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A correspondence induced by an involution

centralizing an index-two subgroup

Louis Rubin

Abstract. Given groups (G, ○) and (H,⋆) with disjoint support, we remark that the
isomorphisms (G, ○) → (H,⋆) are in one-to-one correspondence with certain group oper-
ations on G ∪H extending the operation of G and interacting nicely with the structure
on H. This correspondence follows from some general properties of groups admitting an
index-two subgroup N with an involution x /∈ N which centralizes N .

1. Introduction and main result

Let (G, ○) and (H,⋆) be groups with disjoint support. In this note, we highlight a
one-to-one correspondence between the isomorphisms (G, ○) → (H,⋆) and certain groups(G ∪ H,⊚) such that ⊚ extends ○ and interacts nicely with the structure on H. The
precise statement is as follows.

Theorem 1.1. Let (G, ○) and (H,⋆) be groups such that G∩H = ∅. Then the (possibly
empty) set of all group isomorphisms f ∶ G→H is in one-to-one correspondence with the
set of all group operations ⊚ on G ∪H satisfying the following properties:

(i) ⊚ extends ○ .

(ii) The identity element e⋆ of (H,⋆) has order two in (G ∪ H,⊚) and lies in the
centralizer of G in (G ∪H,⊚).

(iii) For all h,h′ ∈H, we have h ⋆ h′ = h⊚ e⋆ ⊚ h′.
The proof of Theorem 1.1 is elementary, incorporating some constructions appearing

in a previous work of the author, namely [4]. (Note: certain passages from this reference
are recycled here verbatim, for the sake of self-containment.) As we shall see, the theorem
follows from general properties of groups admitting an index-two subgroup N and an
involution x /∈ N which centralizes N . Our techniques resemble the well-known “group
doubling” constructions from the theory of Moufang loops; see [1] and [2]. We conclude
this note with some related observations concerning a peculiar nonassociative operation.

Before proceeding, let us specify our notation: In the group (X, ○), e○ denotes the
identity, and x○ denotes the inverse of x ∈X. We shall abuse notation slightly: If G ⊆X
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is closed under the operation ○, then we shall denote the algebraic system (G, ○∣G×G)
simply by (G, ○).

We begin with a simple lemma, whose proof is an exercise.

Lemma 1.2. Let (G, ○) be a group, and fix z ∈ G. Define a binary operation △ on G by

x△ y ∶= x ○ z○ ○ y
for all x, y ∈ G. Then the right translation map f ∶ G → G given by f(x) = x ○ z is an
isomorphism (G, ○) → (G,△).
Remark 1.3. The operations ○ and △ in Lemma 1.2 are readily checked to biassociate,
i.e.,

(a ○ b) △ c = a ○ (b△ c) and (a△ b) ○ c = a△ (b ○ c),
for all a, b, c ∈ G. Biassociative operations are isomorphic in fairly generic settings. For
instance, let (X, ○), (X,△) be magmas such that ○ and △ biassociate, and suppose that(X,△) possesses an identity e△. The right translation map f(x) = x ○ e△ is then a
homomorphism:

f(x)△f(y) = (x○e△)△(y○e△) = ((x○e△)△y)○e△ = (x○(e△△y))○e△ = (x○y)○e△ = f(x○y).
In particular, if f is a bijection, then (X, ○) ≅ (X,△). In fact, if ○ and △ are biassociative
group operations on X, then necessarily

x△ y = x ○ e○△ ○ y.
(See [3].)

The following proposition is important for Theorem 1.1.

Proposition 1.4. Let (G, ○) and (H,⋆) be groups such that G ∩H = ∅. Suppose that○ extends to a group operation ⊚ on G ∪H such that for all h,h′ ∈ H, we have h ⋆ h′ =
h⊚ e⊚⋆ ⊚ h′. Then (G, ○) ≅ (H,⋆).
Proof. Define a binary operation ⍟ on G ∪H by

x⍟ y ∶= x⊚ e⊚⋆ ⊚ y.
By the lemma, (G∪H,⊚) ≅ (G∪H,⍟) via the translation map f ∶ G∪H → G∪H given
by f(x) = x ⊚ e⋆. Since ⍟ extends ⋆, it suffices to show that f(G) = H. To see that
f(G) ⊆ H, let g ∈ G, and assume that g ⊚ e⋆ = y ∈ G. One readily observes that e⊚ = e○,
and it follows that g⊚ = g○ ∈ G. Therefore, we obtain e⋆ = g

○ ⊚ y = g○ ○ y ∈ G ∩H, a
contradiction. Now, the inverse of f is the map f−1(x) = x⊚e⊚⋆ = x⍟e○, and a symmetric
argument gives f−1(H) ⊆ G, as needed.

Remark 1.5. If (X, ○) is a group and N is a proper subgroup, then we may fix x ∈ X
with x /∈ N and define a binary operation △ on X by a△ b = a ○ x○ ○ b. The right coset of
N containing x, namely N ○ x, is closed under △. In fact,

(N, ○) ≅ (N ○ x,△). (1)
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This follows, for instance, from Lemma 1.2; the right translation map f ∶ X → X given
by a ↦ a ○ x is an isomorphism (X, ○) → (X,△), but f restricted to N gives a bijection
N → N ○ x. Now, Proposition 1.4 may be interpreted as a consequence of (1). Indeed,
after defining the operation ⍟, we get that (G,⊚) ≅ (G⊚ e⋆,⍟) via the translation map
f(a) = a⊚ e⋆. It then suffices to argue that the coset G⊚ e⋆ equals H. (So, G has index
two as a subgroup of (G ∪H,⊚).)

The next proposition supplies the converse of Proposition 1.4.

Proposition 1.6. Let (G, ○) and (H,⋆) be groups with disjoint support. Suppose that
f ∶ (G, ○) → (H,⋆) is an isomorphism. Then ○ extends to a group operation ⊚ on G ∪H
such that for all h,h′ ∈H, we have h ⋆ h′ = h⊚ e⊚⋆ ⊚ h′.
Proof. Extend ○ to the binary operation ◇f on G ∪H given by

x◇f y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x ○ y if x, y ∈ G
f−1(x) ○ f−1(y) if x, y ∈H
x ⋆ f(y) if x ∈H,y ∈ G
f(x) ⋆ y if x ∈ G,y ∈H.

We claim that (G∪H,◇f) is a group. To see this, consider the direct product (G, ○)×C2,
where C2 = {0,1} is a group of order 2. One can check that the mapping

φ ∶ G ×C2 → G ∪H
given by

φ(x, i) = { x if i = 0
f(x) if i = 1

is a structure-preserving bijection between G ×C2 and (G ∪H,◇f), and since G ×C2 is
a group, (G ∪H,◇f) must be as well. (The author initially proved that (G ∪H,◇f)
is a group directly from the group axioms. Amitai Yuval provided this more insightful
argument via [5]). Now, take ⊚ = ◇f . Notice that the inverse of e⋆ in the group(G ∪H,◇f) is just e⋆. Thus, for h,h′ ∈H, we calculate

h⊚ e⊚⋆ ⊚ h′ = h◇f e⋆◇f h
′
= (f−1(h) ○ f−1(e⋆)) ◇f h

′
= f

−1(h) ◇f h
′
= h ⋆ h′,

completing the proof.

Hence, we have the following corollary, which refines the result of [4].

Corollary 1.7. Let (G, ○) and (H,⋆) be groups with disjoint support. Then (G, ○) ≅(H,⋆) if and only if ○ extends to a group operation ⊚ on G∪H such that for all h,h′ ∈H,
we have h ⋆ h′ = h⊚ e⊚⋆ ⊚ h′.
Remark 1.8. Given that the algebraic system (G∪H,◇f) from the proof of Proposition
1.6 is a group, it is worth noting how the isomorphism (G ∪ H,◇f) ≅ (G, ○) × C2 is
a particular instance of a general group-theoretic principle. To see this, consider the
following setup: X is a group (whose operation we shall denote simply by juxtaposition).
Let N be a subgroup of X of index two. Suppose there exists x ∈ X of order two with
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x /∈ N . Assume further that x lies in the centralizer of N in X. We may then conclude
that X ≅ N ×C2. Indeed, the mapping φ ∶ N ×C2 →X defined by

φ(n, i) = { n if i = 0
nx if i = 1

is bijective. It is also a homomorphism; for instance, if n1, n2 ∈ N , then we have

φ[(n1,1)(n2,1)] = φ(n1n2,0) = n1n2 = n1n2x
2
= (n1x)(n2x) = φ(n1,1)φ(n2,1).

Now, G is an index-two subgroup of (G∪H,◇f) and e⋆ /∈ G, but this element commutes
with each element of G in the operation ◇f . Moreover, the order of e⋆ with respect to
this operation is two. Taking X = (G ∪H,◇f), N = G, and x = e⋆ yields the desired
isomorphism.

On a related note, we have the following proposition.

Proposition 1.9. Let (X, ○) be a group and N an index-two subgroup. Let x ∈ X with
x /∈ N . Then there is a binary operation ●x on X such that (X, ●x) ≅ (N, ○) ×C2.

Proof. The bijection φ ∶ N ×C2 →X given by

φ(n, i) = { n if i = 0
n ○ x if i = 1

induces a group operation ●x on X. Explicitly, for a, b ∈X, we have a ●x b =
{n1 ○ n2 if (a = n1 ∈ N and b = n2 ∈ N) OR (a = n1 ○ x ∈ N ○ x and b = n2 ○ x ∈ N ○ x)
n1 ○ n2 ○ x if (a = n1 ∈ N and b = n2 ○ x ∈ N ○ x) OR (a = n1 ○ x ∈ N ○ x and b = n2 ∈ N),

and φ is an isomorphism (N, ○) ×C2 → (X, ●x).
The next theorem shows that when the element x from Proposition 1.9 has order

two in (X, ○) and centralizes N , we recover the original group operation from ●x.

Theorem 1.10. Let (X, ○) be a group with a subgroup N of index two. Fix x ∈ X with
x /∈ N . Suppose further that x has order two in (X, ○) and belongs to the centralizer of
N in this group. Then ●x = ○.
Proof. Let a, b ∈X. If a = n1 ∈ N and b = n2 ∈ N , then surely a ●x b = a ○ b. Suppose that
a, b both belong to the coset N ○ x, say, a = n1 ○ x and b = n2 ○ x. We have

a ●x b = n1 ○ n2 = (n1 ○ n2) ○ e○ = (n1 ○ n2) ○ (x ○ x) = (n1 ○ x) ○ (n2 ○ x) = a ○ b,
as x commutes n2. Hence, a ●x b = a ○ b in this case as well. Continuing, assume that
a = n1 ○ x ∈ N ○ x and b = n2 ∈ N . Then

a ●x b = n1 ○ n2 ○ x = (n1 ○ x) ○ n2 = a ○ b.
Finally, if a = n1 ∈ N and b = n2 ○x ∈ N ○x, we have a ●x b = n1 ○ (n2 ○x) = a ○ b. It follows
that ●x = ○, as needed.

We are now ready to derive Theorem 1.1 as a consequence of Theorem 1.10.
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Proof. Let
I(G,H) ∶= {f ∶ G→H ∣f is a group isomorphism}

and let E(G,H) denote the collection of all group operations ⊚ on G ∪H satisfying (i),
(ii), and (iii) in the statement of the theorem. If f ∈ I(G,H), then the operation ◇f

from Proposition 1.6 satisfies conditions (i), (ii), and (iii). Therefore, we may define a
map ψ ∶ I(G,H)→ E(G,H) by

ψ(f) =◇f .

We shall prove that ψ is bijective. Injectivity is straightforward; assume that f1, f2 ∈
I(G,H) with ψ(f1) = ψ(f2). Then ◇f1 = ◇f2 . Hence, for any g ∈ G, we have g◇f1 e⋆ =

g◇f2 e⋆. In other words,

f1(g) = f1(g) ⋆ e⋆ = g◇f1 e⋆ = g◇f2 e⋆ = f2(g) ⋆ e⋆ = f2(g),
so f1 = f2. For surjectivity, let ⊚ ∈ E(G,H)
be arbitrary. We have seen (via Proposition 1.4) that the right translation map f ∶ G→H

given by f(g) = g ⊚ e⋆ is an isomorphism. We claim that ⊚ = ◇f . Notice how we are in
the setup of Theorem 1.10 with (X, ○) = (G ∪H,⊚), N = G, and x = e⋆. Using (i), (ii),
and (iii), it is straightforward to verify that the group operation ◇f may be reformulated
as a◇f b =

{g1⊚ g2 if (a = g1 ∈G and b = g2 ∈G) or (a = g1⊚ e⋆ ∈G⊚ e⋆ and b = g2⊚ e⋆ ∈G⊚ e⋆)
g1⊚ g2 ⊚ e⋆ if (a = g1 ∈G and b = g2⊚ e⋆ ∈G⊚ e⋆) or (a = g1⊚ e⋆ ∈ G⊚ e⋆ and b = g2 ∈G),

which is precisely the operation ●e⋆ . For example, in the case when a = g1 ⊚ e⋆ ∈ G⊚ e⋆
and b = g2 ∈ G, we have

(g1⊚e⋆)◇f g2 = (g1⊚e⋆)⋆f(g2) = (g1⊚e⋆)⋆(g2⊚e⋆) = (g1⊚e⋆)⊚e⋆⊚(g2⊚e⋆) = g1⊚g2⊚e⋆.
By Theorem 1.10, we get that ⊚ =◇f , so ψ is surjective. Theorem 1.1 is obtained.

Remark 1.11. Theorem 1.1 and Corollary 1.7 are easily adapted to the case when G

and H are not necessarily disjoint sets. Simply view {0} and {1} as trivial groups, and
apply the results to the disjoint union

G ⊔H ∶= (G × {0}) ∪ (H × {1}).

2. Closing remarks

In closing, we report an interesting family of nonassociative (that is, not necessarily
associative) operations, which is obtained by generalizing the operation ◇f . The setup
is as follows: Let (G, ○) and (H,⋆) be groups and suppose that α ∶ G→H and β ∶H → G

are two group homomorphisms. For simplicity, assume that G and H are disjoint sets.
(If not, we can form the disjoint union and proceed similarly.) Define a binary operation◇β

α on G ∪H by

x◇β
α y =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x ○ y ∶ x, y ∈ G
β(x) ○ β(y) ∶ x, y ∈H
x ⋆ α(y) ∶ x ∈H,y ∈ G
α(x) ⋆ y ∶ x ∈ G,y ∈H.
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Since G and H are groups, the system (G ∪ H,◇β
α) has an identity element (namely,

e○) and preserves inverses. However, it is not associative in general, since for example if
x ∈ G and y, y′ ∈H, then

(x◇β
α y)◇β

α y
′
= β(α(x)) ○ β(y) ○ β(y′),

which need not equal
x◇β

α (y◇β
α y

′) = x ○ β(y) ○ β(y′).
In fact, associativity holds if and only if β = α−1. Hence, (G ∪H,◇β

α) is a group if and
only if β = α−1, in which case we have seen that

(G ∪H,◇α−1

α ) = (G ∪H,◇α) ≅ (G, ○) ×C2.
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