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Relative Rota-Baxter operators on a Jordan

algebra with a representation and related

structures

Taoufik Chtioui, Atef Hajjaji and Sami Mabrouk

Abstract. The purpose of this paper is to study O-(dual-) Nijenhuis structures on

a Jordan algebra with a representation. The notion of a (dual-)Nijenhuis pair is intro-

duced and it can generate a trivial deformation of a Jordan algebra with representation.

We introduce the notion of a O-(dual-)Nijenhuis structure on a Jordan algebra with

representation. Furthermore, we verify that relative Rota-Baxter operators and O-(dual-

)Nijenhuis structures can give rise to each other under some conditions. Finally, we

study the notions of Rota-Baxter-Nijenhuis structures, r-matrix-Nijenhuis structures,

ΩN -structures on a Jordan algebra and we investigate the relation between them.

1. Introduction

Jordan algebras were first studied in the 1930s in the context of axiomatic
quantum mechanics and appeared in many areas of mathematics like differ-
ential geometry, Lie theory and analysis. A Jordan algebra can be regarded
as an “opposite” of a Lie algebra in the sense that the commutator of an as-
sociative algebra is a Lie algebra and the anticommutator of an associative
algebra is a Jordan algebra, although not every Jordan algebra is isomor-
phic to a subalgebra of the anticommutator of an associative algebra (such
a Jordan algebra is called special, otherwise, it is called exceptional).

Kupershmidt introduced the notion of relative Rota-Baxter operators
(also called O-operators) of a Lie algebra to generalize (the operator form of)
the famous classical Yang-Baxter equation in the Lie algebra [17]. Further-
more, a relative Rota-Baxter operator of a Lie algebra can give a solution

2010 Mathematics Subject Classification: 17B60, 17B38, 17C10, 13D10.
Keywords: Jordan algebra, relative Rota-Baxter operator, O-(dual-)Nijenhuis struc-
ture, Nijenhuis pair, Jordan PN -structure, Jordan ΩN -structure.



226 T. Chtioui, A. Hajjaji and S. Mabrouk

of the classical Yang-Baxter equation in a larger Lie algebra [1]. Motivated
by the notion of relative Rota-Baxter operator as a generalization of (the
operator form of) the classical Yang-Baxter equation in [17, 1], D. Hou, X.
Ni and C. M. Bai introduced the relative Rota-Baxter operator of a Jordan
algebra [12].

Rota-Baxter operators, as a particular case of relative Rota-Baxter op-
erators, were first introduced by Baxter in his study of fluctuation theory
in probability [6]. They have been found useful in many contexts, for exam-
ple in quantum analogue of Poisson geometry and so on, see [11] for more
information. Thus it is very important to study the Rota-Baxter operators
on Jordan algebras.

Nijenhuis operators on Lie algebras have been studied in [8] and [10]. In
the perspective of deformations of Lie algebras, Nijenhuis operators canon-
ically give rise to trivial deformations [22]. Nijenhuis operators have also
been studied on pre-Lie algebras [29] and Poisson-Nijenhuis structures ap-
peared in completely integrable systems [15] and were further studied in
[16, 21]. The r−n structure over a Lie algebra was studied in [25]. Recently,
Hu, Liu and Sheng [13] studied the (dual) KN-structure as generalization of
the r−n structure. The associative, pre-Lie, Malcev, alternative and Leib-
niz analogues of Poisson-Nijenhuis structures have also been considered in
[18, 28, 19, 20, 23, 24].

Inspired by these works, we consider the O-(dual-)Nijenhuis structure
on the Jordan algebra and characterize the relationships between Nijenhuis
operators and relative Rota-Baxter operators.

The paper is organized as follows. In Section 2, we recall some neces-
sary knowledge on Jordan algebras. In Section 3, we study infinitesimal
deformations of a JordanRep pair, and introduce the notion of a Nijenhuis
pair on a Jordan algebra and show that it generates a trivial deformation
of a JordanRep pair. We also introduce the notion of a dual-Nijenhuis pair
as the dual of a Nijenhuis pair. In Section 4, we introduce the notions of
a O-Nijenhuis structure and a O-dual-Nijenhuis structure. Some proper-
ties of O-(dual-)Nijenhuis structures are studied. In Section 5, we first give
the relations between Nijenhuis operators and relative Rota-Baxter opera-
tors. Then, we prove that, on the one hand, O-(dual-)Nijenhuis structures
give rise to hierarchies of relative Rota-Baxter operators, which are pairwise
compatible; on the other hand, compatible relative Rota-Baxter operators
with a condition can give a O-dual-Nijenhuis structure. In the final section,
we study the notions of Rota-Baxter-Nijenhuis structures, PN -structures
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and ΩN -structures. Furthermore, we describe the relation between them.

Throughout this paper, all algebras are finite-dimensional and over a
field K of characteristic 0.

2. Preliminaries and basics on Jordan algebras

A Jordan algebra is vector space J equipped with a commutative binary
operation ◦ : A ⊗ A → A, (x, y) 7→ x ◦ y satisfying the following Jordan
identity

as(x2, y, x) = ((x ◦ x) ◦ y) ◦ x− (x ◦ x) ◦ (y ◦ x) = 0, (1)

for any x, y ∈ J , where x2 = x ◦ x.

Remark 2.1.

(i) If (A, ∗) is an associative algebra, then the operation given by x ◦ y =
x ∗ y + y ∗ x, defines a Jordan algebra structure on A. Such algebra
and its subalgebras are called special Jordan algebras.

(ii) if char(K) 6= 2 and 3, then the Jordan identity is equivalent to the
following identity

	x,y,z as(x ◦ y, u, z) = 0, ∀x, y, z, u ∈ J. (2)

Definition 2.2. Let (J, ◦) be a Jordan algebra and V be a vector space. A
linear map ρ : J → gl(V ) is called a representation (or a module) of (J, ◦) if

ρ(x2)ρ(x)− ρ(x)ρ(x2) = 0, (3)

2ρ(x ◦ y)ρ(x) + ρ(x2)ρ(y)− 2ρ(x)ρ(y)ρ(x)− ρ(x2 ◦ y) = 0 (4)

for all x, y ∈ J . We denote it by (V, ρ) or simply ρ.

In fact, (V, ρ) is a representation of a Jordan algebra (J, ◦) if and only
if there exists a Jordan algebra structure on the direct sum J ⊕ V (the
semi-direct sum) of the underlying vector spaces of J andV given by

(x+ u) ◦ρ (y + v) = x ◦ y + ρ(x)v + ρ(y)u, ∀x, y ∈ J, u, v ∈ V.

We denote it by J ⋉ρ V .
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Example 2.3. Let (J, ◦) be a Jordan algebra and ad : J → gl(J) be a linear
map with x 7→ ad(x), where ad(x) denote the left multiplication operator,
that is , ad(x)(y) = x ◦ y, for any y ∈ J . Then (ad, J) is a representation
of (J, ◦) which called the adjoint representation.

If we consider the Jordan algebra given by the identity (2), we get the
following

Proposition 2.4. Let (J, ◦) be a Jordan algebra and V be a vector space.
A linear map ρ : J → gl(V ) is a representation of (J, ◦) if and only if

	x,y,z [ρ(x), ρ(y ◦ z)] = 0, (5)

ρ(x)ρ(y)ρ(z) + ρ(z)ρ(y)ρ(x) + ρ((x ◦ z) ◦ y)

=ρ(x)ρ(y ◦ z) + ρ(y)ρ(z ◦ x) + ρ(z)ρ(x ◦ y), (6)

for all x, y, z ∈ J , where [·, ·] is the commutator in gl(V ).

Let (V, ρ) be a representation of a Jordan algebra (J, ◦). Define ρ∗ :
J → gl(V ∗) by

〈ρ∗(x)α, v〉 = 〈α, ρ(x)v〉, ∀x,∈ J, v ∈ V, α ∈ V ∗.

Then (V ∗, ρ∗) is a representation of (J, ◦) which is called the dual represen-
tation of (V, ρ).

A linear map T : V → J is called a relative Rota-Baxter operator (or an
O-operator) associated to (V, ρ) if for all u, v ∈ V ,

T (u) ◦ T (v) = T (ρ(T (u))v + ρ(T (v))u). (7)

A relative Rota-Baxter operator R : J → J associated to (J, ad) is called
just a Rota-Baxter operator on J . That is, for any x, y ∈ J ,

R(x) ◦R(y) = R(R(x) ◦ y + x ◦R(y)). (8)

A linear map N : J → J on a Jordan algebra (J, ◦) is called a Nijenhuis
operator on J if for any x, y ∈ J ,

N(x) ◦N(y) = N(N(x) ◦ y + x ◦N(y)−N(x ◦ y)). (9)

The deformed operation ◦N : J ⊗ J → J given by

x ◦N y = N(x) ◦ y + x ◦N(y)−N(x ◦ y) (10)

is a Jordan multiplication and N is a Jordan algebra homomorphism from
(J, ◦N ) to (J, ◦).
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Lemma 2.5. Let (J, ◦) be a Jordan algebra and N a Nijenhuis operator on
J . Then we have, for all k, l ∈ N,

1. (J, ◦Nk) is a Jordan algebra.

2. N l is also a Nijenhuis operator on the Jordan algebra (J, ◦Nk).

3. The Jordan algebras (J, (◦Nk)N l) and (J, ◦Nk+l) coincide.

4. The Jordan algebras (J, ◦Nk) and (J, ◦N l) are compatible, that is, any
linear combination of ◦Nk and ◦N l still makes J into an Jordan alge-
bra.

5. N l is an Jordan algebra homomorphism from (J, ◦Nk+l) to (J, ◦Nk).

3. Infinitesimal deformations of a JordanRep pair

Let (J, ◦) be a Jordan algebra and (V, ρ) be a representation. We say that
we have a JordanRep pair and refer to it with the tuple (J, ◦, V, ρ). Let
ω : J ⊗ J → J and ̟ : J → gl(V ) be two linear maps such that ω is
commutative. Consider a t-parameterized family of operations and linear
maps by

x ◦t y = x ◦ y + tω(x, y), (11)

ρt(x) = ρ(x) + t̟(x), ∀ x, y ∈ J. (12)

If (J, ◦t, V, ρt) are JordanRep pairs for all t, we say that (ω,̟) generates a
one-parameter infinitesimal deformation of the JordanRep pair (J, ◦, V, ρ).
We denote a one-parameter infinitesimal deformation of a JordanRep pair
(J, ◦, V, ρ) by (J, ◦t, V, ρt). By a direct computation, we can deduce that
(J, ◦t, V, ρt) is a one-parameter infinitesimal deformation of a JordanRep
pair (J, ◦, V, ρ) if and only if

ω(ω(ω(x, x), y), x) = ω(ω(x, x), ω(y, x)), (13)

ω(x2 ◦ y, x) + ω(x2, y) ◦ x+ (ω(x, x) ◦ y) ◦ x

= x2 ◦ ω(y, x) + ω(x, x) ◦ (y ◦ x) + ω(x2, y ◦ x), (14)

ω(ω(x2, y), x) + ω(ω(x, x) ◦ y, x) + ω(ω(x, x), y) ◦ x

= ω(x, x) ◦ ω(y, x) + ω(x2, ω(y, x)) + ω(ω(x, x), y ◦ x), (15)

[ρ(x2), ̟(x)] + [̟(x2), ρ(x)] + [ρ(ω(x, x)), ρ(x)] = 0 (16)

[ρ(ω(x, x)), ̟(x)] + [̟(x2), ̟(x)] + [̟(ω(x, x)), ρ(x)] = 0, (17)
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̟(ω(x, x))̟(x)−̟(x)̟(ω(x, x)) = 0, (18)

2ρ(x ◦ y)̟(x) + 2̟(x ◦ y)ρ(x) + 2ρ(ω(x, y))ρ(x) + ρ(x2)̟(y)

+̟(x2)ρ(y) + ρ(ω(x, x))ρ(y)− 2ρ(x)ρ(y)̟(x)− 2ρ(x)̟(y)ρ(x)

−2̟(x)ρ(y)ρ(x)− ρ(ω(x, x) ◦ y)− ρ(ω(x2, y))−̟(x2v ◦ y) = 0, (19)

2̟(x ◦ y)̟(x) + 2ρ(ω(x, y))̟(x) + 2̟(ω(x, y))ρ(x) +̟(x2)̟(y)

+ρ(ω(x, x))̟(y) +̟(ω(x, x))ρ(y)− 2ρ(x)̟(y)̟(x)− 2̟(x)ρ(y)̟(x)

−2̟(x)̟(y)ρ(x)− ρ(ω(ω(x, x), y))−̟(ω(x, x) ◦ y)−̟(ω(x2, y)) = 0, (20)

2̟(ω(x, y))̟(x) +̟(ω(x, x))̟(y)− 2̟(x)̟(y)̟(x)−̟(ω(ω(x, x), y)) = 0.
(21)

Remark 3.1. Note that (13) means that (J, ω) is a Jordan algebra and (14)
means that ω is a 2-cocycle of the Jordan algebra J with the coefficient in
the adjoint representation. On the other hand, (15) means that ◦ is a
2-cocycle of the Jordan algebra (J, ω) with the coefficient in the adjoint
representation. In addition, (18) and (21) mean that ̟ is a representation
of the Jordan algebra (J, ω) on V . Furthermore, (16), (17), (19) and (20)
mean that ρ+̟ is a representation of the Jordan algebra (J, ◦+ ω) on V .

Definition 3.2. Two one-parameter infinitesimal deformation (J, ◦t, V, ρt)
and (J ′, ◦′t, V, ρ

′
t) of a JordanRep pair (J, ◦, V, ρ) are equivalent if there exists

an isomorphism (IJ + tN, IV + tS) from (J ′, ◦′t, V, ρ
′
t) to (J, ◦t, V, ρt), i.e.

(IJ + tN)(x ◦′t y) = (IJ + tN)(x) ◦t (IJ + tN)(y), (22)

(IV + tS)ρ′t(x)u = ρt(IJ + tN)(x))(IV + tS)u, (23)

for any x ∈ J and u ∈ V .

A one-parameter infinitesimal deformation of a JordanRep pair (J, ◦, V, ρ)
is said to be trivial if it is equivalent to (J, ◦, V, ρ).

We can easily check that (J, ◦t, V, ρt) is a trivial deformation if and only
if, for any x, y ∈ J ,

ω(x, y) = N(x) ◦ y + x ◦N(y)−N(x ◦ y), (24)

Nω(x, y) = N(x) ◦N(y), (25)

̟(x) = ρ(N(x)) + ρ(x)S − Sρ(x), (26)

ρ(N(x))S = S̟(x). (27)

It follows from (24) and (25) that N must be a Nijenhuis operator on the
Jordan algebra (J, ◦). Moreover, it follows from (26) and (27) that N and
S should satisfy the following compatibility condition

ρ(N(x))S(v) = S(ρ(N(x))(v)) + S(ρ(x)S(v))− S2ρ(x)(v). (28)
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Definition 3.3. A pair (N,S), where N ∈ gl(J) and S ∈ gl(V ), is called a
Nijenhuis pair on a JordanRep pair (J, ◦, V, ρ) if N is a Nijenhuis operator
on the Jordan algebra (J, ◦) and condition (28) holds.

We have seen that a trivial deformation of a JordanRep pair could give
rise to a Nijenhuis pair. Conversely, a Nijenhuis pair can also generate a
trivial deformation. By straightforward computations, we have the following
theorem.

Theorem 3.4. Let (N,S) be a Nijenhuis pair on a JordanRep pair (J, ◦, V, ρ).
Then a deformation (J, ◦t, V, ρt) of (J, ◦, V, ρ) can be obtained by putting

ω(x, y) = N(x) ◦ y + x ◦N(y)−N(x ◦ y), (29)

̟(x) = ρ(N(x)) + ρ(x)S − Sρ(x). (30)

Furthermore, this deformation is trivial.

Similar to the definition of a Nijenhuis pair, we introduce the notion of
a dual-Nijenhuis pair on a JordanRep.

Definition 3.5. A pair (N,S), where N ∈ gl(J) and S ∈ gl(V ), is called
a dual-Nijenhuis pair on the JordanRep pair (J, ◦, V, ρ) if N is a Nijenhuis
operator on the Jordan algebra (J, ◦) and S satisfies

ρ(N(x))(S(v)) = S(ρ(N(x))(v)) + ρ(x)S2(v)− S(ρ(x)S(v)) (31)

for all x ∈ J and v ∈ V .

Corollary 3.6. Let (N,S) be a dual-Nijenhuis pair on the JordanRep pair
(J, ◦, V, ρ). Then for any i ∈ N, (N i, Si) is a dual-Nijenhuis pair on the
JordanRep pair (J, ◦, V, ρ).

Let (V ∗, ρ∗) be the dual representation of a Jordan algebra (J, ◦). In
fact, there is a close relationship between a Nijenhuis pair and a dual-
Nijenhuis pair.

Proposition 3.7. (N,S) be a Nijenhuis pair on the JordanRep pair (J,◦,V, ρ)
if and only if (N,S∗) is a dual-Nijenhuis pair on the JordanRep pair (J,◦,V ∗,ρ∗).

Proof. It follows from, for x ∈ J and α ∈ J∗

〈ρ(N(x))S(v)− S(ρ(N(x))(v))− S(ρ(x)S(v)) + S2ρ(x)(v), α〉

= 〈v, S∗ρ∗(N(x))(α)− ρ∗(N(x))(S∗(α))− S∗ρ∗(x)(S∗(α)) + ρ∗(x)((S∗)2(α))〉.
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Example 3.8. Let N be a Nijenhuis operator on a JordanRep pair (J, ◦, V, ρ).
Then (N,N∗) is a dual-Nijenhuis pair on a JordanRep pair (J, ◦, J∗, ad∗),
where (J∗, ad∗) is the dual representation of the adjoint representation
(J, ad).

Let (N,S) be a Nijenhuis pair on a JordanRep pair (J, ◦, V, ρ). If in
addition (N,S) is a dual-Nijenhuis pair, then we can obviously obtain

2S(ρ(x)S(v)) = ρ(x)S2(v) + S2(ρ(x)(v)), ∀x ∈ J, v ∈ V. (32)

Definition 3.9. A Nijenhuis pair (N,S) on the JordanRep pair (J, ◦, V, ρ)
is called perfect if the identity (32) holds.

A Nijenhuis pair gives rise to a Nijenhuis operator on the semidirect
product Jordan algebra

Proposition 3.10. Let (N,S) be a Nijenhuis pair on a JordanRep pair
(J, ◦, V, ρ), then N+S is a Nijenhuis operator on the Jordan algebra J⋉ρV .
Furthermore, if (N,S) is a perfect Nijenhuis pair, then N + S∗ is also a
Nijenhuis operator on the Jordan algebra J ⋉ρ∗ V

∗.

Proof. Let x, y ∈ J and u, v ∈ V . Then

(N + S)(x+ u) ◦ρ (N + S)(y + v) = (N(x) + S(u)) ◦ρ (N(y) + S(v))

= N(x) ◦N(y) + ρ(N(x))S(v) + ρ(N(y))S(x)

= N(N(x) ◦ y) +N(x ◦N(y))−N2(x ◦ y) + ρ(N(x))S(v) + ρ(N(y))S(x).

Moreover,

(N + S)((N + S)(x+ u) ◦ρ (y + v)) = N(N(x) ◦ y) + S(ρ(N(x))v) + S(ρ(y)S(u)),

(N + S)((x+ u) ◦ρ (N + S)(y + v)) = N(x ◦N(y)) + S(ρ(x)S(v)) + S(ρ(N(y))u).

and

(N + S)2((x+ u) ◦ρ (y + v)) = N2(x ◦ y) + S2(ρ(x)v) + S2(ρ(y)u).

Using (9) and (28), we can easily deduce that N +S is a Nijenhuis operator
on the Jordan algebra J ⋉ρ V .

By a similar computation, it is not hard to check that if (N,S) is a
perfect Nijenhuis pair, then N + S∗ is also a Nijenhuis operator on the
Jordan algebra J ⋉ρ∗ V

∗. Hence the proof.
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Now, define ρ : J → gl(V ) and ρ̃ : J → gl(V ), respectively, as follow
(∀x ∈ J)

ρ(x) = ρ(N(x)) + [ρ(x), S]. (33)

ρ̃(x) = ρ(N(x)) + [S, ρ(x)]. (34)

Corollary 3.11. (i) If (N,S) is a Nijenhuis pair on a JordanRep pair
(J, ◦, V, ρ), then we deduce that ρ is a representation of the Jordan algebra
(J, ◦N ) on V .
(ii) If (N,S) is a dual-Nijenhuis pair on a JordanRep pair (J, ◦, V, ρ), then
we deduce that ρ̃ is a representation of the Jordan algebra (J, ◦N ) on V .

Proof. (i). According to Proposition 3.10, N +S is a Nijenhuis operator on
J ⋉ρ V . Then (J ⋉ρ V, (◦ρ)N+S) is a Jordan algebra. For any x, y ∈ J and
u, v ∈ V , we have

(x+ u)(◦ρ)N+S(y + v) = (N + S)(x+ u) ◦ρ (y + v) + (x+ u) ◦ρ (N + S)(y + v)

− (N + S)((x+ u) ◦ρ (y + v))

=N(x) ◦+ρ(N(x))v + ρ(y)S(u) + x ◦N(y) + ρ(x)S(v) + ρ(N(y))u

−N(x ◦ y)− Sρ(x)(v)− Sρ(y)(u)

=x ◦N y +
(
ρ(N(x)) + ρ(x)S − Sρ(x)

)
(v) +

(
ρ(N(y)) + ρ(y)S − Sρ(y)

)
(u)

=x ◦N y +
(
ρ(N(x)) + [ρ(x), S]

)
(v) +

(
ρ(N(y)) + [ρ(y), S]

)
(u)

=x ◦N y + ρ(x)(v) + ρ(y)(u),

then we see that ρ is a representation of the Jordan algebra (J,◦N) on V.

(ii). Take v ∈ V and α ∈ V ∗, we obtain

〈ρ∗(N(x))(α) + [ρ∗(x), S∗](α), v〉 = 〈α, (ρ(N(x)) + [S, ρ(x)])(v)〉,

then the dual map ρ̃∗ of ρ̃ is given by

ρ̃∗(x) = ρ∗(N(x)) + [ρ∗(x), S∗], ∀x ∈ J. (35)

In addition, If (N,S) is a dual-Nijenhuis pair on a JordanRep pair (J, ◦, V, ρ),
by Proposition 3.7, then (N,S∗) is a Nijenhuis pair with the representation
ρ∗ on V ∗. Using the above calculation in (i), we check that ρ̃∗ is a represen-
tation of (J, ◦N ) on V ∗ and thus ρ̃ is a representation of the Jordan algebra
(J, ◦N ) on V .

4. O-(dual-) Nijenhuis structures

In this section, we introduce the notion of an O-(dual-) Nijenhuis structure
on a JordanRep pair. Jordan algebras and pre-Jordan algebras are closely



234 T. Chtioui, A. Hajjaji and S. Mabrouk

related via relative Rota-Baxter operators. Recall that a pre-Jordan algebra
(A, •) is such that

(x ◦ x) • (x • y) = x • ((x ◦ x) • y),
2(x ◦ y) • (x • z) + (x ◦ x) • (y • z) = 2x • (y • (x • z)) + ((x ◦ x) ◦ y) • z,

for all x, y, z ∈ A, where x ◦ y = x • y + y • x. Note that (A, ◦) is a Jordan
algebra which is called the associated Jordan algebra of (A, •) (see [12] for
more details).

The following result establishes the connection between relative Rota-
Baxter operators and pre-Jordan algebras given in [12].

Proposition 4.1. Let T : V → J be a relative Rota-Baxter operator on a
JordanRep pair (J, ◦, V, ρ). Then the product

u •T v = ρ(T (u))v, ∀u, v ∈ V, (36)

defines a pre-Jordan algebra structure on V . Denote by (V, ◦T ) the associ-
ated Jordan algebra of (V, •T ), then T is a Jordan algebra homomorphism
from (V, ◦T ) to (J, ◦). Note that

u ◦T v = ρ(T (u))v + ρ(T (v))u, ∀u, v ∈ V. (37)

Now, let (N,S) be a (dual)-Nijenhuis pair on a JordanRep pair (J, ◦, V, ρ)
and T : V → J be a relative Rota-Baxter operator on J with respect to ρ.
We define a deformed product of ◦T by S as follows

u ◦TS v = S(u) ◦T v + u ◦T S(v)− S(u ◦T v), ∀u, v ∈ V. (38)

The following definition introduce the notion of a O-(dual)-Nijenhuis struc-
ture on a JordanRep pair.

Definition 4.2. A triple (T, S,N) is called a O-(dual)-Nijenhuis structure
on a JordanRep pair (J, ◦, V, ρ) if T is a relative Rota-Baxter operator on J

with respect to ρ and (N,S) is a (dual)-Nijenhuis pair on J such that the
following compatibility conditions hold

NT = TS, (39)

u ◦NT v = u ◦TS v. (40)

If (39) and (40) hold, we say that T and (N,S) are compatible.
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Note that if (N,S) is a perfect Nijenhuis pair, then a O-Nijenhuis struc-
ture is also a O-dual-Nijenhuis structure. Define two other products similar
to (37), using the representations (33) and (34) as follow

u ◦Tρ v = ρ(T (u))v + ρ(T (v))u, (41)

u ◦Tρ̃ v = ρ̃(T (u))v + ρ̃(T (v))u, ∀u, v ∈ V. (42)

Lemma 4.3. (i) Let (T, S,N) be a O-Nijenhuis structure. Then we have

u ◦TS v = u ◦Tρ v.

(ii) Let (T, S,N) be a O-dual-Nijenhuis structure. Then we have

u ◦TS v = u ◦Tρ̃ v.

Proof. (i). For any u, v ∈ V , we have

u ◦TS v = S(u) ◦T v + u ◦T S(v)− S(u ◦T v)

= ρ(TS(u))v + ρ(T (v))S(u) + ρ(T (u))S(v) + ρ(TS(v))u

− S(ρ(T (u))v)− S(ρ(T (v))u)

= ρ(NT (u))v + [ρ(T (u)), S]v + ρ(NT (v))u+ [ρ(T (v)), S]u

= ρ(T (u))v + ρ(T (v))u

= u ◦Tρ v.

(ii). Let u, v ∈ V . Then

u ◦TS v + u ◦Tρ̃ v = 2
(
ρ(NT (u))v + ρ(NT (v))u

)

= 2u ◦NT v◦

= 2u ◦TS v,

which implies that u ◦TS v = u ◦Tρ̃ v.

Thus, if (T, S,N) is a O-(dual-)Nijenhuis structure, then the three
brackets ◦TS , ◦Tρ (◦Tρ̃ ) and ◦NT are the same. Contrary to ◦T , the products

◦TS , ◦Tρ and ◦Tρ̃ don’t satisfy, in general, the Jordan identity. A naturally
question is: under what condition, they are Jordan products? A partially
answer is given in the following proposition

Proposition 4.4. Let (T, S,N) be a O-(dual)-Nijenhuis structure. Then
S is a Nijenhuis operator on the pre-Jordan algebra (V, •T ) and then on its
associated Jordan algebra (V, ◦T ). Therefore ◦Tρ ( ◦Tρ̃ ), ◦TS and ◦NT are all
Jordan products.



236 T. Chtioui, A. Hajjaji and S. Mabrouk

Proof. For the O-Nijenhuis structure (T, S,N), by (28) and substituting x
by T (u), we get

0 = ρ(NT (u))S(v)− S(ρ(NT (u))(v))− S(ρ(T (u))S(v)) + S2(ρ(T (u))(v))

= ρ(TS(u))S(v)− S(ρ(TS(u))(v))− S(ρ(Tu)S(v)) + S2(ρ(Tu)(v))

= S(u) •T S(v)− S
(
S(u) •T v + u •T S(v)− S(u •T v)

)
,

which implies that S is a Nijenhuis operator on the pre-Jordan algebra
(V, •T ). Thus S is a Nijenhuis operator on the sub-adjacent Jordan algebra
(V, ◦T ).

For the O-dual-Nijenhuis structure (T, S,N), the proof is not direct. In
fact, let T : V → J be a relative Rota-Baxter operator on a JordanRep pair
(J, ◦, V, ρ). The product

u •T v = ρ(T (u))v, ∀u, v ∈ V

defines a pre-Jordan algebra structure on V . Denote by (V, ◦T ) the associ-
ated Jordan algebra of (V, •T ). Then

u ◦T v = ρ(T (u))v + ρ(T (v))u, ∀u, v ∈ V.

Let (N,S) be a (dual)-Nijenhuis pair on a JordanRep pair (J, ◦, V, ρ). A
deformed product of ◦T by S is defined as follows

u ◦TS v = S(u) ◦T v + u ◦T S(v)− S(u ◦T v), ∀u, v ∈ V.

Then
u ◦TS v = ρ(TS(u))v + ρ(T (v))S(u) + ρ(T (u))S(v)

+ρ(TS(v))u− S(ρ(T (u))v)− S(ρ(T (v))u).

For the O-dual-Nijenhuis structure (T, S,N) we have u ◦TS v = u ◦TS v for
all u, v ∈ V . Therefore,

ρ(TS(u))v + ρ(TS(v))u =ρ(TS(u))v + ρ(T (v))S(u) + ρ(T (u))S(v)

+ρ(TS(v))u− S(ρ(T (u))v)− S(ρ(T (v))u).

Then

S(ρ(T (u))v) + S(ρ(T (v))u) = ρ(T (u))S(v) + ρ(T (v))S(u). (43)

Replacing u by S(u) in (43), we obtain

S(ρ(TS(u))v) + S(ρ(T (v))S(u)) = ρ(TS(u))S(v) + ρ(T (v))S2(u). (44)

Applying S to the both sides (43), we get

S2(ρ(T (u))v) + S2(ρ(T (v))u) = S(ρ(T (u))S(v)) + S(ρ(T (v))S(u)). (45)
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Since (N,S) is a dual pair then for all x ∈ J, u ∈ V

ρ(x)S2(u)− ρ(N(x))S(u) = S(ρ(x)S(u))− S(ρ(N(x))u).

Replacing in this equality x by T (v), where v ∈ V we get

ρ(T (v))S2(u)− ρ(N(T (v)))S(u) = S(ρ(T (v))S(u))− S(ρ(N(T (v)))u).

Since NT = TS then

ρ(T (v))(S2(u))− ρ(TS(v))(S(u)) = S(ρ(T (v))(S(u)))− S(ρ(TS(v))(u)).
(46)

According to (44)-(46), we have

S(u) ◦T S(v)− S(u ◦TS v)

= ρ(TS(u))(S(v)) + ρ(TS(v))(S(u)) + S2(ρ(T (u))(v)) + S2(ρ(T (v))(u))

−S(ρ(T (u))(S(v)))− S(ρ(TS(v))(u))− S(ρ(TS(u))(v))− S(ρ(T (v))(S(u)))

= [S2(ρ(T (u))(v)) + S2(ρ(T (v))(u))− S(ρ(T (u))(S(v)))− S(ρ(T (v))(S(u)))]

+ρ(TS(u))(S(v)) + ρ(TS(v))(S(u))− S(ρ(TS(u))(v))− S(ρ(TS(v))(u))

(45)
= ρ(TS(u))(S(v))− S(ρ(TS(u))(v)) + [ρ(TS(v))(S(u))− S(ρ(TS(v))(u))]

(46)
= ρ(TS(u))(S(v))− S(ρ(TS(u))(v)) + ρ(T (v))(S2(u))− S(ρ(T (v))(S(u)))

(44)
= 0.

Thus S is a Nijenhuis operator on the Jordan algebra (V, ◦T ).

Theorem 4.5. Let (T, S,N) be a O-Nijenhuis (resp. O-dual-Nijenhuis)
structure. Then

(i) T is a relative Rota-Baxter operator on the deformed JordanRep pair
(J, ◦N , V, ρ) (resp. (J, ◦N , V, ρ̃)).

(ii) NT is a relative Rota-Baxter operator on the JordanRep pair (J, ◦, V, ρ).

Proof. We only prove the theorem for the O-Nijenhuis structure. The other
one can be proved similarly.
(i). Since T is a relative Rota-Baxter operator on a JordanRep pair (J, ◦, V, ρ)
and TS = NT , we have

T (u) ◦N T (v) = NT (u) ◦ T (v) + T (u) ◦NT (v)−NT (u ◦T v)

= TS(u) ◦ T (v) + T (u) ◦ TS(v)− TS(u ◦T v)

= T (S(u) ◦T v + u ◦T S(v)− S(u ◦T v))

= T (u ◦TS v) = T (u ◦Tρ̄ v).
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Thus, T is a relative Rota-Baxter operator on the deformed JordanRep pair
(J, ◦N , V, ρ̄).
(ii). By (40), we have

NT (u ◦NT v) = NT (u ◦TS v) = N(T (u) ◦N T (v)) = NT (u) ◦NT (v),

which implies that NT is a relative Rota-Baxter operator on the JordanRep

pair (J, ◦, V, ρ).

The following result proves that the O-Nijenhuis structure can give a
O-dual-Nijenhuis structure under some condition.

Theorem 4.6. Let (T, S,N) be a O-Nijenhuis structure. If T is invertible,
then (T, S,N) is a O-dual-Nijenhuis structure.

Proof. We only need to prove that the Nijenhuis pair (S,N) is also a dual-
Nijenhuis pair. By (40), we have

0 = u ◦TS v − u ◦TS v

= ρ(T (u))(S(v)) + ρ(T (v))(S(u))− S
(
ρ(T (u))(v) + ρ(T (v))(u)

)
,

which implies that

ρ(T (u))(S(v)) + ρ(T (v))(S(u)) = S
(
ρ(T (u))(v) + ρ(T (v))(u)

)
, (47)

substituting S(u) for u in (47) we have that

ρ(TS(u))(S(v)) + ρ(T (v))(S2(u)) = S
(
ρ(TS(u))(v)

)
+ S

(
ρ(T (v))(S(u))

)
. (48)

Since S is a Nijenhuis operator on the Jordan algebra (V, ◦T ) and u ◦TS v =
u ◦TS v, we have

S(u ◦TS v) = S(u) ◦T S(v),

which means that

S
(
ρ(TS(u))(v) + ρ(TS(v))(u)

)
= ρ(TS(u))(S(v)) + ρ(TS(v))(S(u)). (49)

Combining (48) and (49), we have

0 = S
(
ρ(T (v))(S(u))

)
− ρ(T (v))(S2(u))− S

(
ρ(TS(v))(u)

)
+ ρ(TS(v))(S(u))

= S
(
ρ(T (v))(S(u))

)
− ρ(T (v))(S2(u))− S

(
ρ(NT (v))(u)

)
+ ρ(NT (v))(S(u)).

Since T is invertible and let x = T (v), we have

S
(
ρ(x)(S(u))

)
− ρ(x)(S2(u))− S

(
ρ(N(x))(u)

)
+ ρ(N(x))(S(u)) = 0.

Thus the Nijenhuis pair (S,N) is a dual-Nijenhuis pair. We finish the
proof.
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5. Compatible relative Rota-Baxter operators
and O-(dual)-Nijenhuis structures

In this section, we introduce compatible relative Rota-Baxter operators and
O-Nijenhuis structures and we mainly characterize the relationship between
compatible relative Rota-Baxter operators and O-(dual)-Nijenhuis struc-
tures.

5.1. Compatible relative Rota-Baxter operators on Jordan

algebras

Definition 5.7. Let T1, T2 : V −→ J be two relative Rota-Baxter operators
on a JordanRep pair (J, ◦, V, ρ). If for all k1, k2 ∈ K, k1T1 + k2T2 is still a
relative Rota-Baxter operator, then T1 and T2 are called compatible.

The following result follows from a direct computation.

Proposition 5.8. Let T1, T2 : V −→ J be two relative Rota-Baxter opera-
tors on a JordanRep pair (J, ◦, V, ρ). Then T1 and T2 are compatible if and
only if the following equation holds:

T1(u) ◦ T2(v) + T2(u) ◦ T1(v) =T1

(
ρ(T2(u))(v) + ρ(T2(v))(u)

)

+T2

(
ρ(T1(u))(v) + ρ(T1(v))(u)

)
, (50)

for all u, v ∈ V .

Using a relative Rota-Baxter operator and a Nijenhuis operator, we can
construct a pair of compatible relative Rota-Baxter operators .

Proposition 5.9. Let T : V −→ J be a relative Rota-Baxter operator on a
JordanRep pair (J, ◦, V, ρ) and N a Nijenhuis operator on (J, ◦). Then NT
is a relative Rota-Baxter operator on the JordanRep pair (J, ◦, V, ρ) if and
only if for all u, v ∈ V , the following equation holds:

N
(
NT (u) ◦ T (v) + T (u) ◦NT (v)

)

=N
(
T
(
ρ(NT (u))(v) + ρ(NT (v))(u)

)
+NT

(
ρ(T (u))(v) + ρ(T (v))(u)

))
. (51)

In this case, if in addition N is invertible, then T and NT are compatible.
More explicitly, for any relative Rota-Baxter operator T , if there exists an
invertible Nijenhuis operator N such that NT is also a relative Rota-Baxter
operator, then T and NT are compatible.
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Proof. Since N is a Nijenhuis operator, we have

NT (u) ◦NT (v) = N
(
NT (u) ◦ T (v) + T (u) ◦NT (v)

)
−N2(T (u) ◦ T (v)).

Note that
T (u) ◦ T (v) = T

(
ρ(T (u))(v) + ρ(T (v))(u)

)
.

Then
NT (u) ◦NT (v) = NT

(
ρ(NT (u))(v) + ρ(NT (v))(u)

)

if and only if (51) holds.
If NT is a relative Rota-Baxter operator and N is invertible, then we

have

NT (u) ◦ T (v) + T (u) ◦NT (v) =T
(
ρ(NT (u))(v) + ρ(NT (v))(u)

)

+NT
(
ρ(T (u))(v) + ρ(T (v))(u)

)
,

which is exactly the condition that NT and T are compatible.

A pair of compatible relative Rota-Baxter operators can also give rise
to a Nijenhuis operator under some conditions.

Proposition 5.10. Let T1, T2 : V −→ J be two relative Rota-Baxter op-
erators on a JordanRep pair (J, ◦, V, ρ). Suppose that T2 is invertible. If
T1 and T2 are compatible, then N = T1T

−1
2 is a Nijenhuis operator on the

Jordan algebra (J, ◦).

Proof. For all x, y ∈ J , there exist u, v ∈ V such that T2(u) = x, T2(v) =
y. Hence N = T1T

−1
2 is a Nijenhuis operator if and only if the following

equation holds:

NT2(u)◦NT2(v) = N(NT2(u)◦T2(v)+T2(u)◦NT2(v))−N2(T2(u)◦T2(v)).

Since T1 = NT2 is an relative Rota-Baxter operator, the left hand side of
the above equation is

NT2(ρ(NT2(u))(v) + ρ(NT2(v))(u)).

Since T2 is a relative Rota-Baxter operator which is compatible with T1 =
NT2, we have

NT2(u) ◦ T2(v) + T2(u) ◦NT2(v)

= T2(ρ(NT2(u))(v) + ρ(NT2(v))(u)) +NT2(ρ(T2(u))(v) + ρ(T2(v))(u))

= T2(ρ(NT2(u))(v) + ρ(NT2(v))(u)) +N(T2(u) ◦ T2(v)).

Let N act on both sides, we get the conclusion.
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By Proposition 5.9 and 5.10, we have

Corollary 5.11. Let T1, T2 : V −→ J be two relative Rota-Baxter operators
on a JordanRep pair (J, ◦, V, ρ). Suppose that T1 and T2 are invertible. Then
T1 and T2 are compatible if and only if N = T1T

−1
2 is a Nijenhuis operator.

In particular, as a direct application, we have the following conclusion.

Corollary 5.12. Let (J, ◦) be a Jordan algebra. Suppose that R1 and R2

are two invertible Rota-Baxter operators. Then R1 and R2 are compatible
in the sense that any linear combination of R1 and R2 is still a Rota-Baxter
operator if and only if N = R1R

−1
2 is a Nijenhuis operator.

5.2. Hierarchy of relative Rota-Baxter operators

In the following, first we construct compatible relative Rota-Baxter op-
erators from O-(dual-)Nijenhuis structures. Given a O-(dual-)Nijenhuis
structure (T, S,N), by Theorem 4.5, T and TS are relative Rota-Baxter
operators. In fact, they are compatible.

Proposition 5.13. Let (T, S,N) be a O-(dual-)Nijenhuis structure. Then
T and TS = NT are compatible relative Rota-Baxter operators.

Proof. We only prove the conclusion for the O-Nijenhuis structure. The
other one can be proved similarly. It is sufficient to prove that T + TS is a
relative Rota-Baxter operator. It is obvious that

u ◦T+TS v = u ◦T v + u ◦TS v = u ◦T v + u ◦TS v.

Thus, we have

(T + TS)(u ◦T+TS v)

= T (u ◦T v) + TS(u ◦TS v) + TS(u ◦T v) + T (u ◦TS v)

= T (u ◦T v) + TS(u ◦TS v) + T ◦ S(u ◦T v)

+T (S(u) ◦T v + u ◦T S(v)− S(u ◦T v))

= T (u ◦T v) + TS(u ◦TS v)) + T (S(u) ◦T v + u ◦T S(v))

= T (u) ◦ T (v) + TS(u) ◦ TS(v) + TS(u) ◦ T (v) + T (u) ◦ TS(v)

= (T + TS)(u) ◦ (T + TS)(v),

which means that T + TS is a relative Rota-Baxter operator.
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Lemma 5.14. Let (T, S,N) be a O-(dual-)Nijenhuis structure. Then for
all k, i ∈ N, we have

Tk(u ◦TSk+i v) = Tk(u) ◦N i Tk(v), (52)

where Tk = TSk = NkT and set T0 = T .

Proof. Since T is a relative Rota-Baxter operator and TS = NT , we have

T (u ◦TSi v) = T
(
Si(u) ◦T v + u ◦T Si(v)− Si(u ◦T v

)

= N i(T (u)) ◦ T (v) + T (u) ◦N i(T (v))−N i(T (u) ◦ T (v))

= T (u) ◦N i T (v). (53)

Since S is a Nijenhuis operator on the Jordan algebra (V, ◦T ), we have

Sk(u ◦TSk+i v) = Sk(u) ◦TSi S
k(v). (54)

Then by (53) and (54), we have

Tk(u ◦TSk+i v) = TSk(u ◦TSk+i v) =T (Sk(u) ◦TSi S
k(v))

=T (Sk(u)) ◦N i T (Sk(v)).

The proof is finished.

The proof of the following lemma is similar to the proof of Proposition
5.1 in [15].

Lemma 5.15. Let (T, S,N) be a O-(dual-)Nijenhuis structure. Then for
all k, i ∈ N such that i ≤ k,

u ◦Tk v = u ◦TSk v = Sk−i(u ◦Ti v), (55)

where Tk = TSk = NkT and set T0 = T .

Proposition 5.16. Let (T, S,N) be a O-(dual-)Nijenhuis structure on a
JordanRep pair (J, ◦, V, ρ). Then all Tk = NkT are relative Rota-Baxter
operators on a JordanRep pair (J, ◦, V, ρ) and for all k, l ∈ N, Tk and Tl

are compatible.

Proof. We only prove the conclusion for the O-Nijenhuis structure. The
other one can be proved similarly.
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By (52) and (55) with i = 0, we have

Tk(u ◦Tk v) = Tk(u) ◦ Tk(v),

which implies that Tk is a relative Rota-Baxter operator on a JordanRep

pair (J, ◦, V, ρ).
For the second conclusion, we need to prove that Tk + Tk+i is a relative

Rota-Baxter operator for all k, i ∈ N. By (55), we have

u ◦Tk+Tk+i v = u ◦Tk v + u ◦Tk+i v = u ◦Tk v + u ◦Tk

Si v.

Thus, we have

(Tk + Tk+i)(u ◦Tk+Tk+i v)

= Tk(u ◦Tk v) + Tk(u ◦Tk

Si v) + Tk+i(u ◦Tk v) + Tk+i(u ◦Tk

Si v)

= Tk(u ◦Tk v) + Tk+i(u ◦Tk v) + Tk+i(u ◦Tk

Si v)

+Tk(S
i(u) ◦Tk v + u ◦Tk Si(v)− Si(u ◦Tk v))

= Tk(u ◦Tk v) + Tk+i(u ◦Tk

Si v) + Tk(S
i(u) ◦Tk v) + Tk(u ◦Tk Si(v))

= Tk(u) ◦ Tk(v) + Tk+i(u) ◦ Tk+i(v) + Tk+i(u) ◦ Tk(v) + Tk(u) ◦ Tk+i(v)

= (Tk + Tk+i)(u) ◦ (Tk + Tk+i)(v).

Thus Tk + Tk+i is a relative Rota-Baxter operator on a JordanRep pair
(J, ◦, V, ρ), that is, Tk and Tk+i are compatible. In other words, Tk and Tl

are compatible for all positive integers k, l. We finish the proof.

Compatible relative Rota-Baxter operators can give rise to O-dual-
Nijenhuis structures.

Proposition 5.17. Let T, T1 : V −→ J be two relative Rota-Baxter oper-
ators on a JordanRep pair (J, ◦, V, ρ). If T and T1 are compatible with T

invertible, then

(i) (T, S = T−1T1, N = T1T
−1) is a O-dual-Nijenhuis structure;

(ii) (T1, S = T−1T1, N = T1T
−1) is a O-dual-Nijenhuis structure.

Proof. (i). The proof of (N,S) being a dual-Nijenhuis pair is similar to the
proof of Theorem 4.6. We omit the details. It is obvious that TS = NT .
Thus we only need to prove that the compatibility condition (40) holds. By
the compatibility condition of T and T1 and Proposition 5.10, N = T1T

−1
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is a Nijenhuis operator on the Jordan algebra J . By Proposition 5.8, we
also have

T (u) ◦ T1(v) + T1(u) ◦ T (v) = T
(
ρ(T1(u))(v) + ρ(T1(v))(u)

)

+T1

(
ρ(T (u))(v) + ρ(T (v))(u)

)
, ∀u, v ∈ V.

Substituting T1 with TS, then we have

T (u) ◦ TS(v) + TS(u) ◦ T (v) =T
(
ρ(TS(u))(v) + ρ(TS(v))(u)

)

+TS
(
ρ(T (u))(v) + ρ(T (v))(u)

)
. (56)

Since T is a relative Rota-Baxter operator, we have

T (u) ◦ TS(v) + TS(u) ◦ T (v) = T
(
ρ(T (u))(S(v)) + ρ(TS(v))(u)

+ρ(TS(u))(v) + ρ(T (v))(S(u))
)
.

Since T is invertible, (56) is equivalent to

S
(
ρ(T (u))(v) + ρ(T (v))(u)

)
= ρ(T (u))(S(v)) + ρ(T (v))(S(u)). (57)

On the other hand, we have

u ◦TS v − u ◦TS v = ρ(T (u))(S(v)) + ρ(T (v))(S(u))− S
(
ρ(T (u))(v) + ρ(T (v))(u)

)
.

Thus, (57) implies that u ◦TS v = u ◦TS v. Therefore, (T, S = T−1T1, N =
T1T

−1) is a O-dual-Nijenhuis structure.
Furthermore, since T and TS are relative Rota-Baxter operators, thus

TS(u ◦TS v) = TS(u) ◦ TS(v) = T (S(u) ◦T S(v)).

As T is invertible, we have

S(u ◦TS v) = S(u) ◦T S(v).

(ii) By direct calculation, we have

u ◦T1

S v − u ◦T1S v

= ρ(T1(u))(S(v)) + ρ(T1(v))(S(u))− S
(
ρ(T1(u))(v) + ρ(T1(v))(u)

)
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= ρ(TS(u))(S(v)) + ρ(TS(v))(S(u))− S
(
ρ(TS(u))(v) + ρ(TS(v))(u)

)

= S(u) ◦T S(v)− S(u ◦TS v) = 0.

Thus, (T1, S = T−1T1, N = T1T
−1) is also a O-dual-Nijenhuis structure.

Proposition 5.18. Let (T,N, S) be an O-dual-Nijenhuis structure on a
JordanRep pair (J, ◦, V, ρ). If T is invertible, then (T,Nk, Sk) and (Tk =
NkT,Nk, Sk) are O-dual-Nijenhuis structures for all k ∈ N.

Proof. Since (T,N, S) is an O-dual-Nijenhuis structure on a JordanRep pair
(J, ◦, V, ρ), by Proposition 5.16, T and Tk = NkT are compatible relative
Rota-Baxter operators. Then by the condition that T is invertible and
Proposition 5.17, the conclusions follow immediately.

6. PN- and ΩN-structures on Jordan algebras

In this section, we introduce the notions of Rota-Baxter-Nijenhuis struc-
tures on Jordan algebra and Poisson-Nijenhuis structures on Jordan algebra
which is also called r-matrix-Nijenhuis structures in some references (for ex-
ample, [13]). Furthermore, we introduce the notion of an ΩN -structure on
Jordan algebra , which consists of a symplectic structure and a Nijenhuis op-
erator satisfying some compatibility conditions. The relations among these
structures are given.

6.1. PN-structures, RBN-structures on a Jordan algebra

As a Jordan analog of the classical Yang-baxter equation, Zhelyabin, V.
N. introduced the Jordan Yang-Baxter equation (JYBE). Let (J, ◦) be a
Jordan algebra and an element π =

∑
i xi ⊗ yi ∈ J ⊗ J is called a Jordan

r-matrix if it satisfies the classical Jordan Yang-Baxter equation (JYBE):

π12 ◦ π13 + π13 ◦ π23 − π12 ◦ π23 = 0,

where π12 =
∑

i xi ⊗ yi ⊗ 1 ∈ J⊗3 etc. See ([31, 32, 33]) for more details.

Lemma 6.1. [12] Let (J, ◦) be a Jordan algebra and π ∈ J ⊗ J . Then π is
a skew-symmetric solution of the JYBE if and only if π♯ : J∗ → J defined
by

〈π♯(ξ), η〉 = π(ξ, η), ∀ξ, η ∈ J∗, (58)
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is a relative Rota-Baxter operator with respect to the dual representation
(ad∗, J∗).

Definition 6.2. Let π be an Jordan r-matrix and N : J → J a Nijenhuis
operator on a Jordan algebra (J, ◦). A pair (π,N) is a PN -structure (r-
matrix-Nijenhuis structure) on the Jordan algebra if for any x, y ∈ J and
α, β ∈ J∗, they satisfy

Nπ♯ = π♯N∗, (59)

α ◦Nπ♯

β = α ◦π
♯

N∗ β, (60)

where π♯ : J∗ → J is a linear map induced by 〈π♯(α), β〉 = π(α, β), (60) is
given by (40) with S = N∗, T = π♯ and the representation ρ = ad∗.

Theorem 6.3. Let π be an Jordan r-matrix and N : J → J a Nijenhuis
operator on a Jordan algebra (J, ◦). Then (π,N) is a PN -structure on
(J, ◦) if and only if (π♯, S = N∗, N) is is a O-dual-Nijenhuis structure on
the JordanRep pair (J, ◦, J∗, ad∗).

Proof. It is straightforward.

By Proposition 5.13 and Theorem 6.3, we have

Corollary 6.4. Let π ∈ ∧2J be a Jordan r-matrix and N : J → J a
Nijenhuis operator on a Jordan algebra (J, ◦). If (π,N) is a PN -structure
on (J, ◦), then π and πN are compatible Jordan r-matrices in the sense
that any linear combination of π and πN is still a Jordan r-matrix, where
πN ∈ ∧2J is given by πN (α, β) = 〈Nπ♯(α), β〉, for all α, β ∈ J∗.

By Proposition 5.16 and Theorem 6.3, we have

Corollary 6.5. Let (π,N) be a PN -structure on a Jordan algebra (J, ◦).
Then for all k ∈ N, πk ∈ ∧2J defined by πk(α, β) = 〈Nkπ♯(α), β〉 for all
α, β ∈ J∗, are pairwise compatible Jordan r-matrices.

Similar to the PN -structure, we give the definition of Rota-Baxter-
Nijenhuis structure on a Jordan algebra.

Definition 6.6. Let (J, ◦) be a Jordan algebra. Let R : J → J be a Rota-
Baxter operator and N : J → J a Nijenhuis operator on the Jordan algebra
J . A pair (R, N) is a Rota-Baxter-Nijenhuis structure on (J, ◦) if for any
x, y ∈ J , they satisfy

NR = RN, (61)
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x ◦NR y = x ◦RN y, (62)

where (62) is given by (40) with T = R and the representation ρ = ad.

It is obvious that if (R, N) is Rota-Baxter-Nijenhuis structure, then the
triple (R, S = N,N) is a O-Nijenhuis structure on the JordanRep pair
(J, ◦, J, ad).

In the following, we study the relation between Rota-Baxter-Nijenhuis
structure and r-matrix- Nijenhuis structure. First we recall some notions
which was given in the article of Hou, Ni and Bai [12].

Let (J, ◦) be a Jordan algebra with an invariant, non-degenerate, sym-
metric bilinear form B ∈ J ⊗ J . Then B induces a bijective linear map
B♯ : J∗ → J given by

〈B♯(α), β〉 = B(α, β), ∀α, β ∈ J∗. (63)

In view of invariance of B, for all x ∈ J , α ∈ J∗, we have

B♯(ad∗x(α)) = adx(B
♯(α)) = x ◦B♯(α). (64)

A skew-symmetric endomorphism of (J,B) is a linear map R from J to J

such that RB♯ : J∗ → J is skew-symmetric.

In the following, we consider the relation between the Rota-Baxter-
Nijenhuis structure and Jordan r-matrix-Nijenhuis structure.

Theorem 6.7. Let R be a skew-symmetric endomorphism of (J,B), N :
J → J a Nijenhuis operator, and set π♯ = RB♯. Assume that B and N are
compatible, i.e.

B♯N∗ = NB♯ (65)

If (R, N) is a Rota-Baxter-Nijenhuis structure on the Jordan algebra J ,
then (π,N) is an r-matrix- Nijenhuis structure on the Jordan algebra J .
Conversely, let (π,N) be a r-matrix-Nijenhuis structure on the Jordan alge-
bra J with an invariant, non-degenerate, symmetric bilinear form B. Then
(R = π♯(B♯)−1, N) is a Rota-Baxter-Nijenhuis structure on the Jordan al-
gebra J .

Proof. According to Corollary 3.4 [12], π is an Jordan r-matrix is equivalent
to that π♯(B♯)−1 = R is a Rota-Baxter operator.
(⇒) Since B♯ is bijective, then for any α, β ∈ J∗, there exist x, y ∈ J , such
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that α = (B♯)−1(x), β = (B♯)−1(y). By (61) and (65), it is obvious that
Nπ♯ = π♯N∗. In the sequel, we will verify that

α ◦Nπ♯
β = α ◦π

♯

N∗ β.

By (64), we have

α ◦π
♯

β =ad∗(π♯(α))β + ad∗(π♯(β))α

=ad∗(π♯((B♯)−1(x))(B♯)−1(y) + ad∗(π♯((B♯)−1(y))(B♯)−1(x)

=ad∗(R(x))(B♯)−1(y) + ad∗(R(y))(B♯)−1(x)

=(B♯)−1
(
R(x) ◦ y + x ◦ R(y)

)

=(B♯)−1(x ◦R y),

which implies that

α ◦π
♯

β = (B♯)−1(x ◦R y). (66)

Thus by (65) and (66), one has

α ◦Nπ♯

β − α ◦π
♯

N∗ β

=α ◦Nπ♯

β −N∗(α) ◦π
♯

β − α ◦π
♯

N∗(β) +N∗(α ◦π
♯

β)

=(B♯)−1(x ◦NR y)−N∗(B♯)−1(x) ◦π
♯

(B♯)−1(y)

− (B♯)−1(x) ◦π
♯

N∗(B♯)−1(y) +N∗((B♯)−1(x) ◦π
♯

(B♯)−1(y))

=(B♯)−1(x ◦NR y)− (B♯)−1N(x) ◦π
♯

(B♯)−1(y)

− (B♯)−1(x) ◦π
♯

(B♯)−1N(y) +N∗((B♯)−1(x) ◦π
♯

(B♯)−1(y))

=(B♯)−1(x ◦NRy)− (B♯)−1(N(x) ◦Ry)− (B♯)−1(x ◦RN(y)) +N∗(B♯)−1(x ◦Ry)

=(B♯)−1(x ◦NRy)− (B♯)−1(N(x) ◦Ry)− (B♯)−1(x ◦RN(y)) + (B♯)−1N(x ◦Ry)

=(B♯)−1(x ◦NR y)− (B♯)−1
(
N(x) ◦R y + x ◦R N(y)−N(x ◦R y)

)

=(B♯)−1
(
x ◦NR y − x ◦RN y

)

=0.

Hence (π,N) is an Jordan r-matrix-Nijenhuis structure.
(⇐) By (59) and (65), we have

NR = RN

The proof of the remaining part is similar to the case of the converse. We
finish the proof.
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6.2. ΩN-structures on Jordan algebra

Definition 6.8. [32] A symplectic form on a Jordan algebra (J, ◦) is a
skew-symmetric bilinear form ω ∈ ∧2J∗ satisfying

ω(x ◦ y, z) + ω(y ◦ z, x) + ω(z ◦ x, y) = 0, ∀x, y, z ∈ J. (67)

An element ω ∈ ∧2J∗ induces a linear map ω♯ : J → J∗ by

〈ω♯(x), y〉 = ω(x, y), ∀x, y ∈ J.

We say that ω ∈ ∧2J∗ is non-degenerate if ω♯ is an isomorphism.

Remark 6.9. In some references (for example, [5]), a symplectic form on
a Jordan algebra is assumed to be non-degenerate.

Lemma 6.10. [32] Let (J, ◦) be a Jordan algebra and ω ∈ ∧2J∗ a non-
degenerate bilinear form. Then ω is a symplectic form if and only if (ω♯)−1 :
J∗ → J is a relative Rota-Baxter operator on a JordanRep pair (J, ◦, J∗, ad∗).

By Lemma 6.1 and Lemma 6.10, we obtain

Corollary 6.11. Let (J, ◦) be a Jordan algebra. Then a non-degenerate
π ∈ ∧2J is a Jordan r-matrix if and only if ω ∈ ∧2J∗ defined by

ω(x, y) = 〈(π♯)−1(x), y〉, ∀x, y ∈ J, (68)

is a symplectic form on J .

Definition 6.12. Let ω be a symplectic form and N a Nijenhuis operator
on an Jordan algebra (J, ◦). Then (ω,N) is called an ΩN -structure on the
Jordan algebra (J, ◦) if for all x, y ∈ J ,

ω(N(x), y) = ω(x,N(y)), (69)

and ωN : ⊗2J → J defined by ωN (x, y) = ω(N(x), y) is also a symplectic
form, i.e.

ω(N(x ◦ y), z) + ω(N(y ◦ z), x) + ω(N(z ◦ x), y) = 0. (70)

Example 6.13. Let J be the 4-dimensional Jordan algebra with basis
{e1, e2, e3, e4} and multiplication

e1 ◦ e1 = 2e1, e3 ◦ e1 = e1 ◦ e3 = e3.
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Then J is a Jordan algebra. Let {e∗1, e
∗
2, e

∗
3, e

∗
4} be the dual basis and ω a

non-degenerate skew-symmetric bilinear form given by

ω = ke∗1 ∧ e∗3 + le∗2 ∧ e∗4, kl 6= 0.

Then ω is a symplectic structure on the Jordan algebra (J, ◦). It is straight-
forward to verify that all

N =




a 0 0 0
0 b 0 0
0 0 a 0
0 0 0 b


 ,

are Nijenhuis operators on the Jordan algebra (J, ◦). By direct calculation,
we have ω(N(x), y) = ω(x,N(y)) and

ω(N(x ◦ y), z) + ω(N(y ◦ z), x) + ω(N(z ◦ x), y) = 0, ∀x, y, z ∈ J.

Thus, (ω,N) is an ΩN -structure on the Jordan algebra (J, ◦).

There is a close relationship between ΩN -structures and O-dual-Nijenhuis
structures.

Theorem 6.14. Let ω ∈ ∧2J∗ be a non-degenerate bilinear form and N :
J → J a Nijenhuis operator on a Jordan algebra (J, ◦). Then (ω,N) is
an ΩN -structure on (J, ◦) if and only if ((ω♯)−1, S = N∗, N) is a O-dual-
Nijenhuis structure on the JordanRep pair (J, ◦, J∗, ad∗).

Proof. It is obvious that (69) is equivalent to that (ω♯)−1N∗ = N(ω♯)−1.
By Lemma 6.10, ω ∈ ∧2J∗ is a symplectic form if and only if (ω♯)−1 is a
relative Rota-Baxter operator on a JordanRep pair (J, ◦, J∗, ad∗). Thus we
only need to show that (70) is equivalent to

α ◦N(ω♯)−1

β = α ◦
(ω♯)−1

N∗ β, ∀α, β ∈ J∗. (71)

Assume that α = (ω♯)(x) and β = (ω♯)(y) for some x, y ∈ J . For all z ∈ J ,
by (69) and the fact that ω is a symplectic form, we have

〈α ◦N(ω♯)−1

β − α ◦
(ω♯)−1

N∗ β, z〉

= 〈ad∗(ω♯)−1(α)N
∗β + ad∗(ω♯)−1(β)N

∗α−N∗

(
ad∗(ω♯)−1(α)β + ad∗(ω♯)−1(β)α

)
, z〉

= 〈N∗ω♯(y), x ◦ z〉+ 〈N∗ω♯(x), y ◦ z〉 − 〈ω♯(y), x ◦N(z)〉 − 〈ω♯(x), y ◦N(z)〉
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= ω(y,N(x ◦ z)) + ω(x,N(y ◦ z))− ω(y, x ◦N(z))− ω(x, y ◦N(z))

= ω(y,N(x ◦ z)) + ω(x,N(y ◦ z)) + ω(N(z), x ◦ y)

= ω(y,N(z ◦ x)) + ω(x,N(y ◦ z)) + ω(z,N(x ◦ y))

= 0,

which implies that (71) holds.

By Theorem 6.3 and Theorem 6.14, we obtain the following result which
gives the relation between a PN -structure and an ΩN -structure.

Corollary 6.15. Let ω ∈ ∧2J∗ be a non-degenerate bilinear form and N :
J → J a Nijenhuis operator on a Jordan algebra (J, ◦). Then (ω,N) is an
ΩN -structure on (J, ◦) if and only if (ω−1, N) is a PN -structure on (J, ◦),
where ω−1 ∈ ∧2J is defined by

ω−1(α, β) = 〈(ω♯)−1(α), β〉, ∀α, β ∈ J∗.

Example 6.16. Consider the ΩN -structure (ω,N) given by Example 6.13.
Then (π,N) given by

r = −
1

k
e1 ∧ e3 −

1

l
e2 ∧ e4, kl 6= 0, N =




a 0 0 0
0 b 0 0
0 0 a 0
0 0 0 b


 ,

is a PN -structure on (J, ◦).

By Proposition 5.13 and Theorem 6.14, we have

Corollary 6.17. Let ω ∈ ∧2J∗ be a non-degenerate bilinear form and N :
J → J a Nijenhuis operator on a Jordan algebra (J, ◦). If (ω,N) is an
ΩN -structure on (J, ◦), then (ω♯)−1 and N(ω♯)−1 are compatible relative
Rota-Baxter operators on a JordanRep pair (J, ◦, J∗, ad∗).

By Proposition 5.18, Theorem 6.14 and Corollary 6.15, we have

Corollary 6.18. Let (ω,N) be an ΩN -structure on a Jordan algebra (J, ◦).
If ω is non-degenerate, then for all k ∈ N, ωk are symplectic structures, in
which ωk ∧2 J∗ is defined by ωk(x, y) = ω(Nk(x), y). Furthermore, for all
k, l ∈ N, ωk and ωl are compatible in the sense that any linear combination
of ωk and ωl are still symplectic structures.

By Proposition 5.17 and Theorem 6.14, we have
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Corollary 6.19.

1. Let ω1 and ω2 be non-degenerate symplectic structures on a Jordan
algebra (J, ◦). If ω1 and ω2 are compatible, then (ω1, N = ω

♯
1(ω

♯
2)

−1)

and (ω2, N = ω
♯
1(ω

♯
2)

−1) are ΩN -structures on the Jordan algebra
(J, ◦).

2. Let π be an Jordan r-matrix and ω a non-degenerate symplectic struc-
ture on a Jordan algebra (J, ◦). If π and (ω)−1 are compatible r-
matrices, then (π,N = π♯(ω♯)−1) is a PN -structure and (ω,N =
π♯(ω♯)−1) is an ΩN -structure on the Jordan algebra (J, ◦).
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