https://doi.org/10.56415/qrs.v32.22

A correspondence induced by an involution centralizing an index-two subgroup

Louis Rubin

Abstract. Given groups (G, \circ) and (H, \star) with disjoint support, we remark that the isomorphisms $(G, \circ) \to (H, \star)$ are in one-to-one correspondence with certain group operations on $G \cup H$ extending the operation of G and interacting nicely with the structure on H. This correspondence follows from some general properties of groups admitting an index-two subgroup N with an involution $x \notin N$ which centralizes N.

1. Introduction and main result

Let (G, \circ) and (H, \star) be groups with disjoint support. In this note, we highlight a one-to-one correspondence between the isomorphisms $(G, \circ) \to (H, \star)$ and certain groups $(G \cup H, \odot)$ such that \odot extends \circ and interacts nicely with the structure on H. The precise statement is as follows.

Theorem 1.1. Let (G, \circ) and (H, \star) be groups such that $G \cap H = \emptyset$. Then the (possibly empty) set of all group isomorphisms $f : G \to H$ is in one-to-one correspondence with the set of all group operations \otimes on $G \cup H$ satisfying the following properties:

- (i) \odot extends \circ .
- (ii) The identity element e_* of (H, *) has order two in $(G \cup H, \odot)$ and lies in the centralizer of G in $(G \cup H, \odot)$.
- (iii) For all $h, h' \in H$, we have $h \star h' = h \otimes e_{\star} \otimes h'$.

The proof of Theorem 1.1 is elementary, incorporating some constructions appearing in a previous work of the author, namely [4]. (Note: certain passages from this reference are recycled here verbatim, for the sake of self-containment.) As we shall see, the theorem follows from general properties of groups admitting an index-two subgroup N and an involution $x \notin N$ which centralizes N. Our techniques resemble the well-known "group doubling" constructions from the theory of Moufang loops; see [1] and [2]. We conclude this note with some related observations concerning a peculiar nonassociative operation.

Before proceeding, let us specify our notation: In the group (X, \circ) , e_{\circ} denotes the identity, and x° denotes the inverse of $x \in X$. We shall abuse notation slightly: If $G \subseteq X$

²⁰¹⁰ Mathematics Subject Classification: 20A05

 $^{{\}sf Keywords:}\ {\it group}\ isomorphism,\ one-to-one\ correspondence,\ extension,\ translation,\ index-two\ subgroup.$

L. Rubin

is closed under the operation \circ , then we shall denote the algebraic system $(G, \circ|_{G \times G})$ simply by (G, \circ) .

We begin with a simple lemma, whose proof is an exercise.

Lemma 1.2. Let (G, \circ) be a group, and fix $z \in G$. Define a binary operation \triangle on G by

$$x \bigtriangleup y \coloneqq x \circ z^{\circ} \circ y$$

for all $x, y \in G$. Then the right translation map $f : G \to G$ given by $f(x) = x \circ z$ is an isomorphism $(G, \circ) \to (G, \Delta)$.

Remark 1.3. The operations \circ and \triangle in Lemma 1.2 are readily checked to *biassociate*, i.e.,

$$(a \circ b) \bigtriangleup c = a \circ (b \bigtriangleup c)$$
 and $(a \bigtriangleup b) \circ c = a \bigtriangleup (b \circ c)$,

for all $a, b, c \in G$. Biassociative operations are isomorphic in fairly generic settings. For instance, let (X, \circ) , (X, Δ) be magmas such that \circ and Δ biassociate, and suppose that (X, Δ) possesses an identity e_{Δ} . The right translation map $f(x) = x \circ e_{\Delta}$ is then a homomorphism:

$$f(x) \triangle f(y) = (x \circ e_{\triangle}) \triangle (y \circ e_{\triangle}) = ((x \circ e_{\triangle}) \triangle y) \circ e_{\triangle} = (x \circ (e_{\triangle} \triangle y)) \circ e_{\triangle} = (x \circ y) \circ e_{\triangle} = f(x \circ y).$$

In particular, if f is a bijection, then $(X, \circ) \cong (X, \triangle)$. In fact, if \circ and \triangle are biassociative group operations on X, then necessarily

$$x \bigtriangleup y = x \circ e_{\bigtriangleup}^{\circ} \circ y.$$

(See [3].)

The following proposition is important for Theorem 1.1.

Proposition 1.4. Let (G, \circ) and (H, \star) be groups such that $G \cap H = \emptyset$. Suppose that \circ extends to a group operation \odot on $G \cup H$ such that for all $h, h' \in H$, we have $h \star h' = h \odot e^{\odot}_{\star} \odot h'$. Then $(G, \circ) \cong (H, \star)$.

Proof. Define a binary operation \otimes on $G \cup H$ by

$$x \circledast y \coloneqq x \circledcirc e_\star^{"} \circledcirc y.$$

By the lemma, $(G \cup H, \odot) \cong (G \cup H, \circledast)$ via the translation map $f: G \cup H \to G \cup H$ given by $f(x) = x \odot e_{\star}$. Since \circledast extends \star , it suffices to show that f(G) = H. To see that $f(G) \subseteq H$, let $g \in G$, and assume that $g \odot e_{\star} = y \in G$. One readily observes that $e_{\odot} = e_{\circ}$, and it follows that $g^{\odot} = g^{\circ} \in G$. Therefore, we obtain $e_{\star} = g^{\circ} \odot y = g^{\circ} \circ y \in G \cap H$, a contradiction. Now, the inverse of f is the map $f^{-1}(x) = x \odot e_{\star}^{\odot} = x \circledast e_{\circ}$, and a symmetric argument gives $f^{-1}(H) \subseteq G$, as needed. \Box

Remark 1.5. If (X, \circ) is a group and N is a proper subgroup, then we may fix $x \in X$ with $x \notin N$ and define a binary operation \triangle on X by $a \triangle b = a \circ x^{\circ} \circ b$. The right coset of N containing x, namely $N \circ x$, is closed under \triangle . In fact,

$$(N, \circ) \cong (N \circ x, \Delta).$$
 (1)

This follows, for instance, from Lemma 1.2; the right translation map $f: X \to X$ given by $a \mapsto a \circ x$ is an isomorphism $(X, \circ) \to (X, \Delta)$, but f restricted to N gives a bijection $N \to N \circ x$. Now, Proposition 1.4 may be interpreted as a consequence of (1). Indeed, after defining the operation \circledast , we get that $(G, \circledcirc) \cong (G \odot e_{\star}, \circledast)$ via the translation map $f(a) = a \otimes e_{\star}$. It then suffices to argue that the coset $G \otimes e_{\star}$ equals H. (So, G has index two as a subgroup of $(G \cup H, \odot)$.)

The next proposition supplies the converse of Proposition 1.4.

Proposition 1.6. Let (G, \circ) and (H, \star) be groups with disjoint support. Suppose that $f:(G,\circ) \to (H,\star)$ is an isomorphism. Then \circ extends to a group operation \odot on $G \cup H$ such that for all $h, h' \in H$, we have $h \star h' = h \odot e_{\star}^{\odot} \odot h'$.

Proof. Extend \circ to the binary operation \diamond_f on $G \cup H$ given by

$$x \diamondsuit_f y = \begin{cases} x \circ y & \text{if } x, y \in G \\ f^{-1}(x) \circ f^{-1}(y) & \text{if } x, y \in H \\ x \star f(y) & \text{if } x \in H, y \in G \\ f(x) \star y & \text{if } x \in G, y \in H. \end{cases}$$

We claim that $(G \cup H, \diamond_f)$ is a group. To see this, consider the direct product $(G, \circ) \times C_2$, where $C_2 = \{0, 1\}$ is a group of order 2. One can check that the mapping

$$\phi: G \times C_2 \to G \cup H$$

given by

$$\phi(x,i) = \begin{cases} x & \text{if } i = 0\\ f(x) & \text{if } i = 1 \end{cases}$$

is a structure-preserving bijection between $G \times C_2$ and $(G \cup H, \diamondsuit_f)$, and since $G \times C_2$ is a group, $(G \cup H, \diamond_f)$ must be as well. (The author initially proved that $(G \cup H, \diamond_f)$ is a group directly from the group axioms. Amitai Yuval provided this more insightful argument via [5]). Now, take $\odot = \Diamond_f$. Notice that the inverse of e_* in the group $(G \cup H, \Diamond_f)$ is just e_* . Thus, for $h, h' \in H$, we calculate

$$h \otimes e_{\star}^{\otimes} \otimes h' = h \diamondsuit_{f} e_{\star} \diamondsuit_{f} h' = (f^{-1}(h) \circ f^{-1}(e_{\star})) \diamondsuit_{f} h' = f^{-1}(h) \diamondsuit_{f} h' = h \star h',$$

completing the proof.

Hence, we have the following corollary, which refines the result of [4].

.

Corollary 1.7. Let (G, \circ) and (H, \star) be groups with disjoint support. Then $(G, \circ) \cong$ (H, \star) if and only if \circ extends to a group operation \odot on $G \cup H$ such that for all $h, h' \in H$, we have $h \star h' = h \odot e^{\odot}_{\star} \odot h'$.

Remark 1.8. Given that the algebraic system $(G \cup H, \diamond_f)$ from the proof of Proposition 1.6 is a group, it is worth noting how the isomorphism $(G \cup H, \diamond_f) \cong (G, \circ) \times C_2$ is a particular instance of a general group-theoretic principle. To see this, consider the following setup: X is a group (whose operation we shall denote simply by juxtaposition). Let N be a subgroup of X of index two. Suppose there exists $x \in X$ of order two with

 $x \notin N$. Assume further that x lies in the centralizer of N in X. We may then conclude that $X \cong N \times C_2$. Indeed, the mapping $\phi : N \times C_2 \to X$ defined by

$$\phi(n,i) = \begin{cases} n & \text{if } i = 0\\ nx & \text{if } i = 1 \end{cases}$$

is bijective. It is also a homomorphism; for instance, if $n_1, n_2 \in N$, then we have

$$\phi[(n_1,1)(n_2,1)] = \phi(n_1n_2,0) = n_1n_2 = n_1n_2x^2 = (n_1x)(n_2x) = \phi(n_1,1)\phi(n_2,1).$$

Now, G is an index-two subgroup of $(G \cup H, \diamond_f)$ and $e_* \notin G$, but this element commutes with each element of G in the operation \diamond_f . Moreover, the order of e_* with respect to this operation is two. Taking $X = (G \cup H, \diamond_f)$, N = G, and $x = e_*$ yields the desired isomorphism.

On a related note, we have the following proposition.

Proposition 1.9. Let (X, \circ) be a group and N an index-two subgroup. Let $x \in X$ with $x \notin N$. Then there is a binary operation \bullet_x on X such that $(X, \bullet_x) \cong (N, \circ) \times C_2$.

Proof. The bijection $\phi: N \times C_2 \to X$ given by

$$\phi(n,i) = \begin{cases} n & \text{if } i = 0\\ n \circ x & \text{if } i = 1 \end{cases}$$

induces a group operation \bullet_x on X. Explicitly, for $a, b \in X$, we have $a \bullet_x b =$

$$\begin{cases} n_1 \circ n_2 & \text{if } (a = n_1 \in N \text{ and } b = n_2 \in N) \text{ OR } (a = n_1 \circ x \in N \circ x \text{ and } b = n_2 \circ x \in N \circ x) \\ n_1 \circ n_2 \circ x & \text{if } (a = n_1 \in N \text{ and } b = n_2 \circ x \in N \circ x) \text{ OR } (a = n_1 \circ x \in N \circ x \text{ and } b = n_2 \in N), \end{cases}$$

 \square

and ϕ is an isomorphism $(N, \circ) \times C_2 \to (X, \bullet_x)$.

The next theorem shows that when the element x from Proposition 1.9 has order two in (X, \circ) and centralizes N, we recover the original group operation from \bullet_x .

Theorem 1.10. Let (X, \circ) be a group with a subgroup N of index two. Fix $x \in X$ with $x \notin N$. Suppose further that x has order two in (X, \circ) and belongs to the centralizer of N in this group. Then $\bullet_x = \circ$.

Proof. Let $a, b \in X$. If $a = n_1 \in N$ and $b = n_2 \in N$, then surely $a \bullet_x b = a \circ b$. Suppose that a, b both belong to the coset $N \circ x$, say, $a = n_1 \circ x$ and $b = n_2 \circ x$. We have

 $a \bullet_x b = n_1 \circ n_2 = (n_1 \circ n_2) \circ e_\circ = (n_1 \circ n_2) \circ (x \circ x) = (n_1 \circ x) \circ (n_2 \circ x) = a \circ b,$

as x commutes n_2 . Hence, $a \bullet_x b = a \circ b$ in this case as well. Continuing, assume that $a = n_1 \circ x \in N \circ x$ and $b = n_2 \in N$. Then

$$a \bullet_x b = n_1 \circ n_2 \circ x = (n_1 \circ x) \circ n_2 = a \circ b.$$

Finally, if $a = n_1 \in N$ and $b = n_2 \circ x \in N \circ x$, we have $a \bullet_x b = n_1 \circ (n_2 \circ x) = a \circ b$. It follows that $\bullet_x = \circ$, as needed.

We are now ready to derive Theorem 1.1 as a consequence of Theorem 1.10.

Proof. Let

$$I(G, H) \coloneqq \{f : G \to H | f \text{ is a group isomorphism}\}\$$

and let E(G, H) denote the collection of all group operations \otimes on $G \cup H$ satisfying (i), (ii), and (iii) in the statement of the theorem. If $f \in I(G, H)$, then the operation \diamond_f from Proposition 1.6 satisfies conditions (i), (ii), and (iii). Therefore, we may define a map $\psi: I(G, H) \to E(G, H)$ by

$$\psi(f) = \diamondsuit_f$$
.

We shall prove that ψ is bijective. Injectivity is straightforward; assume that $f_1, f_2 \in I(G, H)$ with $\psi(f_1) = \psi(f_2)$. Then $\Diamond_{f_1} = \Diamond_{f_2}$. Hence, for any $g \in G$, we have $g \Diamond_{f_1} e_* = g \Diamond_{f_2} e_*$. In other words,

$$f_1(g) = f_1(g) \star e_{\star} = g \diamondsuit_{f_1} e_{\star} = g \diamondsuit_{f_2} e_{\star} = f_2(g) \star e_{\star} = f_2(g),$$

so $f_1 = f_2$. For surjectivity, let

$$\odot \in E(G,H)$$

be arbitrary. We have seen (via Proposition 1.4) that the right translation map $f: G \to H$ given by $f(g) = g \otimes e_*$ is an isomorphism. We claim that $\otimes = \Diamond_f$. Notice how we are in the setup of Theorem 1.10 with $(X, \circ) = (G \cup H, \otimes)$, N = G, and $x = e_*$. Using (i), (ii), and (iii), it is straightforward to verify that the group operation \Diamond_f may be reformulated as $a \diamond_f b =$

$$\begin{cases} g_1 \odot g_2 & \text{if } (a = g_1 \in G \text{ and } b = g_2 \in G) \text{ or } (a = g_1 \odot e_\star \in G \odot e_\star \text{ and } b = g_2 \odot e_\star \in G \odot e_\star) \\ g_1 \odot g_2 \odot e_\star & \text{if } (a = g_1 \in G \text{ and } b = g_2 \odot e_\star \in G \odot e_\star) \text{ or } (a = g_1 \odot e_\star \in G \odot e_\star \text{ and } b = g_2 \in G), \end{cases}$$

which is precisely the operation $\bullet_{e_{\star}}$. For example, in the case when $a = g_1 \odot e_{\star} \in G \odot e_{\star}$ and $b = g_2 \in G$, we have

 $(g_1 \otimes e_\star) \diamond_f g_2 = (g_1 \otimes e_\star) \star f(g_2) = (g_1 \otimes e_\star) \star (g_2 \otimes e_\star) = (g_1 \otimes e_\star) \otimes e_\star \otimes (g_2 \otimes e_\star) = g_1 \otimes g_2 \otimes e_\star.$

By Theorem 1.10, we get that $\odot = \diamond_f$, so ψ is surjective. Theorem 1.1 is obtained. \Box

Remark 1.11. Theorem 1.1 and Corollary 1.7 are easily adapted to the case when G and H are not necessarily disjoint sets. Simply view $\{0\}$ and $\{1\}$ as trivial groups, and apply the results to the disjoint union

$$G \sqcup H \coloneqq (G \times \{0\}) \cup (H \times \{1\}).$$

2. Closing remarks

In closing, we report an interesting family of nonassociative (that is, not necessarily associative) operations, which is obtained by generalizing the operation \diamond_f . The setup is as follows: Let (G, \circ) and (H, \star) be groups and suppose that $\alpha : G \to H$ and $\beta : H \to G$ are two group homomorphisms. For simplicity, assume that G and H are disjoint sets. (If not, we can form the disjoint union and proceed similarly.) Define a binary operation $\diamond^{\beta}_{\alpha}$ on $G \cup H$ by

$$x \diamondsuit_{\alpha}^{\beta} y = \begin{cases} x \circ y & : x, y \in G \\ \beta(x) \circ \beta(y) & : x, y \in H \\ x \star \alpha(y) & : x \in H, y \in G \\ \alpha(x) \star y & : x \in G, y \in H \end{cases}$$

Since G and H are groups, the system $(G \cup H, \diamondsuit_{\alpha}^{\beta})$ has an identity element (namely, e_{\circ}) and preserves inverses. However, it is not associative in general, since for example if $x \in G$ and $y, y' \in H$, then

$$(x \diamondsuit_{\alpha}^{\beta} y) \diamondsuit_{\alpha}^{\beta} y' = \beta(\alpha(x)) \circ \beta(y) \circ \beta(y'),$$

which need not equal

$$x \diamondsuit_{\alpha}^{\beta} (y \diamondsuit_{\alpha}^{\beta} y') = x \circ \beta(y) \circ \beta(y').$$

In fact, associativity holds if and only if $\beta = \alpha^{-1}$. Hence, $(G \cup H, \diamondsuit_{\alpha}^{\beta})$ is a group if and only if $\beta = \alpha^{-1}$, in which case we have seen that

$$(G \cup H, \diamondsuit_{\alpha}^{\alpha^{-1}}) = (G \cup H, \diamondsuit_{\alpha}) \cong (G, \circ) \times C_2.$$

Acknowledgements. I thank the anonymous referee for helpful feedback, which led to a richer exposition. I also thank Jeffery Liu for introducing me to the operation \triangle from Lemma 1.2 and pointing out that the right coset $N \circ z$ forms a group under this operation.

References

- O. Chein, Moufang loops of small order, Mem. Amer. Math. Soc. 13 (1978), no. 197.
- [2] M.K. Kinyon, J.D. Phillips, and P. Vojtechovsky, Loops of Bol-Moufang type with a subgroup of index two, Bul. Acad. Sti. Republ. Moldova, Matematica, 3(49) (2005), 71-87.
- B. Novikov, (https://mathoverflow.net/users/18814/boris-novikov), About sets with two mutually associative group structures, URL (version: 2013-10-08): https://mathoverflow.net/q/144259
- [4] L. Rubin, Compatible group operations, Math. Spectrum, 48 (2016), No. 2, 65-66.
- [5] A. Yuval, (https://math.stackexchange.com/users/166201/amitaiyuval), Is there a concise argument for why this group operation is associative? (version: 2014-08-24): https://math.stackexchange.com/q/907535

Received January 9, 2024

E-mail: ljr22@fsu.edu