Gr((U : 4 D)),
where r € h(A) and m € h(D), see [16].

Definition 2.2. (a) A graded A-module D is called a graded torsion-free

()

(f)

(2)

(briefly, gr-torsion-free) module if whenever r € h(A) and m € h(D)
with rm = 0, then either » = 0 or m = 0. Let T(D) = {x € D :

Anny(x) # {0}}, see [8].

A graded A-module D is said to be a graded multiplication (briefly, gr-
multiplication) module if for every graded submodule U, there exists a
graded ideal I of a graded ring A such that U = ID. Also, every graded
submodule U of a graded multiplication module, U= (U:4 D)D, see [9].

A graded A-module D is called graded comultiplication (briefly, gr-
comultiplication) module if for every graded submodule U of D, there
exists a graded ideal P of A such that U = (0 :p P), equivalently, for
each graded submodule U of D, we have U = (0 :p Ann4(U)), see [5].

A proper graded A-submodule K of a graded module D is called a
graded r-submodule (briefly, gr-r-submodule) of D if whenever a € h(.A)
and m € h(D) such that am € K with Annp(a) =0, then m € K. For
more properties, see [2].

A non-zero graded A-module D is called a graded secondary if for every
r € h(A), the endomorphism of D given by multiplication by r is either
surjective or nilpotent, see [11].

A graded A-module D is a called a graded simple (briefly, gr-simple )
if (0) and D are its only graded submodules, [7].

A proper graded submodule U of a graded A-module D is said to be
a graded n-submodule (briefly, gr-n-submodule) if whenever r € h(A),
m € h(D) with rm € U and r ¢ Gr(Ann4(D)), then m € U, see [1].

3. Results

Theorem 3.1. Let f : D — D' be a graded homomorphism of graded
A—modules.

(i) Assume that f is a graded monomorphism. If U’ is a gr-n-submodule

of D', then f~Y(U") =D or f~1(U") is a gr-n-submodule of D.
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(ii) Assume that f is a graded epimorphism and Ker(f) C U. If U is a
gr-n-submodule of D, then f(U) is a gr-n-submodule of D'.

Proof. (i). Assume that U’ is a gr-n-submodule of D’ and f~1(U’) # D.
Let rm € f~YU’) where r € h(A) — Gr(Anna(D)) and m € h(D).
Then f(rm) = rf(m) € U'. As f is a graded monomorphism and r ¢
Gr(Ann (D)), we get r ¢ Gr(Anna(D’)). Since U’ is a gr-n-submodule
of D', then f(m) € U’ and so m € f~1(U’). Hence, f~1(U’) is a gr-n-
submodule of D.

(73). Assume that U is a gr-n-submodule of D. Let rz € f(U) where r €
h(A) — Gr(Anna(D')) and = € h(D’). As f is a graded epimorphism, then
there exists m € h(D) such that x = f(m), sorz =rf(m) = f(rm) € f(U).
Since Ker(f) C U, we have rm € U and r ¢ Gr(Ann4(D)), and since U is
a gr-n-submodule of D, we get m € U and so x = f(m) € f(U). Therefore,
f(U) is a gr-n-submodule of D'. O

Corollary 3.2. Let U C K be two graded submodules of D. Then the
followings hold:

(a) If K is a gr-n-submodule of D, then K/U is a gr-n-submodule of D/U.

(b) If K/U 1is a gr-n-submodule of D/U and (U :4 D) C Gr(Anna(D)),
then K is a gr-n-submodule of D.

(¢) If K/U s a gr-n-submodule of D/U and U is a gr-n-submodule of D,
then K is a gr-n-submodule of D.

Proof. (a). Assume that K is a gr-n-submodule of D. Let ¥ : D — D/U be
a graded epimorphism defined by ¥(m) = m+U. Then Ker(¥) =U C K,
so by Theorem 3.1 (i¢), K/U is a gr-n-submodule of D/U.

(b). Assume that K/U is a gr-n-submodule of D/U and (U :4 D) C
Gr(Ann4(D)). Let rm € K where r € h(A) — Gr(Anna(D)) and m €
h(D). Then we have (r + I)(m +U) = rm+U € K/U and (r+ 1) ¢
Gr(Ann 4/1(D/I)) where I = (U : 4 D). Since K/U is a gr-n-submodule of
D/U, then (m+ U) € K/U and so m € K. Hence, K is a gr-n-submodule
of D.

(c). It follows from [1, Theorem 3.3(i)| and part (b) . O

Corollary 3.3. Let U Sgb D. If K is a gr-n-submodule of D such that
U{¢ K, then KNU is a gr-n-submodule of U.
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Proof. Assume that K is a gr-n-submodule of D such that U ¢ K. Con-
sider the graded monomorphism ® : U — D, defined by ®(m) = m Then
®~1(K) = KNU, so by Theorem 3.1 (i), we have KNU is a gr-n-submodule

The following result studies the behavior of a gr-n-submodules under
localization.

Theorem 3.4. Let S C h(A) be a multiplication closed subset of A. Then;

(i) If U is a gr-n-submodule of D, then S~'U = S™'D or S7U is a
gr-n-submodule of S~1D.

(ii) If STIU is a gr-n-submodule of S™'D, D is a finitely generated module
and S N (Anna(D) :a 1) = ¢ for every r ¢ Anny(D), then either
U="D orU is a gr-n-submodule of D.

Proof. (i). Assume that U is a gr-n-submodule of D and S~1U # S~!D.
Let -1 € S=IU where = ¢ Gr(Anng-14(S7'D)). Then trm € U for
some ¢ € S. Since - ¢ Gr(Anng-1 4(S7ID)), then r ¢ Gr(Ann (D)), and
since U is a gr-n-submodule, then tm € U and so % = % € S~1U. Hence,
S~IU is a gr-n-submodule of S~!D.

(ii). Assume that S~'U is a gr-n-submodule of S~!D, D is a finitely gen-
erated module and S N (Anna(D) :4 r) = ¢ for every r ¢ Anna(D).
Assume that U # D. Let rm € U where r € h(A) — Gr(Ann4(D))
and m € h(D). Then *2 € S~'U. Now, we want to show that I ¢
Gr(Anng-14(S7'D)). Assume that § € Gr(Anng-14(S~'D)), then there
exists k € N such that (£)*S~!D = 0, and so ur*D = 0 for some u € S,
as D is a finitely generated module. Now, since r ¢ Gr(Ann4(D)), then
D # 0 and so u € SN (Anny(D) :4 r*) = ¢, a contradiction. Therefore,
L ¢ Gr(Anng-14(S™'D)). Since S7'U is a gr-n-submodule of S™!D, then
T € S~1U and so m € U. Hence, U is a gr-n-submodule of D. O

Theorem 3.5. Let D be a finitely generated graded A-module such that
for every multiplicative closed set S C h(A), the kernel of ¢ : D — S™ID is
either (0) or D. Then (0) is a gr-n-submodule of D.

Proof. Let rm = 0 where r € h(A) —Gr(Ann4(D)) and m € h(D). So r* #
0 for every k € N. Put S = {r* : k € NU{0}}. Then S is a multiplicative
closed set in h(A). If Ker(¢) =0, then ¢(m) = = “* =0 and so r = 0.
Now, if Ker(¢) = D. As D is a finitely generated graded .4-module, then
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D = Amy + Amg + ... + Amy for some my, ma,...,m; € h(D). Therefore,
@(m;) = 5+ = 0 for every 1 < i < [. This implies that, for every i, there
exists t; € N such that rim; = 0. Put j = max{ty, t2,...,%}. Then /D =0
and so r € Gr(Ann4(D)), which is a contradiction. Therefore, m = 0 and
so (0) is a gr-n-submodule of D. O

A nonempty subset S of a G-graded ring A with h(A) — Gr(0) C S C
h(A) is called a gr-n-multiplicatively closed subset of A if whenever r €
h(A) — Gr(0) and s € S, then rs € S, see [4].

Theorem 3.6. Let D be a finitely generated graded A-module and U <2}’b
D. If (U :x D)NS = ¢, where S is a gr-n-multiplicatively closed subset
of A, then there exists a gr-n-submodule K of D containing U such that

(K:A'D)QS:(ﬁ.

Proof. Assume that (U :4 D) NS = ¢, where S is a gr-n-multiplicatively
closed subset of A. Consider the set Q = {K : K < D; (K :4 D)NS = ¢}
Since U € ), then Q # ¢. Since D is a finitely generated, then by Zorn’s
lemma, we have a maximal element K € ). Now, we must show that K is
a gr-n-submodule of D. Let rm € K where r € h(A) — Gr(Ann (D)) and
m € h(D) — K. This implies that m € (K :p r) and K C (K :p r). By
maximality of K, we have ((K :p 7) :4 D)NS # ¢ and so there exists s € §
such that sD C (K :p r). Also, rs € S since r € h(A) — Gr(0), s € S and
S is a gr-n-multiplicatively closed subset of A. Thus (K :4 D) NS # ¢, a
contradiction. Hence, K is a gr-n-submodule of D. O

Theorem 3.7. Let U <3 D such that I = Gr(Anna(D)) C (U :4 D).
Then U is a gr-n-submodule of D if and only if D/U is a gr-torsion-free
A/I-module.

Proof. Assume that U is a gr-n-submodule of D. Let (r+1)(m+U) = Opy
where r € h(A) and m € h(D). Then rm € U. Now, if r € I, then r + 1 =
04/r and if r ¢ I, then m € U since U is a gr-n-submodule of D and so
(m+U) = 0p,y . Hence D/U is a gr-torsion-free A/I-module. Conversely,
assume that D/U is a gr-torsion-free A/I-module. Let rm € U where r €
h(A)— I and m € h(D). Therefore (r+I)(m+U) =rm+U =U = 0py .
Since D/U is a gr-torsion-free A/I-module and r ¢ I, then m € U. Thus U
is a gr-n-submodule of D. O

Theorem 3.8. Let U be a gr-n-submodule of D. Then either
U=(0:p Anna(U)) or Gr(Anna(U)) = Gr( Anna(D)).
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Proof. Assume that Gr(Ann4(U)) # Gr( Anna(D)). It is clear that U C
(0 :p Ann4(U)). Since Gr(Ann (D)) C Gr(Ann4(U)), then there exists

r € h(A) ﬂ Gr(Anna(U)) — Gr(Ann (D)),

so there exists k& € N such that 7% € Ann4(U). Now, we want to show that
(0 :p Anny(U)) C U. Let m € (0 :p Anna(U)) (N h(D). Then r¥m =0 € U
and so m € U, since U is a gr-n-submodule of D and r ¢ Gr( Ann4(D)).
Hence U = (0 :p Ann4(U)). O

Theorem 3.9. Let D be a gr-torsion-free A-module and U <§Lb D. IfrU =
U for every r € h(A) — Gr(Anny (D)), then U is a gr-n-submodule of D.

Proof. Assume that rU = U for every r € h(A) — Gr( Ann4(D)). Let
rm € U where r € h(A) — Gr(Ann4(D)) and m € h(D). Since rU = U,
then rm € rU and so m € U because D is a gr-torsion-free A-module. Thus
U is a gr-n-submodule of D. O

Theorem 3.10. Let S C h(A) be a multiplicative closed subset of A. If
< 0> is a gr-n-submodule of D, then the kernel of ¢ : D — S™ID is either
<0> orD.

Proof. Assume that < 0 > is a gr-n-submodule of D and Ker(p) #< 0 > .
So there exists 0 # = € Ker(¢)[()h(D) and so there exists s € S such
that st = 0. As < 0 > is a gr-n-submodule of D and = # 0, we have
s € Gr(Anny(D)). Hence, Ker(yp) = D. O

Theorem 3.11. Let A be a G-graded ring, D1 and Dy be a graded A-
module. Let D =Dy x Dy and Gr(Anna(D1)) = Gr(Anna(Ds)).

(1) If Uy is a gr-n-submodule of Dy, then Uy X Dy is a gr-n-submodule of
D.

(i) If Uy is a gr-n-submodule of Dy and Us is a gr-n-submodule of Da,
then Uy X Us is a gr-n-submodule of D.

Proof. (i). Assume that U is a gr-n-submodule of D;. Let r(z4,my) €
Ui x Dy where r € h(A) — Ann (D), (xg4,my) € h(D) and g € G.

Since Gr(Ann4(D1)) = Gr(Anna(D2)) = Gr(Anna(D1)NAnna(D2)) =
Gr(Ann (D1 x Ds)), then r € h(A) — Ann4(D1) and rzy € Uy and so x4 €
U, as Uq is a gr-n-submodule of D;. Which implies that, (xg, mg) e Uy xDy
and so U; X Dy is a gr-n-submodule of D.

(7). The proof is similar to that of part (i). O
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Theorem 3.12. If every graded proper submodule of D is a gr-n-submodule,
then D is a graded secondary A-module.

Proof. Assume that every graded proper submodule of D is a gr-n-submodule.
Let r € h(A) and ¢, : D — D is defined by ¢,(m) = rm. If ¢, is not surjec-
tive, then Im(p,) # D and so there exists m € h(D) — Im(p,). Therefore,
or(m) = rm € ¢p(D), since Im(yp,) is a proper graded submodule, then
by our assumption, ¢,(D) is a gr-n-submodue and so r € Gr(Ann4(D)).
Hence, ¢, (D) is nilpotent and so D is a graded secondary A-module. ]

Theorem 3.13. Let Gr(Ann4(D)) be a finitely generated graded ideal of
A. If every proper graded submodule of D is a gr-n-submodule, then every
ascending chain of its cyclic graded submodules stops.

Proof. Let Am; C Amg C --- C Amyg C --- be an ascending chain of
cyclic graded submodules of D. Then m; = rome = rorgmsg = --- =
rors---Tpmy = --- for some r; € h(A). As Am; is a gr-n-submodule,
ri € Gr(Ann4(D)). Now, since Gr(Ann4(D)) is a finitely generated graded
ideal, there exists ¢t € N such that (Gr(Ann(D)))! C Ann4(D), so my =
rorg - ryrir1mer1 = 0 and so m; = 0 for each ¢ € N, which is a con-
tradiction. Hence every ascending chain of cyclic graded submodules of D
stops. ]

Theorem 3.14. Let A be a G-graded ring and D be a graded A-module.
Then, the following statements are equivalent.

(1) Every proper graded submodule of D is a gr-n-submodule.
(ii) Every proper graded cyclic submodule of D is a gr-n-submodule.

Proof. (i) = (i7). This is clear.

(7i) = (i). Assume that every proper graded cyclic submodule of D is a
gr-n-submodule. Let U be a proper graded submodule of D and rm € U
where r € h(A) —Gr(Ann4(D)) and m € h(D). Then there exists z € h(U)
such that rm €< Ax > and since < Az > is gr-n-submodule, then m €<
Az >C U. Hence, U is a gr-n-submodule of D. O

Theorem 3.15. Let D be a graded finitely generated A-module. Then, the
following statements are equivalent.
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(i) Ewery proper graded submodule of D is a gr-n-submodule.
(11) Gr(Anna(D)) is a graded mazimal ideal of A.

Proof. (i) = (ii)’ Assume that every proper graded submodule of D is a gr-
n-submodule. As D is graded finitely generated A-module, by [10, Lemma
2.7(ii)] D has a graded maximal submodule U. Then (U :4 D) is a graded
maximal ideal of A. But by [1, Theorem 3.3(i)], (U : 4 D) C Gr(Ann4(D))
and so Gr(Ann4(D)) is a graded maximal ideal of A.

(13) = (i). Assume that Gr(Ann4(D)) is a graded maximal ideal of A.
Let U be a proper graded submodule of D and am € U where a € h(A) —
Ann (D) and m € h(D). As Gr(Ann4(D)) is a graded maximal ideal, then
Anna(D)+ < aA >= A. Therefore, there exist t € Ann4(D) and r € A
such that t +ar =1, so m = tm + arm € U. Hence, U is a gr-n-submodule
of D. O

Theorem 3.16. Let D be a gr-comultiplication A-module and Gr(Ann 4(D))
= Ann4(D). If D has a gr-n-submodule, then the following are hold.

(1) Ewery gr-n-submodule is mazximal.
(2) <0 > is a gr-n-submodule of D.
(3) D is a gr-simple.

Proof. Assume that D has a gr-n-submodule say U.

(1). Let L <& D such that U C L. Then Gr(Anna(D)) = Anna(D) C
Ann (L), so there exists r € Anna(L) — Gr(Ann4(D)). Suppose that
t € L, then rt = 0 € U. Since U is gr-n-submodule and r ¢ Gr(Ann4(D)),
we get t € U. Therefore, U is a gr-maximal submodule of D.

(2). Using (1), U is a graded maximal submodule of D, so (U :4 D) is a
graded maximal ideal of A. Therefore, Gr(Ann4(D)) is a graded maximal
ideal of A. Hence, < 0 > is a gr-n-submodule of D.

(3). Using (1) and (2), we have < 0 > is a gr-maximal submodule of D and
so D is a gr-simple. O

Theorem 3.17. Let Uy, Us,..., Uy be gr-primary submodules of D such
k

that Gr((U; : 4 D)) are not comparable. Then, () U; is a gr-n-submodule of
i=1

D if and only if U; is a gr-n-submodule for each i € {1,2,...,k}.
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k
Proof. (=) Assume that () U; is a gr-n-submodule of D. Let rm € U; for
i=1
some r € h(A) — Gr(Ann4(D)), m € h(D) and 1 < j < k. Since Gr((U; : 4
k

D)) are not comparable, there exists x € (| Gr((U; :a D)) h(A) —
i=1, i#j
k

Gr((U;j :4 D)). Therefore, there exists h € N such that z"rm € () U;,
i=1
k k
so z'm € ﬂ U; since ﬂ U is a gr-n-submodule of D and so z"m € Uj.

Which 1mphes that m E U as U; gr-primary submodule. Hence, U; is a
gr-n-submodule.
(<) It is clear by [1, Theorem 3.3(ii)]). O

Theorem 3.18. Let {Uy}tacr be a family of gr-prime submodules of D. If

() Ua is a gr-n-submodule of D, then (| Uy is a gr-prime submodule.
acl acl

Proof. Assume that () U, is a gr-n-submodule of D. Let rm € () U,
where r € h(A) and T?Leé hD).Ifr ¢ ([) Uy :D), thenr ¢ Gr(Annof(ID))
and since [ U, is a gr-n-submodule, ?ﬁén m e (| Uyandso [ Uy is a
gr-prime s?ﬂe)inodule. ot ot O

Theorem 3.19. Let D be a finitely generated graded A-module and U be
a gr-n-submodule of D. Then Grp(U) is a gr-n-submodule if and only if
Grp(U) is a gr-prime submodule.

Proof. (=) Using Theorem 3.18, if Grp(U) is a gr-n-submodule, then Grp(U)
is a gr-prime submodule.

(<) Assume that Grp(U) is a graded prime submodule and let rm €
Grp(U) where r € h(A) — Gr(Ann (D)) and m € h(D). Since U is a gr-
n-submodule, then by [1, Theorem 3.3(i)], (U :4 D) C Gr(Ann4(D)). This
implies that Gr((U :4 D)) = Gr(Ann4(D)) and since (Grp(U) :4 D) =
Gr((U :4 D)), then (Grp(U) : 4 D) = Gr(Ann4(D)) and so m € Grp(U).
Hence, Grp(U) is a gr-n-submodule of D. O

Theorem 3.20. Let D and W be graded A-modules such that D C W and
Gr(Ann (D)) = Gr(Anna(W)). If U is a gr-n-submodule of D, then there
exists a gr-n-submodule K of W such that U = K ND.
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Proof. Let Q= {L: L <& W and LND = U}. Since U € Q, then Q # ¢.
Using Zorn’s lemma, we find a maximal element K of 2. To show that
K is a graded submodule of W. Suppose ki, ko € K, where k1 and ks are
homogeneous elements. The sum k; + ko must belong to K, or else we could
enlarge K while still maintaining the intersection condition, contradicting
maximality. Therefore, K is closed under addition. Suppose r € h(A)
(a homogeneous element of the graded ring A) and w € h(W) such that
rw € K. Assume, for contradiction, that w ¢ K. Consider the graded
submodule K + (w), the smallest graded submodule containing both K and
w. By the maximality of K, we must have

(K + (w) D+,

meaning there exists some m € D\ U such that m € (K + (w)). However,
this contradicts the assumption that U is a graded n-submodule of D, leading
to m € U, a contradiction. Therefore, w € K. Let k € K be an arbitrary
element. Since W is a graded module, we can write k£ as a sum of its
homogeneous components:

k=Y ki, wherek; €W

If £ € K, then each k; must also be in K, because if k; ¢ K, we would
have K’ = K + (k;), and since K is maximal in 2, this would contradict
maximality unless k; € K. Therefore, K contains all its homogeneous
components. Thus K is a graded submodule of W.

Now, we must show that K is a gr-n-submodule of W. Let rw € K
where r € h(A) — Gr(Ann4(W)) and w € h(W). Suppose that w ¢ K. As
K is a maximal element of Q, then (K+ < w >)ND ¢ U and so there
exist k € h(W)N K, m € h(D) — U and t € h(A) such that k + tw = m,
and so rk + rtw = rm € KND = U. But U is a gr-n-submodule and
r € h(A) — Gr(Anny (D)), which implies that m € U, a contradiction.
Hence K is a gr-n-submodule of W and K ND = U. O

Theorem 3.21. Let A= A; x Ag X --- X A, and D = D1 X Dy X -+ X Dy,
where D; is a non-zero graded A;-module for every 1 < i < k and k > 2.
Then D has no gr-n-submodule.

Proof. Suppose that U is a gr-n-submdule of D. Then U # D and so there
exists j, 1 < j < k such that (0,0,---,0, m ,0,---,0) € h(D) — U. Then
Jth
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1,1,---,1, 0 ,1,---,1)(0,0,---,0, m ,0,---,0) € U.
~—
jth jth
Since (1,1,---,1, 0 ,1,---,1) € h(A)—Gr(Ann4(D)) and U is a gr-n-

submdule, then (0,0,---,0, m ,0,---,0) € U, a contradiction. Therefore,

D has no gr-n-submodule. O

4. G.gr-n-submodule

Definition 4.1. Let U <2§”’ D. Then U is called a generalization of gr-n-
submodule ( G.gr-n-submodule) if for each r € h(A) — Gr(Ann4(U)) and
m € h(D) with rm € U, then m € U.

Its clear that every gr-n-submodule of D is a G.gr-n-submodule but the
following example shows that the converse is not true in general.

Example 4.2. Let G = Zy and A = Z. Then A is a G-graded ring with
Ao =Z and A; = {0}. Let D = Z4®Z. Then D is a graded A—module with
Dy = Z4®Z and Dy = {0}. Then U =< 2 > @ < 0 > is a G.gr-n-submodule
of D which is not gr-n-submodule.

Lemma 4.3. If D is a gr-torsion-free A-module the notion of gr-n-submodule
and G.gr-n-submodule coincide.

Proof. 1t is clear O

Theorem 4.4. If < 0 > is a gr-n-submodule of D, then notion of gr-n-
submodule and G.gr-n-submodule coincide.

Proof. Let U be a G.gr-n-submodule of D and rm € U where r € h(A) —
Gr(Ann4(D)) and m € h(D). If r ¢ Gr(Anna(U)), then m € U since
U is a G.gr-n-submodule. If r € Gr(Ann4(U)), then there exists £k € N
such that r*(rm) = 0, so r**m = 0. But < 0 > is a gr-n-submodule
and r ¢ Gr(Anna(D)) so m = 0 and so m € U. Therefore, U is a gr-n-
submodule. O

Theorem 4.5. Let U <g:”b D. Then the following are equivalent.
(1) U is a G.gr-n-submodule of D.
(2) U= (U :pr) for every r € h(A) — Gr(Anna(U)).
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(3) For every graded ideal J of A and every graded submodule L of D,
JL C U with J € Gr(Ann4(U)), then L C U.

Proof. (1) = (2). Assume that U is a G.gr-n-submodule of D. The inclu-
sion U C (U :p r) always holds for every r € A. Now, let r € h(A) —
Gr(Ann4(U)) and m € (U :p r)[ (D), then rm € U. As U is a G.gr-n-
submodule, we get m € U and hence U = (U :p A).

(2) = (3). Assume that U = (U :p r) for every r € h(A) — Gr(Ann4(U))
and JL C U where J <@ A and L <&* D with J ¢ Gr(Ann(U)). Since
J & Gr(Anna(U)), then there exists j € h(A)NJ —Gr(Anna(U)). There-
fore, jL C U and so L C (U :p j) = U by our assumption.

(3) = (1). Assume that for every graded ideal J of A and every graded
submodule L of D, JL C U with J € Gr(Anna(U)), then L C U. Let
rm € U where r € h(A) — Gr(Ann4(U)) and m € h(D). Let I = r.A and
L =mA, so JL CU with J € Gr(Ann4(U)), and so by our assumption,
L C U. Which implies that m € U. Hence, U is a G.gr-n-submodule of
D. O

Theorem 4.6. Let D be a graded A-module. Then
(1) If K is a G.gr-n-submodule of D, then (K : 4 D) C Gr(Anna(K)).
(2) If K is a G.gr-n-submodule of D, then (K : 4 D) C Gr(Ann4(D)).

(3) Let {K;}icq be a nonempty set of G.gr-n-submodule of D. Then (| K;
1€Q
is a G.gr-n-submodule.

(4) Let {K;}icq be a finite chain of G.gr-n-submodule of a finitely generated
graded A-module D. Then, |J K; is a G.gr-n-submodule of D.
iel

Proof. (1). Assume that K is a G.gr-n-submodule of D. If (K :4 D) ¢
Gr(Ann4(K)), then there exists r € h(A)N (K :4 D) — Gr(Ann4(K)) and
so D C K and since K is a G.gr-n-submodule of D, we get K = D, a
contradiction. Hence, (K :4 D) C Gr(Anna(K)).

(2). Assume that K is a G.gr-n-submodule of D. Let r € h(A) N (K :4 D).
Then, by part (1), r € Gr(Ann4(K)) and so there exists m € N such that
7™ € Ann(K) and since r € (K :4 D), we have r™rD = ™D = 0 and
sor € Gr(AnnA(D)).

(3). Let rm € () K; where r € h(A) and m € h(D) — () K;. Then
1€Q 1€}
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m ¢ K; for some j € Q. As K; is a G.gr-n-submodule of D, we obtain
r e Gr (Anna(K;)) € Gr(Anna(() K;)). Therefore, () K; is a G.gr-n-

ieQ ieQ
submodule.
(4). Let rm € |J K; where r € h(A) and m € h(D) — | K;. Then m ¢ K;
iel icl

for all ¢ € I. Since K; is a G.gr-n-submodule of D, we get r € Gr(Ann 4(K;))

for all ¢ € I and as I is a finite set, we have r € Gr(Anna4(|J K;)). Thus,
i€l

U K; is a G.gr-n-submodule. O

il

Theorem 4.7. Let U and K be proper graded submodules of D and I be

a graded ideals of A such that I ¢ Gr(Anna(U))JGr(Anna(K)). Then,

the following statements are holds.
(1) If U and K are G.gr-n-submodules of D with IU = IK, then U = K.
(2) If IU is a G.gr-n-submodule of D, then IU = U.

Proof. (1). Assume that U and K are G.gr-n-submodules of D with IU =
IK. Using Theorem 4.5 (3), we get K C U and U C K. Hence, U = K.

(2). Assume that IU is a G.gr-n-submodule of D. Since IU C IU, then by
Theorem 4.5 (3), U C IU and so IU = U. O

Theorem 4.8. Let A be a G-graded ring and D be a graded torsion-free
A-module. Then the zero submodules is a G.gr-n-submodule of D.

Proof. Using Lemma 4.3 and [1, Lemma 3.5], we get the result. O

Lemma 4.9. Let A be a G-graded ring and D be a gr-multiplication torsion-
free A-module. Then the zero submodule is the only G.gr-n-submodule of
D.

Proof. Using Lemma 4.3 and [1, Lemma 3.7|, we get the result. O

Theorem 4.10. Let K <2Lb D. Then, K is a G.gr-n-submodule if and only
if for every m € h(D), (K :am)=A or (K :4m) C Gr(Anna(K)).

Proof. (=) Assume that K is a G.gr-n-submodule and (K : 4 m) € Gr(Anna(K))
where m € h(D). Then there exists r € h(A) (K :4 m) — Gr(Anna(K)),
sorm € K and r ¢ Gr(Ann4(K)). Since K is a G.gr-n-submodule, then

m € K and so (K : 4y m) = A.

(<) Assume that for every m € h(D), (K :y m) = Aor (K :4 m) C
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Gr(Ann4(K)). Let rm € K where r € h(A) — Gr(Ann4(K)) and m €
h(D). Then r € (K :4 m) — Gr(Ann4(K)). By our assumption, (K :4
m) = A and so m € K. Hence, K is a G.gr-n-submodule. O

Theorem 4.11. Let K <g“b D. Then K is a G.gr-n-submodule of D
if and only if every graded zero-divisor of a graded A-module % s in
Gr(Ann4(K)).

Proof. Let K be a G.gr-n-submodule of D and r € h(A) be a zero-divisor
in Z. Then there exists m € h(D) — K such that rm € K. As K is a G.gr-n-
submodule of D, then r € Gr(Ann4(K)), as we needed. Conversely, assume
that every graded zero-divisor of a graded A-module % is in Gr(Anna(K)).
Let rm € K for some r € h(A) and m € h(D) — K. Then r is a zero-divisor
in % and so r € Gr(Ann4(K)). Hence, K is a G.gr-n-submodule of D. [

Theorem 4.12. Let K be a gr-prime submodule of D. Then K is a G.gr-
n-submodule of D if and only if (K : 4 D) C Gr(Ann4(K)).

Proof. (=) Using Theorem 4.6 (1), we get the result.

(<) Assume that (K :4 D) C Gr(Anna(K)). Let rm € K where r €
h(A) — Gr(Anny(K)) and m € h(D). Since K is a gr-prime submodule,
then either r € (K : 4 D) or m € K and by our assumption, we get m € K.
Hence, K is a G.gr-n-submodule. O

Theorem 4.13. Every G.gr-n-submodule of D is a gr-r-submodule of D.

Proof. Assume that U is a G.gr-n-submodule of D. Let rm € U for some r €
h(A) and m € h(D) such that Annp(r) = 0. Since U is a G.gr-n-submodule
of D, then either r € Gr(Anna(U)) or m € U. If r € Gr(Ann4(U)), then
there exists a smallest positive integer k such that 7*U = 0 and r*~1U # 0.
As r(r*=1U) = v*U = 0, then r*~1U C Annp(r) = 0 and so r*~1U =0, a
contradiction. Therefore, m € U and hence U is a graded r-submodule of

D. O

Theorem 4.14. Let D and K be graded A-modules such that K C D. If
U is a G.gr-n-submodule of K and K is a G.gr-n-submodule of D, then U
1s a G.gr-n-submodule of D.

Proof. Assume that U is a G.gr-n-submodule of K and K is a G.gr-n-
submodule of D. Let rm € U for some r € h(A) — Gr(Anna(U)) and
m € h(D). Since Gr(Ann4(K)) C Gr(Ann4(U)), then r ¢ Gr(Ann4(K))
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and since K is a G.gr-n-submodule of D, then m € K. Now, rm € U,
r € h(A) — Gr(Anna(U)) and m € h(K), then m € U as U is a G.gr-n-
submodule of K. Hence U is a G.gr-n-submodule of D. O

Theorem 4.15. Let A = A; X Ay X -+ X A be a G-graded ring and
D = D1 X Dy X --+- X Dy, where D; is a non-zero graded A;—module for
1<i<k. IfU is a G.gr-n-submodule of D, then there exists j, 1 < j <k,
such that U = Uy x Ua X - -+ X Uy, Uj is a G.gr-n-submodule of D; and for
any i # j, U; = 0.

Proof. Assume that U is a G.gr-n-submodule of D. Then U # D and so
there exists j, 1 < j < k, such that (0,...,0, m ,0,...,0) € h(D) — U.

jth
Then,
(1,...,1, 0 ,1,...,1)(0,...,0,.m ,0,...,0) € U.
—~— —~—
jth jth
Since U is a G.gr-n-submodule, then (1,...,1, 0 ,1,...,1) € Gr(Anny(U)).
jth

Which implies that U =0x---x0x U; x0x---x0, where Uj is a graded
—~~
jth
submodule of D;. Therefore, Anna(U) = A1 x - -+ x Aj_1 x Anng, (U;) x
Aji1 x -+ X Ag. Now, let rz € U; for some 1 € h(A;) — Gr(Anny, (U;)
and x € h(D;). As U is a G.gr-n-submodule and
0,...,0, 7 ,0,...,0)(0,...,0, z ,0,...,0) €U,
—~— =~
jth jth
then x € U;. Hence, U; is a G.gr-n-submodule of D;. O
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