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A correspondence induced by an involution

centralizing an index-two subgroup

Louis Rubin

Abstract. Given groups (G,o) and (H,*) with disjoint support, we remark that the
isomorphisms (G, o) - (H, *) are in one-to-one correspondence with certain group oper-
ations on G U H extending the operation of G and interacting nicely with the structure
on H. This correspondence follows from some general properties of groups admitting an
index-two subgroup N with an involution = ¢ N which centralizes N.

1. Introduction and main result

Let (G,0) and (H,*) be groups with disjoint support. In this note, we highlight a
one-to-one correspondence between the isomorphisms (G, o) — (H, ) and certain groups
(G U H,®) such that ® extends o and interacts nicely with the structure on H. The
precise statement is as follows.

Theorem 1.1. Let (G,0) and (H, x) be groups such that GNn H = @. Then the (possibly
empty) set of all group isomorphisms f: G — H 1is in one-to-one correspondence with the
set of all group operations ® on G U H satisfying the following properties:

(i) © extends o .

(it) The tidentily element e. of (H,*) has order two in (G U H,®) and lies in the
centralizer of G in (GU H,®).

(iii) For all h,h' € H, we have hxh' =h®e.®h'.

The proof of Theorem 1.1 is elementary, incorporating some constructions appearing
in a previous work of the author, namely [4]. (Note: certain passages from this reference
are recycled here verbatim, for the sake of self-containment.) As we shall see, the theorem
follows from general properties of groups admitting an index-two subgroup N and an
involution = ¢ N which centralizes N. Our techniques resemble the well-known “group
doubling” constructions from the theory of Moufang loops; see [1] and [2]. We conclude
this note with some related observations concerning a peculiar nonassociative operation.

Before proceeding, let us specify our notation: In the group (X,o), e, denotes the
identity, and z° denotes the inverse of x € X. We shall abuse notation slightly: If G ¢ X
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is closed under the operation o, then we shall denote the algebraic system (G,o|cxc)
simply by (G, o).
We begin with a simple lemma, whose proof is an exercise.

Lemma 1.2. Let (G,0) be a group, and fix z € G. Define a binary operation & on G by
rAy:=xo 2% o Yy

for all x,y € G. Then the right translation map f: G - G given by f(x) = x o0z is an

isomorphism (G,o) - (G, A).

Remark 1.3. The operations o and A in Lemma 1.2 are readily checked to biassociate,
ie.,

(aob)rc=ao(brc) and (alb)oc=an (boc),

for all a,b,c € G. Biassociative operations are isomorphic in fairly generic settings. For
instance, let (X,0), (X, A) be magmas such that o and A biassociate, and suppose that
(X, A) possesses an identity ea. The right translation map f(z) = x o ea is then a
homomorphism:

f(@)af(y) = (zoen)b(yoen) = ((woen) Ay)oen = (zo(enby))oea = (voy)oes = f(zoy).

In particular, if f is a bijection, then (X, 0) = (X, A). In fact, if o and A are biassociative
group operations on X, then necessarily

TAy=xoenoy.
(See [3].)
The following proposition is important for Theorem 1.1.

Proposition 1.4. Let (G,0) and (H,~*) be groups such that Gn H = @. Suppose that
o extends to a group operation ® on G U H such that for all h,h' € H, we have h« h' =
he@e?®h'. Then (G,0) = (H,*).

Proof. Define a binary operation ® on G U H by
o ®
rTRY:=r0@e, Oy.

By the lemma, (GU H,®) =2 (GU H,®) via the translation map f: GuH - GU H given
by f(z) = x @ e.. Since ® extends , it suffices to show that f(G) = H. To see that
f(G) c H, let g € G, and assume that g ® e, =y € G. One readily observes that eg = €.,
and it follows that g® = ¢° € G. Therefore, we obtain e, = g°@y = ¢g°oy e GN H, a
contradiction. Now, the inverse of f is the map f™'(z) = z©¢® = z®e,, and a symmetric
argument gives f~*(H) € G, as needed. O

Remark 1.5. If (X,0) is a group and N is a proper subgroup, then we may fix z € X
with = ¢ N and define a binary operation A on X by a & b=aoxz’ob. The right coset of
N containing z, namely N oz, is closed under A. In fact,

(N,o) = (Noa,A). (1)
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This follows, for instance, from Lemma 1.2; the right translation map f: X — X given
by a ~ aox is an isomorphism (X,0) - (X, A), but f restricted to N gives a bijection
N — N ox. Now, Proposition 1.4 may be interpreted as a consequence of (1). Indeed,
after defining the operation ®, we get that (G,®) 2 (G ® e, ®) via the translation map
f(a) =a®e.. It then suffices to argue that the coset G ® e. equals H. (So, G has index
two as a subgroup of (GU H,®).)

The next proposition supplies the converse of Proposition 1.4.
Proposition 1.6. Let (G,0) and (H,~*) be groups with disjoint support. Suppose that
f:(G,0) — (H,~*) is an isomorphism. Then o extends to a group operation ® on GU H

such that for all h,h' € H, we have hh' =hoe® o h'.

Proof. Extend o to the binary operation &y on Gu H given by

xoy ifz,yeG

) @ertw) ifayen
Oy = x* f(y) ifreH,yeG
fx)*y ifreG,yeH.

We claim that (GUH, <) is a group. To see this, consider the direct product (G,0)xCl,
where C2 = {0,1} is a group of order 2. One can check that the mapping

¢:GxCy—->GUH

given by
, x ifi=0
¢(w72)—{ flz) ifi=1
is a structure-preserving bijection between G x C2 and (G U H, ), and since G x Cy is
a group, (G U H, <) must be as well. (The author initially proved that (Gu H,<Oy)
is a group directly from the group axioms. Amitai Yuval provided this more insightful
argument via [5]). Now, take ® = &y. Notice that the inverse of e, in the group
(GUH, &) is just ex. Thus, for h,h' € H, we calculate

hoel Ol =hGre.Oph =(fH(h)of (en) Oph' = fH(h)Oph' =h+h,

completing the proof. O
Hence, we have the following corollary, which refines the result of [4].

Corollary 1.7. Let (G,o) and (H,*) be groups with disjoint support. Then (G,o) =
(H,*) if and only if o extends to a group operation ® on GUH such that for all h,h' € H,
we have h«h' =ho@e® @h'.

Remark 1.8. Given that the algebraic system (GUH, &) from the proof of Proposition
1.6 is a group, it is worth noting how the isomorphism (G U H,Of) 2 (G,0) x Cy is
a particular instance of a general group-theoretic principle. To see this, consider the
following setup: X is a group (whose operation we shall denote simply by juxtaposition).
Let N be a subgroup of X of index two. Suppose there exists x € X of order two with
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x ¢ N. Assume further that z lies in the centralizer of N in X. We may then conclude
that X ¥ N x (3. Indeed, the mapping ¢ : N x Cy - X defined by

. n ifi=0

¢(n,) ‘{ nr ifi=1

is bijective. It is also a homomorphism; for instance, if ni,n2 € N, then we have
¢[(n1,1)(n2,1)] = ¢(n1n2,0) = nina = mnga® = (n1z)(n2w) = (n1,1)é(n2, 1).

Now, G is an index-two subgroup of (GU H, <) and e. ¢ G, but this element commutes
with each element of G in the operation <&f. Moreover, the order of e. with respect to
this operation is two. Taking X = (GU H,Oy), N = G, and x = e, yields the desired
isomorphism.

On a related note, we have the following proposition.

Proposition 1.9. Let (X,0) be a group and N an index-two subgroup. Let x € X with
x ¢ N. Then there is a binary operation e; on X such that (X, ;) = (N,0) x Cy.

Proof. The bijection ¢ : N x Cy - X given by

. n ifi=0
¢>(n,z):{ nox ifi=1

induces a group operation e, on X. Explicitly, for a,b € X, we have a e, b =

71 0 N2 if(a=n1eNandb=n2e N)OR (a=nioxeNozxand b=ngoxeNox)
niongox if (a=n1 e Nandb=nsoxreNox) OR (a=nioxe Noz and b=ns e N),

and ¢ is an isomorphism (N, 0) x C2 > (X, e;). O

The next theorem shows that when the element x from Proposition 1.9 has order
two in (X, o) and centralizes N, we recover the original group operation from e,.

Theorem 1.10. Let (X,0) be a group with a subgroup N of index two. Fix x € X with
x ¢ N. Suppose further that x has order two in (X,0) and belongs to the centralizer of
N in this group. Then e, = o.

Proof. Let a,be X. If a=n1 € N and b=n2 € N, then surely a e, b=aob. Suppose that
a,b both belong to the coset N ox, say, a =n1 ox and b =n2 ox. We have

aezb=niong=(n1onz)oe,=(n1onz)o(xox)=(niox)o(nzox)=aob,

as  commutes ny. Hence, a e; b = a ob in this case as well. Continuing, assume that
a=nioxe€Noxz and b=ns € N. Then

aezb=njongox=(niox)onz=aob.

Finally, if a=n1 € N and b=nzox € Nox, we have ae; b=nji0(nzozx) =aob. It follows
that e, = o, as needed. O

We are now ready to derive Theorem 1.1 as a consequence of Theorem 1.10.
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Proof. Let

I(G,H):={f:G — H|f is a group isomorphism}
and let E(G, H) denote the collection of all group operations ® on G U H satisfying (i),
(éi), and (%) in the statement of the theorem. If f € I(G, H), then the operation f
from Proposition 1.6 satisfies conditions (2), (4), and (). Therefore, we may define a
map ¢ : I(G,H) - E(G,H) by

P(f) = Oy

We shall prove that 1 is bijective. Injectivity is straightforward; assume that fi, fo €
I(G, H) with ¥(f1) = ¥(f2). Then &y = Oy, Hence, for any g € G, we have g Oy, ey =
g O, ex. In other words,

J1(9) = fi(g) *ex =g Opy e =g Oy x = f2(9) * ex = f2(9),

so f1 = fo. For surjectivity, let

®€c FE(G,H)
be arbitrary. We have seen (via Proposition 1.4) that the right translation map f: G - H
given by f(g) = g ® e. is an isomorphism. We claim that ® = &f. Notice how we are in
the setup of Theorem 1.10 with (X,0) = (GU H,®), N =G, and z = e.. Using (i), (i),
and (21), it is straightforward to verify that the group operation &y may be reformulated
asayrb=

g1© g2 if(a=¢g1€Gand b=g2eG) or (a=g1®e.cGOe, and b=g:0e.€G@ey)
g1©g2@e, if (a=g1€Gand b=g0e.cGoes) or (a=gi®ec GOe, and b=go€G),

which is precisely the operation e.,. For example, in the case when a = g1 ® e« € G ® e
and b = g2 € G, we have

(910€.)Org2 = (g1@ex)* f(g2) = (g1@ex) % (g20¢€.) = (g10€+)@e.@(g20€x) = g1@g2@es.
By Theorem 1.10, we get that ® = &, so v is surjective. Theorem 1.1 is obtained. [

Remark 1.11. Theorem 1.1 and Corollary 1.7 are easily adapted to the case when G
and H are not necessarily disjoint sets. Simply view {0} and {1} as trivial groups, and
apply the results to the disjoint union

GUH = (Gx{0})u(H x{1}).

2. Closing remarks

In closing, we report an interesting family of nonassociative (that is, not necessarily
associative) operations, which is obtained by generalizing the operation &f. The setup
is as follows: Let (G,o) and (H, *) be groups and suppose that «: G - H and §: H - G
are two group homomorphisms. For simplicity, assume that G and H are disjoint sets.
(If not, we can form the disjoint union and proceed similarly.) Define a binary operation
<>§ on GU H by

oy :x,yEG
: H
N B(x)oB(y) :mye
z * a(y) cxeH,yeG

a(z) xy rxeG,yeH.
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Since G and H are groups, the system (G U H, <>§) has an identity element (namely,
eo) and preserves inverses. However, it is not associative in general, since for example if
zeG and v,y € H, then

(zOhy) Oay =B(a(z)) o By) o B,
which need not equal
2O (yoay) =zoB(y) o BY).

In fact, associativity holds if and only if 8 = o !. Hence, (G U H, OP) is a group if and
only if 8= ™!, in which case we have seen that

(GUH, 0 )= (GUH,Go) = (G, 0) x Co.
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