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The structures of full terms preserving a partition

under different operations

Prapairat Junlouchai, Thodsaporn Kumduang
and Chortip Siwapornanan

Abstract. Full terms that preserve a partition in a finite set are extension of full terms,

which can be applied to classify algebras of the same type into subclasses known as the

full solid variety preserving a partition. In this paper, two associative binary operations

induced by a superassociative superposition defined on the set of full terms preserving a

partition are given. As a generalization, sets of such full terms and their binary operations

are also discussed.

1. Introduction and preliminaries

One of the exceptional classes of terms is a full term introduced in [6]. To
achieve this, let n be a fixed positive integer, I an index set and τn a type of
operation symbols of arity n, that is τn = (ni)i∈I where ni = n for all i ∈ I.
We recall from [6] that the set Tn of all mappings α on a finite set n̄ :=
{1, . . . , n} and a binary composition of functions forms a semigroup known
as a transformation semigroup. Thus, an n-ary full term of type τn is induc-
tively defined by the following: (1) fi(xα(1), . . . , xα(n)) is an n-ary full term
of type τn if α ∈ Tn and (2) if t1, . . . , tn are n-ary full terms of type τn and fi
is an operation symbol of type τn, then fi(t1, . . . , tn) is an n-ary full term of
type τn. Hence, the set of all n-ary full term of type τn, denoted by WF

τn
(Xn),

is closed under the following superposition Sn : (WF
τn
(Xn))

n+1 → WF
τn
(Xn)

which is given by the following : Sn(t, t1, . . . , tn) = fi(tα(1), . . . , tα(n)) where
t = fi(xα(1), . . . , xα(n)) for any mapping α in Tn and Sn(t, t1, . . . , tn) =

2020 Mathematics Subject Classification: 08A02, 08A05, 20M10, 20M20
Keywords: full term, full term preserving a partition, superassociativity, operation
This work was supported by Rajamangala University of Technology Rattanakosin,
Thailand.



262 P. Junlouchai, T. Kumduang and C. Siwapornanan

fi (S
n(s1, t1, . . . , tn), . . . , S

n(sn, t1, . . . , tn)) if t = fi(s1, . . . , sn). As a con-
sequence,

(
WF

τn
(Xn), S

n
)

has been formed. This algebra always plays a key
role in the theory of full solid variety. For this importance, see [1, 3].

One of the generalizations of terms is a set of terms. In fact, sets of terms
are called tree languages, see [1, 4, 12]. The symbol P (WF

τn
(Xn)) denotes

the set of all subsets or tree languages of all n-ary full terms of type τn. For
instance, we see that {f(x1, x2, x3)} and {g(x2, x2, x2), f(x1, x1, x1)} are
examples of tree languages in the power set P (WF

(3,3)(X3)). On the other

hand, a set {g(x2, f(x2, x3, x1), x3)} is not a tree language of ternary full
terms of type (3, 3). To compute the result of tree languages of full terms in
the theory of full hyperidentities, in [16], a non-deterministic superposition
operation on the set P (WF

τn
(Xn)) was defined. By the definition, a mapping

Ŝn : P (WF
τn
(Xn))

n+1 → P (WF
τn
(Xn)) is defined as follows:

(1) Ŝn
(
{fi(xα(1), . . . , xα(n))}, B1, . . . , Bn

)
= {fi(rα(1), . . . , rα(n)) |

rα(j) ∈ Bα(j), j = 1, . . . , n},

(2) Ŝn ({fi(t1, . . . , tn)}, B1, . . . , Bn)
= {fi(r1, . . . , rn) | rj ∈ Ŝn ({tj}, B1, . . . , Bn) , j = 1, . . . , n},

(3) if |A| > 1, then Ŝn(A,B1, . . . , Bn) = ∪a∈A{Ŝ
n({a}, B1, . . . , Bn)},

(4) Ŝn(A,B1, . . . , Bn) = ∅ if A = ∅ or Bj = ∅ for some j.

Recently, subclasses of full terms are given using different transforma-
tions. For example, in [18], a semigroup S(n̄, Y ) = {β ∈ Tn | β(Y ) ⊆ Y } of
transformations on a finite set n̄ leaving Y ⊆ n̄ invariant was applied to set
a new term such that each pair of these terms was extended to be S(n̄, Y )-
hyperidentity of a variety V . Binary operations, + and ∗, defined on this
set are presented, which lead to construct semigroups of full terms with an
invariant subset. In [17], the theorem that establishes the freeness of an
algebra consisting of the set of all terms generated by transformations with
a restricted range and an (n+1)-ary operation satisfying certain equational
laws has been mentioned.

Recall from [15] that terms defined by transformations preserving a par-
tition are presented and their structures are established. Actually, let P be
a partition on a finite set n̄ and consider the set

T (n̄,P) = {f ∈ Tn | ∀Ai ∈ P, ∃Aj ∈ P, f(Ai) ⊆ Aj}.
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It is known that T (n̄,P) is a subsemigroup of Tn. Hence, an n-ary full term
preserving a partition P on n̄ of type τn is inductively defined in [15] as
follows: (1) fi(xα(1), . . . , xα(n)) is an n-ary full term preserving a partition
P on n̄ of type τn if α ∈ T (n̄,P), and (2) if t1, . . . , tn are n-ary full terms
preserving a partition P on n̄ of type τn, then fi(t1, . . . , tn) so is. Let

W
T (n̄,P)
τn (Xn) be the set of all n-ary full terms preserving a partition P on

n̄ of type τn. Moreover, the set W
T (n̄,P)
τn (Xn) is closed under the operation

Sn defined for the set of full terms.
For a superassociative algebra, also called a Menger algebra, we refer to

a pair of a nonempty set with an operation ◦ of type (n+ 1) satisfying the
superassociative law, i.e.,

◦ (◦(a, b1, . . . , bn), c1, . . . , cn) = ◦ (a, ◦(b1, c1, . . . , cn), . . . , ◦(bn, c1, . . . , cn)) .

Recent developments in superassociative algebras can be found in [2, 7, 8, 9,

10, 11, 14]. It was proved that the sets WF
τn
(Xn) and W

T (n̄,P)
τn (Xn) together

with the superassociative operation Sn form superassociative algebras. Fur-
thermore, the operation Ŝn defined on P (WF

τn
(Xn)) is also superassociative.

In this work, based on the study of T (n̄,P)-full terms described in the
paper [15] and semigroups of full terms with an invariant subset given in
[13], we continue to investigate algebraic properties of full terms preserving
a partition in depth. Thus, the paper is organized as the following: Sec-
tion 2 is devoted to the study of binary operations defined on the set of
full terms preserving a partition, which detemined by the superassociative
operation Sn, and their power sets. We further prove the embeddability of
the semigroups of T (n̄,P)-full terms into the semigroups of tree languages
of T (n̄,P)-full terms. In Section 3, mappings whose images are full terms
preserving a partition and their sets are examined and connections between
these mappings and a non-deterministic full hypersubstitution σnd which
preserves a partition is a mapping that sends any n-ary operation symbol
to a set of full term preserving a partition are described.

2. Binary operations defined on W
T (n̄,P)
τn (Xn)

To enhance understanding, we begin the results in this section with some
examples of full terms preserving a partition of some type.

Example 2.1. Let τ4 = (4, 4) be a type with two quaternary operation
symbols f1 and f2. Let P = {{1, 2}, {3, 4}} be a partition of 4̄. It can be
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seen that

f1(x1, x1, x3, x3), f1(x2, x2, x3, x3), f2(x4, x3, x2, x1), f2(x1, x1, x1, x1)

are elements in the set of W
T (4̄,{{1,2},{3,4}})
τ4 (X4) because

(
1 2 3 4
1 1 3 3

)
,

(
1 2 3 4
2 2 3 3

)
,

(
1 2 3 4
4 3 2 1

)
,

(
1 2 3 4
1 1 1 1

)
belong to T (4̄, {{1, 2}, {3, 4}}).

In other ways,

f1(x1, x3, x2, x4), f2(x1, x4, x2, x3), f1(x1, x3, x2, x2) /∈ W
T (4̄,{{1,2},{3,4}})
τ4 (X4)

since

(
1 2 3 4
1 3 2 4

)
,

(
1 2 3 4
1 4 2 3

)
,

(
1 2 3 4
1 3 2 2

)
/∈ T (4̄, {{1, 2}, {3, 4}}).

We now define two binary operations on W
T (n̄,P)
τn (Xn).

Definition 2.2. The binary operation + : (W
T (n̄,P)
τn (Xn))

2 → W
T (n̄,P)
τn (Xn)

is defined by s+ t = Sn(s, t, . . . , t︸ ︷︷ ︸
n−times

) for all s, t ∈ W
T (n̄,P)
τn (Xn).

Definition 2.3. On the Cartesian product W
T (n̄,P)
τn (Xn)

n, the binary op-
eration ∗ is defined by (s1, . . . , sn) ∗ (t1, . . . , tn) = (Sn(s1, t1, . . . , tn), . . . ,

Sn(sn, t1, . . . , tn)) for all (s1, . . . , sn), (t1, . . . , tn) ∈ W
T (n̄,P)
τn (Xn)

n.

As a consequence, the following theorem is proved.

Theorem 2.4. The following statements are obtained:

(1)
(
W

T (n̄,P)
τn (Xn),+

)
is a semigroup,

(2)
(
W

T (n̄,P)
τn (Xn)

n, ∗
)

is a semigroup,

(3) the semigroup
(
W

T (n̄,P)
τn (Xn),+

)
can be embeddable into

(
W

T (n̄,P)
τn (Xn)

n, ∗
)
.

Proof. We first prove that the statement (1) holds. Let s, t, u be any el-

ements in W
T (n̄,P)
τn (Xn). We have (s + t) + u = Sn(s, t, . . . , t) + u =

Sn(Sn(s, t, . . . , t), u, . . . , u) = Sn(s, Sn(t, u, . . . , u), . . . , Sn(t, u, . . . , u)) =
s + Sn(t, u, . . . , u) = s + (t + u) since the operation Sn satisfies the su-

perassociativity. As a result,
(
W

T (n̄,P)
τn (Xn),+

)
is a semigroup. For the
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statement (2), let (s1, . . . , sn), (t1, . . . , tn), (u1, . . . , un) ∈ W
T (n̄,P)
τn (Xn)

n.
We have(
(s1, . . . , sn) ∗ (t1, . . . , tn)

)
∗ (u1, . . . , un) = (s1, . . . , sn) ∗

(
(t1, . . . , tn) ∗ (u1, . . . , un)

)

because the operation Sn satisfies the superassociative law. Finally, to prove

the statement (3), we define the mapping δ : W
T (n̄,P)
τn (Xn) → W

T (n̄,P)
τn (Xn)

n

by δ(t) = (t, . . . , t︸ ︷︷ ︸
n−times

) for all t ∈ W
T (n̄,P)
τn (Xn). To show that δ is a ho-

momorphism, we let s, t ∈ W
T (n̄,P)
τn (Xn). Then, by the definition, we

have δ(s + t) = (s+ t, . . . , s+ t︸ ︷︷ ︸
n−times

) =
(
Sn(s, t, . . . , t), . . . , Sn(s, t, . . . , t)

)
=

(s, . . . , s) ∗ (t, . . . , t) = δ(s) ∗ δ(t). It is obvious that δ is an injection. As

a consequence, we can say that
(
W

T (n̄,P)
τn (Xn),+

)
can be embedded into

(
W

T (n̄,P)
τn (Xn)

n, ∗
)
.

We now focus on subsets of Wτn(Xn). Normally, the set of all subsets

of full terms preserving a partition is denoted by P (W
T (n̄,P)
τn (Xn)) and its

elements are called tree languages that preserve a partition.

Example 2.5. Let τ4 = (4, 4) be a type with quaternary operation symbols

f1 and f2. Let P = {{1, 2}, {3, 4}} be a partition of 4̄. Since

(
1 2 3 4
1 1 3 3

)
,

(
1 2 3 4
2 2 3 3

)
,

(
1 2 3 4
4 3 2 1

)
,

(
1 2 3 4
1 1 1 1

)
are in T (4̄, {{1, 2}, {3, 4}}).

Then we have that ∅, {f1(x1, x1, x3, x3)}, {f2(x2, x2, x3, x3)},
{f1(x4, x3, x2, x1)}, {f1(x1, x1, x3, x3), f2(x2, x2, x3, x3)} , {f1(x4, x3, x2, x1),
f2(x1, x1, x1, x1)} and {f1(x1, x1, x3, x3), f2(x1, x1, x1, x1), f1(x4, x3, x2, x1)}

are elements in the set P (W
T (4̄,P)
τ4 (X4)). On the other hand, we see that

{f1(x1, x3, x2, x4)}, {f2(x1, x4, x2, x3)}, {f1(x1, x3, x2, x2)} /∈ P (W
T (4̄,P)
τ4 (X4))

because

(
1 2 3 4
1 3 2 4

)
,

(
1 2 3 4
1 4 2 3

)
,

(
1 2 3 4
1 3 2 2

)
/∈ T (4̄, {{1, 2}, {3, 4}}).

Construction of the operation of type (n+1) on the set P (W
T (n̄,P)
τn (Xn))

can be naturally defined by the following.

Definition 2.6. Let n be a positive integer and A,A1, . . . , An ∈ P (W
T (n̄,P)
τn (Xn)).

Then we define the operation Ṡn on P (W
T (n̄,P)
τn (Xn)) by
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Ṡn(A,A1, . . . , An)=





{Sn(t, t1, . . . , tn) | t ∈ A, tj ∈ Aj , 1 ≤ j ≤ n}

if all of the sets A,A1, . . . , An are not empty,

∅ if at least one of the sets A,A1, . . . , An is empty.

Let us consider the following example.

Example 2.7. Let τ3 = (3, 3) be a type with two ternary operation symbols

f1 and f2. On the set W
T (3̄,{{1,2},{3}})
(3,3) (X3), we let A = {f1(x1, x2, x3)}, A1 =

{f1(x2, x2, x1)}, A2 = {f2(x3, x3, x2)}, A3 = {f2(x3, x3, x3), f2(x1, x1, x1)}.
Then we have

Ṡ3(A,A1, A2, A3) = Ṡ3({f1(x1, x2, x3)}, {f1(x2, x2, x1)}, {f2(x3, x3, x2)},

{f2(x3, x3, x3), f2(x1, x1, x1)})

=
{
S3(f1(x1, x2, x3), f1(x2, x2, x1), f2(x3, x3, x2), f2(x3, x3, x3))

}

∪
{
S3(f1(x1, x2, x3), f1(x2, x2, x1), f2(x3, x3, x2), f2(x1, x1, x1))

}

= {f1(f1(x2, x2, x1), f1(x2, x2, x1), f2(x3, x3, x3))}

∪ {f1(f1(x2, x2, x1), f1(x2, x2, x1), f2(x1, x1, x1))}

= {f1(f1(x2, x2, x1), f1(x2, x2, x1), f2(x3, x3, x3)),

f1(f1(x2, x2, x1), f1(x2, x2, x1), f2(x1, x1, x1))}.

A relationship between the operations Ṡn and Ŝn is now explained.

Proposition 2.8. Let n be a positive integer and A,A1, . . . , An ∈ P (W
T (n̄,P)
τn (Xn)).

Then Ṡn (A,A1, . . . , An) ⊆ Ŝn (A,A1, . . . , An).

Proof. We first show by induction on a characteristic of an n-ary full term
t preserving a partition that Ŝn ({t}, {a1}, . . . , {an}) ⊆ Ŝn ({t}, A1, . . . , An)
for all ai ∈ Aj , i = 1, . . . , n. Suppose that α is a mapping in T (n̄,P). If
t = fi

(
xα(1), . . . , xα(n)

)
, then we obtain

Ŝn
(
{fi

(
xα(1), . . . , xα(n)

)
}, {a1}, . . . , {an}

)

=
{
fi
(
rα(1), . . . , rα(n)

)
| rα(j) ∈ {aα(j)}, j = 1, . . . , n

}

=
{
fi
(
aα(1), . . . , aα(n)

)}

⊆
{
fi
(
pα(1), . . . , pα(n)

)
| pα(j) ∈ Aα(j), ∀j = 1, . . . , n

}

= Ŝn
(
{fi

(
xα(1), . . . , xα(n)

)
}, A1, . . . , An

)
.

Assume that t = fi (t1, . . . , tn) and our claimed is satisfied for t1, . . . , tn.
Then we get
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Ŝn ({fi (t1, . . . , tn)}, {a1}, . . . , {an})

= {fi (r1, . . . , rn) | rj ∈ Ŝ({tj}, {a1}, . . . , {an}), for all j = 1, . . . , n}

⊆ {fi (r1, . . . , rn) | rj ∈ Ŝ({tj}, A1, . . . , An), for all j = 1, . . . , n}

= Ŝn ({fi (t1, . . . , tn)}, A1, . . . , An) .

From these preparations, we conclude that

Ṡn (A,A1, . . . , An) =
{
Ŝn (a, a1, . . . , an) |a ∈ A, aj ∈ Aj , ∀j = 1, . . . , n

}

= ∪a∈AŜ
n ({a}, {a1}, . . . , {an})

⊆ ∪a∈AŜ
n ({a}, A1, . . . , An)

= Ŝn (A,A1, . . . , An) .
This completes a proof.

We remark that in general the operation Ṡn does not satifies the su-
perassociative law as the following counterexample. Following Example

2.7, we now consider the sets Ṡ3
(
A, Ṡ3(A1, A2, A1, A3), Ṡ

3(A2, A2, A1, A3),

Ṡ3(A3, A2, A1, A3)
)

and Ṡ3
(
Ṡ3(A,A1, A2, A3), A2, A1, A3

)
. It follows from

a direct calculation by the definition of the operation Ṡn and Sn that these
two sets are different.

Then we have:

Theorem 2.9. The set P (W
T (n̄,P)
τn (Xn)) is closed under the non-deterministic

superposition Ŝn.

Proof. For this, we let A,B1, . . . , Bn ∈ P (W
T (n̄,P)
τn (Xn)). We must show

that Ŝn (A,B1, . . . , Bn) ∈ P (W
T (n̄,P)
τn (Xn)). We will consider the following

3 cases.
Case 1 : If at least one of A,B1, . . . , Bn is an empty set, then

Ŝn (A,B1, . . . , Bn) = ∅. Thus Ŝn (A,B1, . . . , Bn) ∈ P (W
T (n̄,P)
τn (Xn)).

Case 2 : Assume that A is a one element set.
Case 2.1 : If A = {fi

(
xα(1), . . . , xα(n)

)
}, where α ∈ T (n̄,P), then

Ŝn
(
{fi

(
xα(1), . . . , xα(n)

)
}, B1, . . . , Bn

)
= {fi

(
rα(1), . . . , rα(n)

)
| rα(j) ∈ Bα(j),

j = 1, . . . , n} belongs to the set P (W
T (n̄,P)
τn (Xn)) because Bα(j) elements in

P (W
T (n̄,P)
τn (Xn)) for all j = 1, . . . , n.

Case 2.2 : If A = {fi (t1, . . . , tn)} for each Ŝn ({tj}, B1, . . . , Bn) ele-

ments in P (W
T (n̄,P)
τn (Xn)). Thus Ŝn ({fi (t1, . . . , tn)}, B1, . . . , Bn) =

{fi(r1, . . . , rn) | rj ∈ Ŝn ({tn}, B1, . . . , Bn) , j = 1, . . . , n} is in the set

P (W
T (n̄,P)
τn (Xn)).
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Case 3 : Let a ∈ A. Since for each Ŝn ({a}, B1, . . . , Bn) ∈ P (W
T (n̄,P)
τn (Xn)),

thus Ŝn (A,B1, . . . , Bn) =
⋃

a∈A

{
Ŝn ({a}, B1, . . . , Bn)

}
∈ P (W

T (n̄,P)
τn (Xn)).

Therefore, we conclude that the power set P (W
T (n̄,P)
τn (Xn)) is closed under

the non-deterministic superposition Ŝn.

On the set P (W
T (n̄,P)
τn (Xn)), two binary operation are defined by the

following:

Definition 2.10. Let A and B be two elements of P (W
T (n̄,P)
τn (Xn)). Then

we define the binary operation +̂ on P (W
T (n̄,P)
τn (Xn)) by

A+̂B = Ŝn(A,B, . . . , B︸ ︷︷ ︸
n-times

).

Definition 2.11. Let (A1, . . . , An) and (B1, . . . , Bn) be elements of the

Cartesian product P
(
W

T (n̄,P)
τn (Xn)

)n

. Then the binary operation ∗̂ on

P
(
W

T (n̄,P)
τn (Xn)

)n

is defined by

(A1, . . . , An)∗̂(B1, . . . , Bn) =
(
Ŝn(A1, B1, . . . , Bn), . . . , Ŝ

n(An, B1, . . . , Bn)
)
.

Then we prove:

Theorem 2.12. The following statements are obtained:

(1)
(
P
(
W

T (n̄,P)
τn (Xn)

)
, +̂

)
is a semigroup,

(2)
(
P
(
W

T (n̄,P)
τn (Xn)

)n

, ∗̂
)

is a semigroup,

(3)
(
P
(
W

T (n̄,P)
τn (Xn)

)
, +̂

)
is embeddable into

(
P
(
W

T (n̄,P)
τn (Xn)

)n

, ∗̂
)
.

Proof. First, we will show that the statement (1) holds. Let A,B,C be

elements in P
(
W

T (n̄,P)
τn (Xn)

)
. Then we have that

(
A+̂B

)
+̂C = Ŝn (A,B, . . . , B) +̂C = Ŝn

(
Ŝn (A,B, . . . , B) , C, . . . , C

)
=

Ŝn
(
A, Ŝn (B,C, . . . , C) , . . . , Ŝn (B,C, . . . , C)

)
= A+̂

(
Ŝn (B,C, . . . , C)

)
=

A+̂
(
B+̂C

)
. Hence,

(
P
(
W

T (n̄,P)
τn (Xn)

)
, +̂

)
is a semigroup. To prove that

the statement (2) holds, we let (A1, . . . , An) , (B1, . . . , Bn) , (C1, . . . , Cn) ∈

P
(
W

T (n̄,P)
τn (Xn)

)n

. Since a non-deterministic superposition operation is
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superassociative, we obtain that
(
(A1, . . . , An) ∗̂ (B1, . . . , Bn)

)
∗̂ (C1, . . . , Cn)

and (A1, . . . , An) ∗̂
(
(B1, . . . , Bn) ∗̂ (C1, . . . , Cn)

)
are identical. Finally, we

prove that (3) holds. We define the mapping γ : P
(
W

T (n̄,P)
τn (Xn)

)
→

P
(
W

T (n̄,P)
τn (Xn)

)n

by γ(A) = (A, . . . , A︸ ︷︷ ︸
n-times

) for all A ∈ P
(
W

T (n̄,P)
τn (Xn)

)
.

Obviously, γ is an injective mapping. It easy to see that γ
(
A+̂B

)
=

γ(A)∗̂γ(B). Thus γ is a homomorphism. Therefore, the semigroup(
P
(
W

T (n̄,P)
τn (Xn)

)
, +̂

)
is embeddable into

(
P
(
W

T (n̄,P)
τn (Xn)

)n

, ∗̂
)
.

The following theorem gives connection between structures of full terms
preserving a partition under different operations and their extensions.

Theorem 2.13. The following statements are valid:

(1)
(
W

T (n̄,P)
τn (Xn), S

n
)

is embeddable into
(
P
(
W

T (n̄,P)
τn (Xn)

)n

, Ŝn
)
,

(2)
(
W

T (n̄,P)
τn (Xn),+

)
is embeddable into

(
P
(
W

T (n̄,P)
τn (Xn)

)
, +̂

)
,

(3)
(
W

T (n̄,P)
τn (Xn)

n, ∗
)

is embeddable into
(
P
(
W

T (n̄,P)
τn (Xn)

)n

, ∗̂
)
.

Proof. In order to show that the statement (1) holds, we define the mapping

µ : W
T (n̄,P)
τn (Xn) → P

(
W

T (n̄,P)
τn (Xn)

)
by µ(t) = {t} for all t ∈ W

T (n̄,P)
τn (Xn).

Clearly, µ is an injective mapping. Moreover, it has a homomorphism
property, i.e., µ (Sn(t, s1, . . . , sn)) = Ŝn (µ(t), µ(s1), . . . , µ(sn)). We give
a proof by induction of the complexity of t. If t = fi

(
xα(1), . . . , xα(n)

)
and

α ∈ T (n̄,P), we get that

µ
(
Sn(fi

(
xα(1), . . . , xα(n)

)
, s1, . . . , sn)

)

= µ
(
fi
(
sα(1), . . . , sα(n)

))

=
{
fi
(
sα(1), . . . , sα(n)

)}

=
{
fi
(
rα(1), . . . , rα(n)

)
|rα(j) ∈ {sα(j)}, j = 1, . . . , n

}

= Ŝn
({

fi
(
xα(1), . . . , xα(n)

)}
, {s1}, . . . , {sn}

)

= Ŝn
(
µ
(
fi
(
xα(1), . . . , xα(n)

))
, µ(s1), . . . , µ(sn)

)
.

If t = fi (t1, . . . , tn) and assume that for each tj , j = 1, . . . , n, the statement
is satisfied, then
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µ (Sn(fi (t1, . . . , tn) , s1, . . . , sn))
= µ (fi (S

n(t1, s1 . . . , sn), . . . , S
n(tn, s1 . . . , sn)))

= {fi (S
n(t1, s1 . . . , sn), . . . , S

n(tn, s1 . . . , sn))}

=
{
fi (r1, . . . , rn) |rj ∈ Ŝn ({tj}, {s1}, . . . , {sn})

}

= Ŝn ({fi (t1, . . . , tn)} , {s1}, . . . , {sn})

= Ŝn (µ(fi (t1, . . . , tn)), µ(s1), . . . , µ(sn)).

Thus, µ is a monomorphism. Therefore, the superassociative
(
W

T (n̄,P)
τn (Xn), S

n
)

is embeddable into
(
P
(
W

T (n̄,P)
τn (Xn)

n
)
, Ŝn

)
. Next, to prove the state-

ment (2), we define the mapping λ : W
T (n̄,P)
τn (Xn) → P

(
W

T (n̄,P)
τn (Xn)

)
by

λ(t) = {t} for all t ∈ W
T (n̄,P)
τn (Xn). Obviously, λ is an injective mapping.

Furthermore, it is not difficult to see that λ(s + t) = λ(s)+̂λ(t). Finally,
we prove that (3) holds. Let (t1, . . . , tn) be n-tuple of full terms that pre-

serve a partition in W
T (n̄,P)
τn (Xn)

n. The mapping β : W
T (n̄,P)
τn (Xn)

n →

P
(
W

T (n̄,P)
τn (Xn)

)n

is defined by β ((t1, . . . , tn)) = ({t1}, . . . , {tn}). Obvi-

ously, β is an injective mapping. It follows from the statement (1) that β
is a homomorphism.

3. Mappings whose images belong to W
T (n̄,P)
τn (Xn)

This section aims to apply the notions of full terms preserving a partition
and their languages to construct a class of equations in an additional step.

Recall from [15] that full hypersubstitution σ that preserves a partition

on a finite set n̄ is a mapping which taken from {fi | i ∈ I} to W
T (n̄,P)
τn (Xn).

For instance, let τ3 = (3, 3) with the corresponding ternary operation sym-
bols f1 and f2. If σ1(f1) = f2(x1, x3, x2) and σ2(f2) = f1(x3, x3, x1), then
both σ1 and σ2 belong to the set HypT (3̄,{{1,2},{3}})(τ3). In this situation,
the notation σt stands for σ which takes operation symbols to a term t.

On the set HypT (n̄,P)(τn), it is natural to define the binary operation
+h by

(σ1 +h σ2)(fi) = Sn(σ1(fi), σ2(fi), . . . , σ2(fi)︸ ︷︷ ︸
n−times

)

for every σ1, σ2 ∈ HypT (n̄,P)(τn).
Following the paper [16], a non-deterministic full hypersubstitution σnd

was given. Infact, it is a mapping of the form σnd : {fi|i ∈ I} → P (WF
τn
(Xn)).

Thus, we restrict our attention to the subset P (W
T (n̄,P)
τn (Xn)) of P (WF

τn
(Xn)).
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Indeed, a non-deterministic full hypersubstitution σnd which preserves a
partition is a mapping σ that sends any n-ary operation symbol to a set of

full term preserving a partition. By the symbol Hyp
T (n̄,P)
nd (τn), we denote

the set of all such mappings. Moreover, by σnd
A we mean σnd which sends

fi to a subset A of P (W
T (n̄,P)
τn (Xn)).

Using the non-deterministic operation Ŝn, we now define the binary

operation +̂h on Hyp
T (n̄,P)
nd (τn) by

(σnd
1 +̂hσ

nd
2 )(fi) = Ŝn(σnd

1 (fi), σ
nd
2 (fi), . . . , σ

nd
2 (fi)).

As a consequence, we prove the following theorem.

Theorem 3.1. The following assertions are true:

(1) (Hyp
T (n̄,P)
nd (τn),+h) and (Hyp

T (n̄,P)
nd (τn), +̂h) are semigroups,

(2) there is a monomorphism from the semigroup (W
T (n̄,P)
τn (Xn),+) into

(HypT (n̄,P)(τn),+h),

(3) there is a monomorphism from the semigroup (P (W
T (n̄,P)
τn (Xn)), +̂)

into (Hyp
T (n̄,P)
nd (τn), +̂h),

(4) (Hyp
T (n̄,P)
nd (τn),+h) can be isomorphically embedded into

(Hyp
T (n̄,P)
nd (τn), +̂h).

Proof. First, we give a proof of (1). To do this, let σ1, σ2 and σ3 be elements

in HypT (n̄,P)(τn). Due to the superassociativity of Sn on W
T (n̄,P)
τn (Xn), we

have

(
(σ1 +h σ2) +h σ3

)
(fi) = Sn

(
(σ1 +h σ2)(fi), σ3(fi), . . . , σ3(fi)

)

= Sn
(
Sn(σ1(fi), σ2(fi), . . . , σ2(fi)), σ3(fi), . . . , σ3(fi)

)

= Sn
(
σ1(fi), S

n(σ2(fi), σ3(fi), . . . , σ3(fi)), . . . ,

Sn(σ2(fi), σ3(fi), . . . , σ3(fi))
)

= Sn
(
σ1(fi), (σ2 +h σ3)(fi), . . . , (σ2 +h σ3)(fi)

)

=
(
σ1 +h (σ2 +h σ3)

)
(fi),
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which show that +h is associative over the set HypT (n̄,P)(τn). The proof

of a semigroup (Hyp
T (n̄,P)
nd (τn), +̂h) is similar to (Hyp

T (n̄,P)
nd (τn),+h) but

it depends on the fact that Ŝn on P (W
T (n̄,P)
τn (Xn)) satisfies the superas-

sociative law. To prove (3), for any t in W
T (n̄,P)
τn (Xn), we define ξ :

W
T (n̄,P)
τn (Xn) → P (W

T (n̄,P)
τn (Xn)) by ξ(t) = σt. Suppose that s and t

are terms in W
T (n̄,P)
τn (Xn). Then we have ξ(s + t) = ξ(Sn(s, t, . . . , t)) =

σSn(s,t,...,t) = σs+hσt = ξ(s)+hξ(t). Thus, ξ is a homomorphism. Clearly, ξ
is an injection because from σs = σt, we have σs(fi) = σt(fi) and that s = t.

The proof of (3) can be done by setting a mapping ξ̄ : P (W
T (n̄,P)
τn (Xn)) →

Hyp
T (n̄,P)
τn (Xn) by ξ̄(A) = σnd

A for all subset A of W
T (n̄,P)
τn (Xn). Finally,

to prove that (4) holds, let fi be an n-ary operation symbol. For any
full hypersubstitution σ that preserves a partition of type τn, the mapping

σnd : {fi | i ∈ I} → P (W
T (n̄,P )
τn (Xn)) can be defined by σnd(fi) = {σ(fi)}.

It is clear that σnd belongs to the set Hyp
T (n̄,P )
nd (τn). In order to prove that

a monomorphism from HypT (n̄,P )(τn) to Hyp
T (n̄,P )
nd (τn) exists, we construct

the mapping φ : HypT (n̄,P )(τn) → Hyp
T (n̄,P )
nd (τn) by φ(σ) = σnd for all σ ∈

HypT (n̄,P )(τn). Obviously, the mapping φ is an injection. Next, we let σ1, σ2
be two mappings in HypT (n̄,P )(τn). We first show that σ1 +h σ2 = σ1+̂hσ2.
In fact, by Theorem 2.13, we have (σ1 +h σ2)(fi) = {(σ1 +h σ2)(fi)} =
{Sn(σ1(fi), σ2(fi), . . . , σ2(fi))} = Ŝn({σ1(fi)}, {σ2(fi)}, . . . , {σ2(fi)}) =
{σ1(fi)}+̂h{σ2(fi)} = (σ1+̂hσ2)(fi). As a result, φ is a homomorphism be-
cause φ(σ1 +h σ2) = σ1 +h σ2) = σ1+̂hσ2 = φ(σ1)+̂hφ(σ2).

Following the paper [16], any extension of non-deterministic full hyper-
substitutions of type τn,

σ̂nd : P (W T (n̄,P)
τn

(Xn)) → P (W T (n̄,P)
τn

(Xn)),

can be inductively defined as follows:

(1) σ̂nd[{fi(xα(1), . . . , xα(n))}] = (σnd(fi))α where α ∈ T (n̄,P),

(2) σ̂nd[{fi(t1, . . . , tn)}] = Ŝn(σnd(fi), σ̂
nd[{t1}], . . . , σ̂

nd[{tn}]) and as-
sume that each σ̂nd[{tj}] is already defined for all 1 ≤ j ≤ ni,

(3) σ̂nd[T ] =
⋃

t∈T

σ̂nd[{t}] where T ⊆ W
T (n̄,P)
τn (Xn) and |T | > 1,

(4) σ̂nd[∅] = ∅.



The structures of full terms preserving a partition 273

An extension of non-deterministic full hypersubstitutions of type τn is
an endomorphism of the algebra (P (WF

τn
(Xn)), Ŝ

n), which means that the
following identity holds:

σ̂nd[Ŝn(T, T1, . . . , Tn)] = Ŝn(σ̂nd[T ], σ̂nd[T1], . . . , σ̂
nd[Tn])

for all T, Tj ⊆ W
T (n̄,P)
τn (Xn). Under the binary operation ◦nd defined on

the set HypF (τn) of all non-deterministic full hypersubstitutions of type
τn given by σnd

1 ◦nd σ
nd
2 = σ̂nd

1 ◦ σnd
2 for all σnd

1 , σnd
2 ∈ HypF (τn), then by

the fact that any extension of non-deterministic full hypersubstitutions is
an endomorphism on (P (WF

τn
(Xn)), Ŝ

n) it was proved that (HypF (τn), ◦nd)
forms a semigroup.

We now turn our concentration to a non-deterministic full hypersub-
stitution that preserves a partition. Similar to the definition of σ̂nd re-
called above, in the case when we consider a singleton set of the form
{fi(xα(1), . . . , xα(n))} where α is a transformation on T (n̄,P), an exten-

sion of each σnd in Hyp
T (n̄,P)
nd (τn) may be defined in the same manner of

(1) and others are not different.

Let us consider a type τ3 = (3, 3) with operation symbols ∆,∇ and
αj ∈ T (3̄, {{1}, {2, 3}}) for j = 1, . . . , 5 given by

α1 =

(
1 2 3
1 3 2

)
, α2 =

(
1 2 3
3 1 1

)
, α3 =

(
1 2 3
3 3 3

)
,

α4 =

(
1 2 3
2 2 2

)
, α5 =

(
1 2 3
1 2 3

)
.

Let T = {∆(xα1(1), xα1(2), xα1(3))}, T1 = {∇(xα2(1), xα2(2), xα2(3)),∇(xα5(1),
xα5(2), xα5(3)}, T2 = {∆(xα3(1), xα3(2), xα3(3))}, T3 = {∆(xα4(1), xα4(2), xα4(3))}

be elements in P (W
T (3̄,{{1},{2,3}})
(3,3) (X3)) and let

σnd : {∆,∇} → P (W
T (3̄,{{1},{2,3}})
(3,3) (X3))

be defined by

∆ 7→ {∇(xα5(1), xα5(2), xα5(3))},

∇ 7→ {∆(xα3(1), xα3(2), xα3(3))}.

Then σ̂nd[Ŝ3(T, T1, . . . , Tn)]
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= σ̂nd[{∆(∇(x3, x1, x1),∆(x2, x2, x2),∆(x3, x3, x3)),∆(∇(x1, x2, x3),
∆(x2, x2, x2),∆(x3, x3, x3))}]

= σ̂nd[{∆(∇(x3, x1, x1),∆(x2, x2, x2),∆(x3, x3, x3))}]
∪ σ̂nd[{∆(∇(x1, x2, x3),∆(x2, x2, x2),∆(x3, x3, x3))}]

= Ŝ3(σnd(∆), σ̂nd[{∇(x3, x1, x1)}], σ̂
nd[{∆(x2, x2, x2)}], σ̂

nd[{∆(x3, x3, x3)}])

∪ Ŝ3(σnd(∆), σ̂nd[{∇(x1, x2, x3)}], σ̂
nd[{∆(x2, x2, x2)}], σ̂

nd[{∆(x3, x3, x3)}])

= Ŝ3(∇(x1, x2, x3),∇(x1, x3, x3),∆(x3, x3, x3),∆(x2, x2, x2))

∪ Ŝ3(∇(x1, x2, x3),∇(x1, x2, x3),∆(x3, x3, x3),∆(x2, x2, x2))

= {∇(∇(x1, x3, x3),∆(x3, x3, x3),∆(x2, x2, x2)),∇(∇(x1, x2, x3),
∆(x3, x3, x3),∆(x2, x2, x2))}.

On the opposite side, by the definition of σ̂nd and the operation σnd we
obtain that

Ŝ3(σ̂nd[T ], σ̂nd[T1], σ̂
nd[T2], σ̂

nd[T3])
= Ŝ3({∆(x1, x2, x3)}, {∇(x1, x3, x3),∇(x1, x2, x3)}, {∆(x3, x3, x3)}, {∆(x2, x2, x2)})

= {∆(∇(x1, x3, x3),∆(x3, x3, x3),∆(x2, x2, x2)),∆(∇(x1, x2, x3),
∆(x3, x3, x3),∆(x2, x2, x2))}.

From these processes, we note that the range of σ̂nd, i.e., σ̂nd[Ŝ3(T, T1, . . . , Tn)]

and the result of composition Ŝ3(σ̂nd[T ], σ̂nd[T1], σ̂
nd[T2], σ̂

nd[T3]) are differ-
ent, which implies that in general an extension of each non-deterministic
full hypersubstitution that preserves a partition does not satisfy an endo-

morphism property of the algebra (P (W
T (n̄,P)
τn (Xn)), Ŝ

n).

We remark here that the monoid HypT (n̄,P)(τn) with respect to the
composition ◦nd will not be obtained since its extension of each member
does not preserve the operation. Moreover, in our perspective, full-solid
non-deterministic varieties determined by a non-deterministic full hyper-
substitution preserving a partition will not arise.

To address the absence of this property, the following problems are
listed! First, what are the conditions under which σ̂nd is an endomor-

phism. If any, can we apply the operation ◦nd on the set Hyp
T (n̄,P)
nd (τn)? If

none, try to apply the concept of near homomorphism, as described in [5],
to solve these difficulties. Another way to continue this work is to apply
theory of conjugate pairs of additive closure operators, see [4], for describ-
ing a characterization of full-solid non-deterministic varieties of algebras via
non-deterministic full hypersubstitutions that preserve a partition.
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