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Polynomial completeness and completeness
of finite n-quasigroups

Svetlana S. Chaplygina and Alexy V. Galatenko

Abstract. Finite quasigroups and n-quasigroups are currently extensively utilized to im-
plement various cryptographic functions. Cryptographic requirements lead to constraints
imposed on quasigroups and n-quasigroups. In particular, V.A. Artamonov proposed us-
ing polynomially complete quasigroups. Polynomial completeness can be decided with
the help of a criterion of J. Hagemann and C. Herrmann: a quasigroup is polynomially
complete if and only if it is simple and non-affine. In our paper we generalize this result
to the case of n-quasigroups and give a proof based on I.G. Rosenberg’s description of
maximal classes in k-valued logics. We also obtain a completeness criterion and show
that completeness is a cryptographically reasonable requirement.

1. Introduction

Finite quasigroups are currently extensively used to implement various cryp-
tographic functions. C. Shannon proved that the quasigroup-based tabular
substitution cipher has the property of perfect secrecy, i.e., is theoretically
unbreakable [24]. Quasigroup-based ciphers and hash functions regularly
take part in NIST contests (e.g., hash functions NaSHA [22] and EDON-
R′ [16] participated in SHA-3 contest, and hash function GAGE and authen-
ticated encryption InGAGE [15] participated in Lightweight Cryptography
contest). A wide spectrum of quasigroup-based cryptographic functions can
be found in surveys [17, 25].

There is also an emerging interest in cryptographic applications of quasi-
group analogues of greater arity. In particular, there is a number of research
papers on ciphers based on 3-quasigroups (see, e.g., [5, 9, 26]).
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There exist various constraints imposed on quasigroups in order to en-
hance cryptographic strength. V.A. Artamonov, S. Chakrabarti, S. Gan-
gopadhyay and S.K. Pal in [1] proposed using polynomially complete quasi-
groups, i.e., quasigroups such that the quasigroup operation and all con-
stants generate all operations via superposition. Polynomially complete
quasigroups are beneficial in cryptographic applications due to the fact
that deciding solvability of equations over polynomially complete algebras
is NP-complete [19]. Later V.A. Artamonov, S. Chakrabarti, Sh.K. Ti-
wari and V.T. Markov additionally demanded the absence of proper sub-
quasigroups [3]. D. Gligoroski, S. Markovski and L. Kocarev proposed us-
ing shapeless quasigroups, i.e., quasigroups that are non-idempotent, non-
commutative, non-associative, do not have left or right unit, do not con-
tain proper subquasigroups, and do not admit certain identities [14]. One
more interesting (however not strictly defined) requirement is being non-
fractal [8].

It is known that a quasigroup is polynomially complete if and only if it
is simple and non-affine [18]. We investigate polynomial completeness from
another perspective. We obtain a similar result for the case of n-quasigroups
in terms of maximal classes of k-valued logics. We also consider a stronger
property of completeness of n-quasigroups (an n-quasigroup is said to be
complete if its operation generates all possible operations via superposition)
and obtain a completeness criteria in terms of k-valued logics and from al-
gebraic perspective. It turns out that completeness incorporates additional
cryptographically beneficial properties in comparison with polynomial com-
pleteness.

The rest of the paper is organized as follows. In Section 2 we introduce
basic concepts and provide required definitions. Section 3 is devoted to the
investigation of the relationship between maximal classes of k-valued logics
and n-quasigroup operations. In Section 4 we formulate the main lemmas
obtained as corollaries of results from Section 3. Section 5 is a conclusion.

2. Basic concepts and definitions

First give a number of definitions related to n-quasigroups.

Definition 2.1. Let n ∈ N, n > 2. A finite n-quasigroup (Q, f) is defined
as a set Q = {q1, . . . , qk} endowed with an n-ary operation f : Qn → Q
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ssuch that for any i, 1 6 i 6 n, and any a1, . . . , an, b ∈ Q the equation

f(a1, . . . , ai−1, x, ai+1, . . . , an) = b

is uniquely solvable.

Denote the set {0, . . . , k− 1} by Ek. Without loss of generality one can
assume that Q = Ek. Thus n-quasigroup operations can be considered as
functions of k-valued logics. The case k = 2 is trivial, since for any n there
are exactly two n-quasigroups of the order 2, so we assume that k > 3.

Hereinafter for the sake of brevity finite n-quasigroups will be referred
to simply as quasigroups.

Definition 2.2. A proper subquasigroup (Q′, f ′) of a quasigroup (Q, f) is
defined as a set Q′ with operation f ′, where Q′ is a proper subset of Q
closed with respect to the quasigroup operation f , and the operation f ′ is
the restriction of f to Q′.

Definition 2.3. Two quasigroups (Q, f1) and (Q, f2) are isotopic if there
exist permutations α, α1, . . . , αn of the set Q such that

f1(x1, . . . , xn) ≡ α−1 (f2(α1(x1), . . . , αn(xn))) .

In this case the tuple (α, α1, . . . , αn) is referred to as isotopy. If all
permutations are equal, then isotopy is an isomorphism. On the other
hand, if f1 = f2, then isotopy is called autotopy, and isomorphism is called
automorphism.

Definition 2.4. A quasigroup is called affine if there exists an Abelian
group (Q,+), automorphisms α1, . . . , αn of this group and a constant c ∈ Q
such that the following identity holds:

f(x1, . . . , xn) ≡ α1(x1) + . . .+ αn(xn) + c.

Definition 2.5. A quasigroup is called simple if it admits only trivial con-
gruences.

Now let us introduce notation and definitions related to k-valued logics.
Denote the set of all k-valued functions in m variables by Pmk . Accordingly,
Pk denotes the set of k-valued functions of any arity.
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Definition 2.6. The closure [A] of a set of functions A ⊆ Pk is the set
of all functions from Pk that can be obtained from functions of the set A
using superposition operations, i.e. permutation of variables, identification
of variables, adding or removing dummy (inessential) variables and substi-
tution of a variable of a function with a function.

Detailed discussion of superposition and closure in k-valued logics can
be found, e.g., in the monograph [21].

Definition 2.7. A set A ⊆ Pk satisfying [A] = A is said to be closed.

Definition 2.8. A quasigroup (Q, f) is is polynomially complete if
[
{f} ∪ P 0

k

]
= Pk, where P 0

k is the set of all constants.

Definition 2.9. A quasigroup (Q, f) is complete if [{f}] = Pk.

Completeness of an arbitrary set A ⊆ Pk is defined in a similar way.
One of the ways to study completeness was given in the work of I. Rosen-

berg [23]. The method is based on determining the maximal classes of
functions.

Definition 2.10. A set A ( Pk is called a maximal class if [A] 6= Pk and
for any f ∈ Pk \A it holds that [A ∪ {f}] = Pk.

In other words, a maximal class is an incomplete set of functions such
that adding an arbitrary function not belonging to this set makes the set
complete. It can be easily noticed that any maximal class is closed. More-
over, in k-valued logics the number of maximal classes is finite, and a sys-
tem is complete if and only if it is not contained in any maximal class
(see, e.g., [21, Part II, Theorem 11.1.1, Theorem 1.5.3.1]). I. Rosenberg
in [23] gave a description of all maximal classes in Pk. Below we recall
this description in accordance with the monograph [21] by D. Lau. In the
current section we give necessary definitions, in the following section we list
the classes and investigate the relationship between quasigroups and these
classes.

Definition 2.11. An h-ary relation ρ on Ek is a subset of the Cartesian
product Ek × . . .× Ek = Ehk , h ∈ N.

The elements (a1, a2, . . . , ah) ∈ ρ can be considered as column vectors:
a1
a2
...
ah

 = (a1, . . . , ah)T ∈ ρ
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The set of all h-ary relations on Ek is denoted by Rhk .
It is convenient to talk about maximal classes using relations and func-

tions that preserve relations.

Definition 2.12. A function f ∈ Pmk preserves an h-ary relation ρ ∈ Rhk if

f


a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . . . . . . . .
ah1 ah2 . . . ahm

 def
=


f(a11, a12, . . . , a1m)
f(a21, a22, . . . , a2m)

. . .
f(ah1, ah2, . . . , ahm)

 ∈ ρ
for all 

a11
a21
. . .
ah1

 ,


a12
a22
. . .
ah2

 , . . . ,


a1m
a2m
. . .
ahm

 ∈ ρ
In other words, we selectm arbitrary column vectors from the relation ρ,

write them in a matrix, apply the function f to each row of this matrix and
obtain a column vector that also belongs to ρ. The set of all functions
preserving ρ is denoted by Pol(ρ). It is known (see, e.g., [21, Part II,
Theorem 2.6.2]) that Pol(ρ) is a closed class.

In Rosenberg’s paper [23] it was shown that all maximal classes in Pk
can be described using several classes of relations:

{Pol(ρ) | ρ ∈ Uk ∪Mk ∪Sk ∪ Lk ∪ Ck ∪Bk}.

In other words, each maximal class is the class of functions that preserve a
relation belonging to one of six finite families. Description of these classes
of relations is presented in the subsequent section.

3. Maximal classes and quasigroups

In this section we give an overview of maximal classes in k-valued logics
and investigate the relationship between these classes and quasigroups.

3.1. Classes of monotone functions

Informally maximal classes specified by relations from Mk are comprised
of functions preserving a partial order on Ek with a greatest and a least
element. A more formal definition is presented below.
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Definition 3.1. A binary relation ρ is called monotone (written as ρ ∈Mk)
if it reflexive, antisymmetric, transitive and ∃oρ, eρ : {(oρ, x)T , (x, eρ)

T | x ∈
Ek} ⊆ ρ.

In other words, a monotone relation defines a partial order admitting
the least and the greatest element on Ek. We say that a tuple ᾱ =
(α1, α2, . . . , αm) is greater or equal to a tuple β̄ = (β1, β2, . . . , βm) if (αi, βi)
∈ ρ (i.e., αi > βi) for i = 1, . . . ,m. By definition a function preserves a
monotone relation if for any tuples ᾱ, β̄, ᾱ > β̄, it holds that f(ᾱ) > f(β̄).

Lemma 3.2. Suppose that (Ek, f) is a quasigroup. Then the function f
preserves no monotone relation ρ ∈Mk.

Proof. Assume that there exists some ρ ∈Mk preserved by the quasigroup
operation f . Denote the greatest element with respect to ρ by amax.

Let α = (a1, . . . , an) ∈ Enk be a tuple such that at least one component
is less than amax and f(a1, . . . , an) = amax. Such a tuple obviously exists by
Definition 2.1. Replace the non-maximum component with amax to obtain
the tuple α′. By definition the value of the quasigroup operation on α′

is distinct from amax = f(α), thus it is less than amax with respect to ρ,
however α′ is greater than α. The contradiction obtained completes the
proof.

3.2. Classes of autodual functions

Denote by Sk the set of all relations ρs of the form

ρs = {(x, s(x))T | x ∈ Ek},

where s ∈ Sk is a permutation with k/p cycles of the same prime length p.

Definition 3.3. A function f ∈ Pmk is called autodual if it preserves at
least one relation ρs ∈ Sk, i.e.,

f(s(x1), s(x2), . . . , s(xm)) = s(f(x1, x2, . . . , xm)).

Lemma 3.4. For any non-trivial permutation s on Ek there exists a con-
stant function that does not preserve ρs.

Proof. Since the permutation s is non-trivial, there exists an element c ∈ Ek
that does not preserve its position. Thus the constant function f(x) ≡ c
does not preserve the relation s:

f

(
c
s(c)

)
=

(
c
c

)
6∈ ρs.
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Remark 3.5. A quasigroup operation can be autodual. Consider the quasi-
group operation from P 2

3 defined by the equality

f(x, y) = 2x+ 2y + 2 (mod 3)

and the permutation s(x) = x + 1(mod 3). The inverse permutation is
x− 1 (mod 3). Since

s−1(f(s(x), s(y))) = 2(x+ 1) + 2(y + 1) + 2− 1 ≡ 2x+ 2y + 2 (mod 3),

the function f preserves the relation ρs and thus is autodual.

Remark 3.6. Definition 3.3 directly implies the following fact. Consider
a quasigroup (Q, f). The function f is autodual only if the quasigroup
admits a non-trivial automorphism. Thus autoduality looks undesirable
from cryptographic perspective, since in this case the quasigroup (Q, f) has
some “internal structure”, or, in terms of the paper [14], some “shape”.

Remark 3.7. In the case of n = 2 almost all quasigroups have a trivial
automorphism group (see, e.g., [7]). To the best of our knowledge the
situation in the case n > 3 is still to be investigated.

3.3. Classes of functions which preserve central relations

Definition 3.8. A relation ρ of the arity h belongs to the class Chk if:

1. ρ is totally reflexive and non-trivial, i.e., ρ 6= Ehk and

(∃i 6= j ai = aj) ⇒ (a1, . . . , ah)T ∈ ρ

(in other words, ρ is non-trivial, and if the elements of an h-tuple are
not distinct, then this tuple belongs to ρ);

2. ρ is totally symmetric, i.e., for any permutation s of the set {1, . . . , h}
it holds that

(a1, . . . , ah)T ∈ ρ ⇒ (as(1), . . . , as(h))
T ∈ ρ;

3. there exists at least one central element c ∈ Ek, i.e.,

∀a1, . . . , ah−1 ∈ Ek : (a1, . . . , ah−1, c)
T ∈ ρ

(in other words, taking into account the second property, if an h-
tuple contains a component equal to a central element then this tuple
belongs to ρ).
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Let Ck = ∪k−1h=1C
h
k be the set of all central relations on Ek.

Lemma 3.9. No quasigroup preserves a central relation of the arity greater
than 1.

Proof. Assume that a relation ρ ∈ Chk , h > 2, is preserved by a quasigroup
operation f . Since ρ is non-trivial by definition, there exists an h-tuple
(a1, . . . , ah)T /∈ ρ. Let c ∈ Ek be central.

Since f is a quasigroup operation, for any elements a1 ∈ Ek there exists a
fixation of the variables x2 = b2, . . . , xn = bn such that f(c, b2, . . . , bn) = a1.
Similarly, select b(2)1 , . . . , b

(h)
1 such that f

(
b
(i)
1 , c, . . . , c

)
= ai.

Consider column vectors (c, b2, . . . , bn)T and (b
(i)
1 , c, . . . , c)T , i = 2, . . . , h.

Since each vector contains a central element, these vectors belong to ρ. If
we apply the function f to each row of the matrix comprised by the vectors,
we will obtain the column (a1, . . . , ah)T that does not belong to ρ:

c b2 . . . bn a1

b
(2)
1 c . . . c a2
...

...
...

...
...

b
(h)
1 c . . . c ah

Thus the relation ρ is not preserved by f by definition.

Remark 3.10. No unary central relation is preserved by the set of all
constants. It is sufficient to consider a non-central constant as a function
from P 0

k to prove this fact.

Lemma 3.11. A quasigroup has a proper subquasigroup if and only if its
operation preserves a central relation of the arity 1.

Proof. (⇒) By definition the quasigroup operation preserves the central
relation consisting of elements of a subquasigroup.

(⇐) Consider a central relation ρ of the arity 1. Suppose that ρ is
specified by central elements a1, . . . , as, s < k. Then by Definition 2.12 for
any n-tuple α of central elements it holds that f(α) is also a central element,
so the set of all central elements comprises a proper subquasigroup.

Note that the presence of a proper subquasigroup makes the quasigroup
non-shapeless. This property is also considered as undesirable by Arta-
monov et al.
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Remark 3.12. The presence of a subquasigroup in an n-quasigroup of
the order k with tabular operation specification can be decided with the

complexity O
(
k

n2+n+1
n+1 (log k)

n
n+1

)
for fixed n and k → ∞ [12]. A more

efficient procedure with the complexity O
(
k7/3

)
for the case n = 2 was

announced in [11], but the construction and the proof are currently not
published.

Remark 3.13. In the case n = 2 the presence of a proper subquasi-
group is a “frequent” property. I. V. Cherednik showed that the fraction
of 2-quasigroups with proper subquasigroups is asymptotically greater than
1/2 [6]. To the best of our knowledge, this result is still unpublished, and
the problem for n > 2 is still uninvestigated.

3.4. Classes of functions which preserve h-universal relations

Suppose that m,h ∈ N, h > 3. Consider some relation ξhm ⊆ Ehhm . Note
that the elements of Ehm can be naturally decomposed into powers of h,
i.e., treated as numbers in the numeric system base h:

a ∈ Ehm a = a(0) + a(1) · h+ a(2) · h2 + . . .+ a(m−1) · hm−1,

where a(i) denote the “digits” of this number.
Let us introduce the following relation:

ιhk := {(a0, . . . , ah−1) ∈ Ehk | ∃i, j ∈ Ek : i 6= j ∧ ai = aj}

In other words, the criterion for belonging to this relation is the presence
of at least two identical elements ai, aj i 6= j.

Definition 3.14. A relation ξhm ⊆ Ehhm is called h-ary elementary, if it
holds that

(a0, . . . , ah−1) ∈ ξhm ⇔ ∀i ∈ Em : (a
(i)
0 , . . . , a

(i)
h−1) ∈ ι

h
h

This means that among the elements a0, . . . , ah−1 for any position i
there are at least two elements with the same “digit” in that position.

Definition 3.15. A relation ρ ⊆ Ehk is called a homomorphic inverse image
of a relation ρ′ ⊆ Ek′ if there exists a surjective mapping q from Ek onto
Ek′ such that (a1, . . . , aj) ∈ ρ⇔ (q(a1), . . . , q(ah)) ∈ ρ′.
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The set of h-universal relations Bk is defined as follows.

Definition 3.16. Let Bh
k be the set of all homomorphic inverse images of

the h-ary elementary relation ξhm, 3 6 h 6 k, m > 1, hm 6 k. Then
Bk =

⋃k
h=3B

h
k is the set of h-universal relations.

D. Lau [21] obtained the following equivalent definition for functions
preserving an h-universal relation.

Let q be a surjective mapping from Ek onto Ehm . This mapping defines
a partition on Ek in the blocks

Ai = {x ∈ Ek : q(x) = i}, i ∈ Ehm .

Next, in each block we select a representative ai. Consider the functions
r : Ehm → Ek, gf : Enk → Ek specified by the equalities

r(i) = ai, gf (x1, . . . , xn) = ai ⇔ f(x1, . . . , xn) ∈ Ai.

Note that since gf = r(q(f)), it holds that

gf (x1, . . . , xn) = r(f ′m−1(x1, . . . , xn) · hm−1 + . . .+ f ′0(x1, . . . , xn)), (1)

where f ′i(x1, . . . , xn) = (q(f(x1, . . . , xn)))(i).
Since the expression can be understood in terms of “the numeric system

base h”, f ′i are referred to as “digits” of the representation.

Theorem 3.17 ([21, Part II, Theorem 5.2.6.1]). Let ρ be a homomorphic
inverse image of an h-ary elementary relation ξhm. An n-ary function f ∈ Pk
belongs to the class which preserves ρ if and only if for the function gf it
holds that

∀i ∈ {0, . . . ,m− 1} :


either | Im(f ′i)| 6 h− 1,

or
∃j ∈ {1, . . . , n}, v ∈ Em, s ∈ Sh :

f ′i(x1, . . . , xn) = s
(
(q(xj))

(v)
)
.

This theorem asserts that each “digit” of the h-ary representation of gf
satisfies at least one of the following conditions: the image of the “digit” is
incomplete or it is a function in one variable.

Lemma 3.18. A quasigroup operation preserves no h-universal relations.
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Proof. Let (Q, f) be a quasigroup. Prove that, in the notation of the
previous theorem, all functions f ′i are surjective, i.e., | Im(f ′i)| = h for
i = 0, . . . ,m− 1.

Indeed, since q is surjective, for any y ∈ Ehm there exists a ∈ Ek
such that q(a) = y. The function representing the quasigroup operation
takes all values, i.e., for any a ∈ Ek there exist a1, . . . , an ∈ Ek such that
f(a1, . . . , an) = a. Hence q(f(x1, x2, . . . , xn)) takes all hm values. Also note
that by Definition 2.1 it is sufficient to vary only one argument to iterate
over all values. Hence, since gf = r(q(f)), according to the representation
(1), each function f ′i must also take all h possible values. This means that
the first case does not hold.

It remains to prove the impossibility of the second condition of Theo-
rem 3.17. Assume the opposite, i.e., f ′i = si((q(xji))

(vi)) for i = 0, . . . ,m−1.
Let xt be the variable of the function f ′0. Consider another index t′ 6= t and
vary the variable xt′ . According to the above, gf should range over all pos-
sible hm values. But according to (1), the digit in the last position (that
is f ′0), cannot change, so gf takes at most hm−1 values. The contradiction
obtained completes the proof.

3.5. Classes of functions which preserve equivalence relations

Denote by Uk the set of all non-trivial equivalence relations.
It can be easily seen that preserving a non-trivial equivalence relation

is equivalent to having a non-trivial congruence. Thus the function f of
a non-simple quasigroup (Ek, f) belongs to a maximal class specified by a
relation from Uk, and vise versa.

Remark 3.19. For the case n = 2 it is known that simplicity is a typical
quasigroup property, namely, almost all 2-quasigroups are not isotopic to
non-simple quasigroups (see [10, Lemma 1]). To the best of our knowledge,
the case n > 2 is unexplored.

Remark 3.20. The paper [12] proposes an algorithm for deciding simplicity
of an n-quasigroup of the order k with the complexity O

(
kn+1

)
for fixed n

and k →∞.
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3.6. Classes of quasi-linear functions

Suppose that k = pm, where p is prime, m ∈ N, G = (Ek,⊕) is an elemen-
tary p-group. Consider the following relation λG of the arity 4:

λG := {(a, b, c, d)T ∈ E4
k | a⊕ b = c⊕ d}.

The set of all such relations is denoted by Lk.

Definition 3.21. A function is quasi-linear if it preserves a relation ρ ∈ Lk.

According to [21, Part II, Lemma 5.2.4.1], quasi-linear functions can be
equivalently defined in two other ways. First, one can endow the group G
with multiplication � so that (Ek,⊕,�) is a field. Any function from Pk can
be uniquely specified by its algebraic normal form (ANF), i.e., a polynomial
over this field of the form

f(x1, . . . , xn) =
⊕

i1,...,in∈En
k

ai1i2...inx
i1
1 � x

i2
2 � . . .� x

in
n ,

where ai1i2...im ∈ Ek, x0 is the neutral element with respect to � (see,
e.g., [21, Part II, Theorem 1.4.3]). A function is quasi-linear if and only if
its ANF has the form

f(x1, . . . , xn) = a0 ⊕
n⊕
i=1

m−1⊕
j=1

aij � xp
j

i .

Second, a function f is quasi-linear if and only the following identity
holds:

f(x1 ⊕ y1, . . . , xn ⊕ yn) + f(o, . . . , o) = f(x1, . . . , xn)⊕ f(y1, . . . , yn), (2)

where o is the neutral element with respect to ⊕.
Note that for any j, 1 6 j 6 m−1, the function xpj is an automorphism

of the group G. Thus if (Q, f) is a quasigroup and f is quasi-linear, then the
quasigroup is affine. For the case n = 2 this fact was noticed by V. L. Yugay
in [27].

The definition of a quasi-linear function in terms of relation preserving
can be extended to the case of arbitrary values of k and arbitrary group G;
however the classes specified by relations from the extension will not be
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maximal. Assume that G′ = (Ek,+) is an Abelian group, λG′ is the relation
of the arity 4 specified by the relation

λG′ := {(a, b, c, d)T ∈ E4
k | a+ b = c+ d}.

A function preserving λG′ will be referred to as weakly quasi-linear. It can
be easily seen that a function is weakly quasi-linear if and only if it satisfies
the identity (2) for the operation +. The proof literally repeats the proof
of the second equivalence in [21, Part II, Lemma 5.2.4.1]. Use this fact to
establish the following.

Lemma 3.22. A quasigroup (Ek, f) is affine if and only if the function f
is weakly quasi-linear.

Poof. Suppose thatG′ = (Ek,+) is an Abelian group, α1, . . . , αn ∈ Aut(G′),
c ∈ Ek, f(x1, . . . , xn) ≡ α1(x1) + . . . + αn(xn) + c. Then for any tuples
(u1, . . . , un), (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn) such that ui+xi = yi+zi,
i = 1, . . . , n, it holds that

f(u1, ..., un)+f(x1, ..., xn)=α1(u1)+...+αn(un)+c+α1(x1)+...+αn(xn)+c
=α1(u1+x1)+...+αn(un+xn)+c+c = α1(y1+z1)+...+αn(yn+zn)+c+c
=α1(y1)+...+αn(yn)+c+α1(z1)+...+αn(zn)+c=f(y1, ..., yn)+f(z1, ..., zn),

so f is weakly quasi-linear.
Conversely, assume that f is weakly quasi-linear with respect to an

Abelian group G′ = (Ek,+). Let c = f(o, . . . , o). For i = 1, . . . , n select
ai1, . . . , a

i
n ∈ Ek so that f(ai1, . . . , a

i
i−1, o, a

i
i+1, . . . , a

i
n) = o (such values exist

by definition of a quasigroup) and set αi(x) = f(ai1, . . . , a
i
i−1, x, a

i
i+1, . . . , a

i
n).

Consider the tuples (ai1, ..., a
i
i−1, x, a

i
i+1, ..., a

i
n), (ai1, ..., a

i
i−1, y, a

i
i+1, ..., a

i
n),

(ai1, ..., a
i
i−1, x + y, aii+1, ..., a

i
n) and (ai1, ..., a

i
i−1, o, a

i
i+1, . . . , a

i
n). Note that

componentwise sums of the first two tuples and the last two tuples coincide.
Thus
αi(x+ y)
= f

(
ai1, . . . , a

i
i−1, x+ y, aii+1, . . . , a

i
n

)
+ f

(
ai1, . . . , a

i
i−1, o, a

i
i+1, . . . , a

i
n

)
= f

(
ai1, . . . , a

i
i−1, x, a

i
i+1, . . . , a

i
n

)
+f

(
ai1, . . . , a

i
i−1, y, a

i
i+1, . . . , a

i
n

)
= αi(x) + αi(y),

so αi ∈ Aut(G′), i = 1, . . . , n.
Finally show that f(x1, . . . , xn) = α1(x1) + . . .+ αn(xn) + c. Indeed,

f(x1, . . . , xn) = f(x1, . . . , xn) + f
(
0, a12, . . . , a

1
n

)
= f

(
x1, a

1
2, . . . , a

1
n

)
+ f(0, x2, . . . , xn) = α1(x1) + f(0, x2, . . . , xn)
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= α1(x1) + f(0, x2, . . . , xn) + f
(
a21, 0, a

2
3, . . . , a

2
n

)
= α1(x1) + f

(
a21, x2, a

2
3, . . . , a

2
n

)
+ f(0, 0, x3, . . . , xn)

= α1(x1) + α2(x2) + f (0, 0, x3, . . . , xn) = . . . =
= α1(x1) + . . .+ αn−1(xn−1) + f(0, . . . , 0, xn)
= α1(x1) + . . .+ αn−1(xn−1) + f(0, . . . , 0, xn) + f

(
an1 , . . . , a

n
n−1, 0

)
= α1(x1) + . . .+ αn−1(xn−1) + f

(
an1 , . . . , a

n
n−1, xn

)
+ f(0, . . . , 0)

= α1(x1) + . . .+ αn(xn) + c. �

The fact that the set of all constant functions and a quasigroup function
may be contained only in classes specified by relations from the families Uk
or Lk yields the following lemma.

Corollary 3.23. If a quasigroup is affine over a group G that is not an
elementary p-group, then this quasigroup is non-simple.

This fact is a generalization of the first lemma of [2, Proposition 3.2] for
the case n > 2.

Remark 3.24. Non-affinity is a crucial property for cryptographic appli-
cations. For the case n = 2 it is known that solvability of a system of
equations over a quasigroup is decidable in polynomial time if and only if
the quasigroup is affine; otherwise the problem is NP-complete [20, Corol-
lary 3.17].

Remark 3.25. Similarly to the case of simplicity, almost all 2-quasigroups
are not isotopic to affine quasigroups (see [10]). To the best of our knowledge
the problem for n > 2 is uninvestigated.

Remark 3.26. Affinity of a 2-quasigroup can be decided with complexity
O
(
k2 log k

)
([13]). In the case n > 2 the complexity is O (kn) for fixed n

and k →∞ (see [12]).

4. Main results

The lemmas 3.2, 3.4, 3.9 and 3.18 obtained in the previous section directly
imply the following statements.

Theorem 4.1. A quasigroup (Q, f) of the arity n is polynomially complete
if and only if f is not quasilinear and does not preserve any non-trivial
equivalence relation, or, equivalently, if the quasigroup is simple and non-
affine.
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Corollary 4.2. Polynomial completeness of a quasigroup of the arity n can
be decided with complexity O

(
kn+1

)
for fixed n and k →∞.

Theorem 4.3. A quasigroup (Q, f) of the arity n is complete if and only if
f is not quasi-linear and autodual and does not preserve any central relation
of the arity 1 and any non-trivial equivalence relation; equivalently, if the
quasigroup is simple and non-affine, does not have proper subquasigroups
and has a trivial automorphism group.

Remark 4.4. Efficient completeness decision can be obtained by construct-
ing an efficient procedure for deciding whether the automorphism group is
trivial.

5. Conclusion

Polynomial completeness and completeness of n-ary quasigroups are impor-
tant properties from cryptographic point of view. In our paper we have
obtained criteria for polynomial completeness and completeness in terms
of maximal classes of k-valued logics. We have also discussed the relation-
ship between maximal classes and various quasigroup properties and the
complexity of deciding these properties.

The goals for future research include extending results which are known
only for the case n = 2 to the case n > 2 and investigating the complexity
of deciding whether the automorphism group of a quasigroup is trivial.

Acknowledgments. The authors thank D.N. Zhuk and A.E. Pankratiev
for fruitful discussions and valuable comments.
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