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Completely regular R-semirings

and completely regular L-semirings

Moumita Bag, Sunil Kumar Maity and Mridul Kanti Sen

Abstract. In [6] it was shown that a semiring is completely regular semiring if and

only if it is a b-lattice of completely simple semirings. In this paper, we generalize

this concept and introduce completely regular R-semiring, completely regular L-semiring

and we show that a semiring is completely regular semiring if and only if it is both a

completely regular L-semiring and a completely regular R-semiring. Moreover, we show

that a semiring is a completely regular R-semiring (completely regular L-semiring) if and

only if it is a b-lattice of completely simple R-semirings (completely simple L-semirings).

1. Introduction and preliminaries

Structure of a regular semigroup is well known and Green’s equivalence re-
lations [3] have vital role in the determination of this structure. Completely
regular semirings were introduced and characterized in [6]. A semiring is
completely regular semiring if and only if it is disjoint union of skew-rings
and also if and only if it is a b-lattice of completely simple semirings (see
[6]). Due to their rich structure, it is natural to search for classes of semir-
ings close to completely regular semirings. In this paper, we introduce
new classes of semirings by imposing some conditions on the elements of a
semiring whose additive reduct is a regular semigroup. These new classes
of semirings can be considered as the generalization of completely regular
semirings [6].

By a semiring we mean here an algebraic structure (S,+, ·) consisting
of a non-empty set S together with two binary operations ‘+’ and ‘·’ (called
addition and multiplication respectively) defined on S such that both the
reducts (S,+) and (S, ·) are semigroups and all elements a, b, c ∈ S satisfy
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a(b+ c) = ab+ac and (a+ b)c = ac+ bc. For briefness, we sometimes write
only S instead of (S,+, ·) and we simply write ab instead of writing a · b for
any two elements a, b in a semiring S.

A semiring S is said to be additively commutative if a+ b = b+ a for all
a, b ∈ S. A semiring (S,+, ·) is called an additively regular semiring if for
every element a ∈ S, there exists an element x ∈ S such that a+x+a = a.
Additively regular semirings were first studied by J. Zeleznekow [7].

Let a be an element in a semiring S. Then an element x ∈ S satisfying
a + x + a = a and x + a + x = x is said to be an additive inverse of a. A
semiring (S,+, ·) is said to be a completely regular semiring [6] if for each
element a ∈ S, there exists an element x ∈ S such that a + x + a = a,
a + x = x + a and a(a + x) = a + x. A semiring (S,+, ·) is called an
idempotent semiring if both the reducts (S,+) and (S, ·) are bands, i.e.
a + a = a = a · a for all a ∈ S. According to Grillet [2], a skew-ring is
a semiring (S,+, ·) such that the additive reduct (S,+) is a group. If a
semiring S is such that the additive reduct (S,+) is a semilattice and the
multiplicative reduct (S, ·) is a band, then S is called a b-lattice.

A non-empty subset I of a semiring S is a left ideal of S if a+ b, ra ∈ I
for all a, b ∈ I and for all r ∈ S. A right ideal is defined dually. A non-
empty subset I of a semiring S is said to be an ideal of S if it is a left ideal
of S as well as a right ideal of S. If I is a left ideal of a semiring S such
that either a+x ∈ I or x+a ∈ I, where a ∈ I and x ∈ S, imply x ∈ I, then
I is called a left k-ideal of S. A right k-ideal is defined dually. An ideal I
of a semiring S is said to be a k-ideal of S, if either a+ x ∈ I or x+ a ∈ I,
where a ∈ I and x ∈ S, imply x ∈ I. A mapping Φ : S −→ T between two
semirings S and T is called a semiring homomorphism if (a+b)Φ = aΦ+bΦ
and (a · b)Φ = aΦ · bΦ for all a, b ∈ S.

Throughout this paper, E+(S) denotes the set of all additive idempo-
tents of the semiring S and the set of all additive inverses of an element
a ∈ S, if exists, is denoted by V +(a). Also, for all a ∈ S and for any n ∈ N,
we write na = a+ a+ · · ·+ a

︸ ︷︷ ︸

n−copies

.

As usual, we denote the Green’s relations on the semiring (S,+, ·) by
L, R, D, J and H and correspondingly, the L-relation, R-relation, D-
relation, J -relation and H-relation on (S,+) are denoted by L+, R+, D+,
J + and H+ respectively. In fact, the relations L+, R+, D+, J + and H+

are all congruence relations on the multiplicative reduct (S, ·). Thus if any
one of these happens to be a congruence on (S,+), it will be a semiring
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congruence on the semiring (S,+, ·). A congruence ρ on a semiring S is
called a b-lattice congruence if S/ρ is a b-lattice. A semiring S is called a
b-lattice Y of semirings Sα (α ∈ Y ) if S admits a b-lattice congruence ρ
such that Y = S/ρ and each Sα is a ρ-class. For any a ∈ S, we let H+

a be
the H+-class in (S,+) containing a. For other notations and symbols not
given in this paper, the reader is referred to Golan [1], Howie [3], Petrich
and Reilly [5].

2. Completely regular R-semirings

and completely regular L-semirings

In this section, we introduce completely regular R-semirings and completely
regular L-semirings and study their properties.

Definition 2.1. We call a semiring (S,+, ·) a completely regular R-semiring

if for each a ∈ S, there exists x ∈ S such that a+ x+ a = a and a(a+ x) =
(a+ x)a = a+ x = 2a+ 2x.

There are plenty of examples of completely regular R-semirings. For
example, every skew-ring, every ring, every distributive lattice and every
idempotent semiring are completely regular R-semirings. Moreover, from
the definition, it is clear that every completely regular semiring is a com-
pletely regular R-semiring, but the converse may not be true in general.
This follows from the following example.

Example 2.2. Suppose S = 2Z×2Z such that (a, b)+(c, d) = (c, b+d) and
(a, b)(c, d) = (ac, bd) for all (a, b), (c, d) ∈ S. Then S is an additively regular
semiring with respect to the given operations. For any p = (a, b) ∈ S, there
is an element q = (0,−b) ∈ V +(p) such that (i) p + q + p = p and (ii)
p(p + q) = (p + q)p = p + q = 2p + 2q. Hence S is a completely regular
R-semiring. Note that for p = (a, b) ∈ S, we have to choose q = (0,−b) so
that the properties (i) and (ii) hold. But then p + q 6= q + p. Therefore,
S is not a completely regular semiring. Also note that S is not a quasi
completely regular semiring [4], not an idempotent semiring, not a ring, not
a skew-ring and not even a distributive lattice. Now, for p = (a, b) ∈ S, if
we choose z = (a,−b), then p+ z+ p = p and p+ z = z+ p, but z does not
satisfy the property p(p+ z) = (p+ z)p = p+ z = 2p+ 2z. From this, it at
once follows that (S,+) is a completely regular semigroup but the semiring
(S,+, ·) is not a completely regular semiring. Therefore, a semiring whose
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additive reduct is a completely regular semigroup may not be a completely
regular semiring.

The following theorem characterizes completely regular R-semirings.

Theorem 2.3. A semiring S is a completely regular R-semiring if and only

if for each a ∈ S, there exists an element y ∈ V +(a) such that a(a + y) =
(a+ y)a = a+ y = 2a+ 2y.

Proof. First suppose that S is a completely regular R-semiring. Then for
any element a ∈ S, there exists an element x ∈ S such that a + x + a = a
and a(a + x) = (a + x)a = a + x = 2a + 2x. Let y = x + a + x. Then
clearly y ∈ V +(a). Now, a(a + y) = a(a + x + a + x) = a(a + x) =
a + x = a + (x + a + x) = a + y. Similarly, (a + y)a = a + y. Finally,
2a+2y = 2a+2(x+a+x) = a+(a+x+a)+x+x+a+x = 2a+2x+a+x =
a+ x+ a+ x = a+ y. Therefore, a(a+ y) = (a+ y)a = a+ y = 2a+ 2y.

The converse is obvious.

Remark 2.4. In a semiring S, if for an element a ∈ S there exists an
element x ∈ S such that x ∈ V +(a), then both a + x and x + a ∈ E+(S).
But the additive idempotent a + x mainly plays the crucial role in the
definition of completely regular R-semiring. Instead of a+x, if we consider
the additive idempotent x+ a in a similar way, then we call the semiring a
completely regular L-semiring.

Definition 2.5. A semiring S is said to be a completely regular L-semiring

if for each a ∈ S, there exists an element x ∈ S such that a + x + a =
a, a(x+ a) = (x+ a)a = x+ a = 2x+ 2a.

Similar to Theorem 2.3, we can prove the following result.

Theorem 2.6. A semiring S is a completely regular L-semiring if and only

if for each a ∈ S, there exists an element y ∈ V +(a) such that a(y + a) =
(y + a)a = y + a = 2y + 2a.

Remark 2.7. For an element a in a semiring S, we denote

IL(a) = {x ∈ S : x ∈ V +(a), a(x+ a) = (x+ a)a = x+ a = 2x+ 2a}

and

IR(a) = {x ∈ S : x ∈ V +(a), a(a+ x) = (a+ x)a = a+ x = 2a+ 2x}.

Then S is completely regular L-semiring if and only if IL(a) 6= ∅ and com-
pletely regular R-semiring if and only if IR(a) 6= ∅ for all a ∈ S.
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Remark 2.8. It is worth mentioning that IL(a) or IR(a) may contain more
than one element. For instance, if we consider the semiring S = Z×Z with
the operations given as (a, b) + (c, d) = (c, b + d) and (a, b)(c, d) = (ac, bd)
for all (a, b), (c, d) ∈ S, then for any a ∈ Z, we have IR((1, a)) = {(x,−a) :
x ∈ Z}.

3. Properties of completely regular R-semirings and

completely regular L-semirings

Here we mainly discuss the structure and properties of completely regular
R-semiring and completely regular L-semiring.

First we state the following results from [5, Lemma I.7.9].

Proposition 3.1. For any H-class H of a semigroup S, the following are

equivalent:

(i) H is a group.

(ii) H contains an idempotent.

(iii) There exist elements a, b ∈ H with ab ∈ H.

(iv) HH ⊆ H.

Using the above results, we now establish some properties of completely
regular R-semiring.

Theorem 3.2. If S is a completely regular R-semiring, then the following

properties hold:

(i) Every R+-class of S is a subsemiring.

(ii) Every H+-class is a subgroup of (S,+). Hence (S,+) is a completely

regular semigroup.

Proof. (i). Let a be an element in a completely regular R-semiring S. Then
there exists an element y ∈ V +(a) such that a+ y + a = a and a(a+ y) =
(a+y)a = a+y = 2a+2y. Now, a = a+y+a = a(a+y)+a = a2+ay+a
and a2 = a(a+y+a) = a(a+y)+a2 = a+y+a2 imply that a2R+ a. Again,
2a+ 2y+ a = a+ y+ a = a imply 2aR+ a. Let b, c ∈ R+

a , where R+
a is the

R+-class containing a ∈ S. Then b = a+s1, a = b+s2, c = a+s3, a = c+s4
for some s1, s2, s3, s4 ∈ S. Now, a + b = 2a + s1, 2a = a + b + s2 imply
that (a + b)R+ 2aR+a and thus a + b ∈ R+

a . Similarly, we can show that
b+ c ∈ R+

b = R+
a . Again, bc = (a+ s1)(a+ s3) = a2 + as3 + s1a+ s1s3 and
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a2 = (b+ s2)(c+ s4) = bc+ bs4 + s2c+ s2s4 imply that bcR+ a2R+ a and
thus bc ∈ R+

a . Therefore, each R+-class is a subsemiring of S.

(ii). Let a be an element in a completely regular R-semiring S. Then
there exists an element y ∈ V +(a) such that a+ y + a = a and a(a+ y) =
(a+ y)a = a+ y = 2a+ 2y. It is easy to verify that aR+ 2a, yR+ (y + a).
Similarly, for the element y ∈ S, we can show that yR+ 2y. Therefore, we
have (y+ a)R+ 2y. Let e = 2y+2a. Then e+ e = (2y+2a) + (2y+2a) =
2y + (2a + 2y + a) + a = 2y + 2a = e and thus e ∈ E+(S). Again,
e+2y = 2y+2a+2y = 2y+a+y = 2y implies eR+ 2yR+ (y+a) and thus
y + a = e + u for some u ∈ S. From this, we have e + y + a = y + a, i.e.,
y+ a = e+ y+ a = 2y+2a+ y+ a = 2y+2a = e, i.e., 2y+2a = e = y+ a.

Again, let f = a + 2y + a. Then f + f = a + 2y + a + a + 2y + a =
a+2y+2a+2y+a = a+y+a+2y+a = a+2y+a = f , hence f ∈ E+(S).
Now a+f = 2a+2y+a = a implies aL+ f . Also, f+a = (a+2y+a)+a =
a+2y+2a = a+y+a = a implies aR+ f . Therefore, aH+ f , i.e., H+

a , the
H+-class containing the element a contains an idempotent of the semigroup
(S,+). Hence by Proposition 3.1, it follows that H+

a is a subgroup of (S,+)
and consequently, (S,+) is a completely regular semigroup.

Corollary 3.3. If S is a completely regular R-semiring and a ∈ S, then

a+ 2y + a = a+ 2z + a ∈ E+(S) for any two elements y, z ∈ IR(a).

Proof. Let a ∈ S and y ∈ IR(a). Then from the proof of Theorem 3.2, it
follows that f = a+2y+a ∈ E+(S) is the identity element of the subgroup
(H+

a ,+). Similarly, for any other element z ∈ IR(a), we can prove that
a + 2z + a ∈ E+(S) is also an identity element of the subgroup (H+

a ,+).
From the uniqueness of the identity element, it follows that a + 2y + a =
a+ 2z + a.

Remark 3.4. If S is a completely regular R-semiring, then for every a ∈ S
and y ∈ IR(a), the unique element a + 2y + a ∈ E+(S) is denoted by 0a.
Therefore, for a ∈ S and for any y ∈ IR(a), 0a = a+ 2y + a is the identity
element of the group (H+

a ,+).

Similarly as Theorem 3.2, we can prove the following result for com-
pletely regular L-semiring.

Theorem 3.5. If S is a completely regular L-semiring, then the following

properties hold:

(i) Every L+-class of S is a subsemiring.

(ii) Every H+-class is a subgroup of (S,+). Hence (S,+) is a completely
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regular semigroup.

Remark 3.6. From Theorem 3.2 and Theorem 3.5, we conclude that in a
completely regular R-semiring each R+-class and in a completely regular
L-semiring each L+-class are subsemirings. Moreover, for both of these
semirings the additive reduct is a completely regular semigroup. The names
of our newly defined semirings are chosen according to their structures.
Since the additive reduct is a completely regular semigroup, it follows that
in a completely regular R-semiring and also in a completely regular L-
semiring, D+ = J +.

Theorem 3.7. If S is a completely regular R-semiring, then the relation

J + is a b-lattice congruence on S and each J +–class is a subsemiring of S.

Proof. Since S is a completely regular R-semiring, so by Theorem 3.2, it
follows that (S,+) is a completely regular semigroup and hence we find from
the Theorem II.1.4 in [5] that J + is a semilattice congruence on (S,+)
and obviously each J +-class is a subsemigroup of (S,+). To complete
the proof, it remains to show that J + is a band congruence on (S, ·) and
each J +-class is a subsemigroup of (S, ·). Clearly, J + is a congruence on
(S, ·). Let a ∈ S. Then there exists an element y ∈ V +(a) such that
a(a + y) = (a + y)a = a + y = 2a + 2y. Now, a = a + y + a = (a +
y) + (a + y) + a = (a + y) + a(a + y) + a = (a + y) + a2 + (ay + a) and
a2 = a(a+y+a+y+a) = a(a+y)+a(a+y)+a2 = (a+y)+a+(y+a2) imply
that a2 J + a. Hence J + is a band congruence on (S, ·) and therefore, J + is
a b-lattice congruence on the semiring S. Finally, to show each J +-class is
a subsemigroup of (S, ·), let b, c ∈ J+

a , where J+
a is the J +-class containing

an element a ∈ S. Then bJ + a and cJ + a. Since J + is a band congruence
on (S, ·), it follows that bcJ + a2J + a and therefore, bc ∈ J+

a . Thus each
J +-class is a subsemigroup of (S, ·) and consequently, each J +-class is a
subsemiring of S.

Similarly as Theorem 3.7, we can prove the following result for com-
pletely regular L-semiring.

Theorem 3.8. If S is a completely regular L-semiring, then each J +-class

is a subsemiring of S and the relation J + is a b-lattice congruence on S.

Now we state some results for completely regular R-semirings and it
can be verified in similar ways that analogous results hold for completely
regular L-semirings.
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Lemma 3.9. Let a be an element in a completely regular R-semiring. Then

the following properties hold:

(i) 0e = e for all e ∈ E+(S).

(ii) E+(S) = {0a : a ∈ S}.

Proof. (i). Since 0e is the unique identity element of the group (H+
e ,+), so

clearly 0e = e for all e ∈ E+(S).

(ii). Obviously, 0a ∈ E+(S) for all a ∈ S as 0a is the identity of the
group (H+

a ,+). Again, by (i), we have 0e = e for all e ∈ E+(S). Hence
E+(S) = {0a : a ∈ S}.

Lemma 3.10. If S is a completely regular R-semiring, then for all a ∈ S
and y ∈ IR(a), the following properties hold:

(i) y(y + a) = (y + a)y.

(ii) for all n ∈ N, na+ ny = a+ y and ny + na = y + a.

(iii) (0a)
2 = 0a2 = a0a = 0aa.

(iv) 0y = y + 2a+ y.

(v) 0a + 0y = 0a+y and 0y + 0a = 0y+a.

(vi) 0y ∈ IR(0a).

Proof. (i). Suppose a ∈ S and y ∈ IR(a). Then y2 = (y + a + y)y =
(y2+ay)+y2 implies (y2+ay)R+ y2R+ y. Also, y2+ay = y2+a(y+a+y) =
(y2 + ay + a) + y and y = y + a + y = y + a(a + y) = y + a2 + ay =
y+a2+(a+y+a)y = (y+a2+ay)+y2+ay imply that (y2+ay)L+ y. Hence
(y2 + ay)H+ y. Since (H+

y ,+) is a group and y2 + ay = (y + a)y ∈ E+(S),
it follows that the identity of (H+

y ,+) is 0y = y2+ay = (y+a)y. Similarly,
we can show that 0y = y(y + a). Consequently, y(y + a) = (y + a)y.

(ii). Since y ∈ IR(a), we have 2a + 2y = a + y. Now, 3a + 3y =
a + (2a + 2y) + y = a + (a + y) + y = 2a + 2y = a + y. Similarly, by
induction, we can prove that na+ ny = a+ y for all n ∈ N.

Again, from the proof of Theorem 3.2, it follows that 2y + 2a = y + a
and hence similar to na+ ny = a+ y, we can prove that ny + na = y + a.

(iii). Clearly, H+ is a congruence on (S, ·). Again, for any a ∈ S, we
have aH+ 0a. This implies a2H+ a0aH

+ 0aaH
+ (0a)

2. Since each H+-class
contains unique additive idempotent, therefore, we must have (0a)

2 = 0a2 =
a0a = 0aa.

(iv). Let a ∈ S and y ∈ IR(a). Then it is easy to verify that e =
y + 2a + y ∈ E+(S). Moreover, e + y = y + 2a + 2y = y + a + y = y and
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y + e = 2y + 2a+ y = y + a+ y = y imply that yH+ e. Therefore, e is the
identity element of the group (H+

y ,+) and hence 0y = e = y + 2a+ y.

(v). Now, 0a+0y = (a+2y+a)+(y+2a+y) = a+2y+(a+y+a)+a+y =
a+2y+2a+y = a+y+a+y = a+y. Since a+y ∈ E+(S), so 0a+y = a+y.
Therefore, 0a + 0y = 0a+y. Similarly, we can prove that 0y + 0a = 0y+a.

(vi). For a ∈ S, let y ∈ IR(a). Then 0a + 0y + 0a = a + y + 0a =
a + y + (a + 2y + a) = a + 2y + a = 0a and 0y + 0a + 0y = y + a + 0y =
y + a + (y + 2a + y) = y + 2a + y = 0y. Therefore, 0y ∈ V +(0a). Also,
0a(0a + 0y) = (a + 2y + a)(a + y) = a(a + y) + 2y(a + y) + a(a + y) =
a(a + y) + y(a + y) + a(a + y) = a(a + y) = a + y = 0a + 0y. Similarly,
we can show that (0a + 0y)0a = 0a + 0y and obviously 0a + 0y = 20a + 20y.
Therefore, 0y ∈ IR(0a).

Theorem 3.11. Let S be a completely regular R-semiring. Then S is a

completely regular semiring if and only if (0a)
2 = 0a, for all a ∈ S.

Proof. First we assume that S is a completely regular R-semiring such that
(0a)

2 = 0a, for all a ∈ S. Since S is a completely regular R-semiring, then
by Theorem 3.2 (ii), it follows that H+

x is a subgroup of (S,+), for all
x ∈ S. Since 0a2 = (0a)

2 = 0a, for all a ∈ S, we must have a2H+ a, for
all a ∈ S. Let b, c ∈ H+

a . Then bH+ cH+ a. Since H+ is a congruence on
(S, ·), so bcH+ a2H+ a and thus bc ∈ H+

a . Hence H+
a is a skew-ring and

therefore, S is disjoint union of skew-rings. Consequently, by [6, Theorem
3.6], it follows that S is a completely regular semiring.

The converse statement is obvious.

Combining Lemma 3.9 (ii) and Theorem 3.11, we have the following
corollary.

Corollary 3.12. A completely regular R-semiring is a completely regular

semiring if and only if every additive idempotent is also a multiplicative

idempotent.

Theorem 3.13. Let S be a completely regular R-semiring. Then S is a

skew-ring if and only if 0a = 0b, for all a, b ∈ S.

Proof. Since S is a completely regular R-semiring, so (S,+) is a regular
semigroup. Again, since 0a = 0b, for all a, b ∈ S, it follows that E+(S) is
a singleton set. This implies (S,+) is a regular semigroup with only one
additive idempotent element. Therefore, (S,+) is a group and hence S is a
skew-ring.
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The second part is obvious.

Corollary 3.14. A completely regular R-semiring is a skew-ring if and only

if it contains exactly one additive idempotent.

Theorem 3.15. Let ψ : S −→ T be a semiring homomorphism from a

completely regular R-semiring S into a semiring T . Then

(i) Sψ is also a completely regular R-semiring.

(ii) 0sψ = 0sψ, for all s ∈ S.

Proof. (i). Suppose t ∈ Sψ. Then there exists some s ∈ S such that t = sψ.
As S is a completely regular R-semiring, so there exists x ∈ V +(s) ⊆ S such
that s(s + x) = (s + x)s = s + x = 2s + 2x. Let xψ = y. Then one can
easily prove that y ∈ V +(t) such that t(t+ y) = (t+ y)t = t+ y = 2t+ 2y.
Consequently, Sψ is a completely regular R-semiring.

(ii). For any element s ∈ S, there exists an element x ∈ V +(s) such
that s(s + x) = (s + x)s = s + x = 2s + 2x. Then 0s = s + 2x + s. Let
sψ = t and xψ = y. Then it is easy to verify that y ∈ V +(t) such that
t(t+ y) = (t+ y)t = t+ y = 2t+2y. Then by definition 0t = t+2y+ t and
thus 0sψ = sψ + 2xψ + sψ = (s + 2x + s)ψ = 0sψ. Therefore, 0sψ = 0sψ,
for all s ∈ S.

Corollary 3.16. If ρ be a congruence on a completely regular R-semiring

S such that a ρ b for some a, b ∈ S, then 0a ρ 0b.

Proof. Consider the natural epimorphism ψ : S −→ S/ρ defined by aψ =
aρ, for all a ∈ S. Now, 0aρ = 0aψ = 0aψ = 0aρ = 0bρ = 0bψ = 0bψ = 0bρ
implies 0a ρ 0b.

Proposition 3.17. Every left (right) k-ideal of a completely regular R-

semiring is also a completely regular R-semiring. Hence every k-ideal of a

completely regular R-semiring is also a completely regular R-semiring.

Proof. Suppose S be a completely regular R-semiring, K be a left k-ideal
of S and a ∈ K. Then there exists an element x ∈ V +(a) ⊆ S such that
a(a + x) = (a + x)a = a + x = 2a + 2x. Now, a ∈ K implies a2, xa ∈ K,
i.e., a + x = (a + x)a = a2 + xa ∈ K. Since K is a left k-ideal of S,
so a, a + x ∈ K implies x ∈ K. Consequently, K is a completely regular
R-semiring. Similarly, we can show that every right k-ideal of S and every
k-ideal of S are also completely regular R-semirings.
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Proposition 3.18. Let (S,+, ·) be a semiring such that (S,+) is a semi-

lattice. Then S is a completely regular R-semiring if and only if S is a

completely regular semiring.

Proof. First suppose S is a completely regular R-semiring such that (S,+)
is a semilattice. Then for any a ∈ S, there exists an element x ∈ V +(a)
such that a(a+ x) = (a+ x)a = a+ x. Since (S,+) is a semilattice, so we
have a = a+ x+ a = a+ a+ x = a+ x. Hence from a(a+ x) = a+ x we
have a2 = a. Therefore, S is a b-lattice and thus S is a completely regular
semiring.

The converse part is obvious.

Proposition 3.19. Let (S,+, ·) be a completely regular R-semiring such

that (S, ·) is a band. Then S is a completely regular semiring.

Proof. Since S is a completely regular R-semiring such that a2 = a for all
a ∈ S, so it follows that a2H+ a and hence similar to the proof of Theorem
3.11, we can conclude that each H+-class is a skew-ring. Therefore, S is a
completely regular semiring.

We now recall a result from Petrich and Reilly [5, Lemma II.1.6].

Lemma 3.20. The following conditions on a semigroup S are equivalent:

(i) S is a rectangular band.

(ii) S is regular and satisfies the identity ab = axb for all a, b, x ∈ S.

(iii) S is a completely simple band.

Theorem 3.21. Let (S,+, ·) be a completely regular R-semiring whose mul-

tiplicative reduct (S, ·) is a completely simple semigroup. Then (S, ·) is a

rectangular band if and only if S is a completely regular semiring.

Proof. If (S, ·) is a rectangular band, then by Proposition 3.19, we conclude
that S is a completely regular semiring.

Conversely, if S is a completely regular semiring, then E+(S) 6= ∅.
Clearly, E+(S) is an ideal of (S, ·). Since (S, ·) is simple, so S = E+(S).
Therefore, every element of S is an additive idempotent and hence (S, ·) is
a band [6, Lemma 2.5]. Thus (S, ·) is a completely simple band and so by
Lemma 3.20, it follows that (S, ·) is a rectangular band.

Definition 3.22. A completely regular R-semiring (L-semiring) is said to
be a completely simple R-semiring (L-semiring) if J + = S × S.
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Theorem 3.23. The following conditions on a semiring S are equivalent:

(i) S is a completely regular R-semiring.

(ii) S is a b-lattice of completely simple R-semirings.

Proof. (i) ⇒ (ii). Since S is a completely regular R-semiring, so by Theo-
rem 3.2, it follows that (S,+) is a completely regular semigroup and there-
fore, J + is a semilattice congruence on (S,+). One can easily show that
J + is a congruence on (S, ·). Moreover, for any a ∈ S, (a2, a) ∈ R+ ⊆ J +

implies a2 J + a and thus J + is a b-lattice congruence on the semiring S.
Again, as (S,+) is a completely regular semigroup, it follows that each J +-
class is a completely simple subsemigroup of (S,+). To show each J +-class
is a subsemiring of S, let b, c ∈ J+

a , where J+
a is the J +-class containing an

element a ∈ S. Since b, c ∈ J+
a , there exist x, y, u, v, x1, y1, u1, v1 ∈ S such

that b = x+a+y, a = u+b+v, c = x1+a+y1, a = u1+c+v1. Now, bc =
(x+a+y)(x1+a+y1) = (xx1+xa+xy1+ax1)+a

2+(ay1+yx1+ya+yy1) and
a2 = (u+b+v)(u1+c+v1) = (uu1+uc+uv1+bu1)+bc+(bv1+vu1+vc+vv1).
Hence bcJ + a2 J + a. This shows that every J +-class is a subsemiring of
the semiring S. Finally, since S is a completely regular R-semiring, so
for each element u ∈ S, there exists an element v ∈ V +(u) such that
u(u + v) = (u + v)u = u + v = 2u + 2v. One can easily verify that
uJ + v and hence it follows that each J +-class is also a completely regular
R-semiring. Consequently, S is a b-lattice of completely simple R-semirings.

(ii) ⇒ (i). This is obvious.

Similaly as Theorem 3.23, we can prove the following result.

Theorem 3.24. The following conditions on a semiring S are equivalent:

(i) S is a completely regular L-semiring.

(ii) S is a b-lattice of completely simple L-semirings.

Proposition 3.25. A semiring is completely regular semiring if and only

if it is both a completely regular L-semiring as well as a completely regular

R-semiring.

Proof. If S is completely regular semiring, then from the definition it is
clear that S is both a completely regular L-semiring as well as a completely
regular R-semiring.

Conversely, suppose S is both completely regular L-semiring as well as
completely regular R-semiring. Then every L+-class and every R+-class of
S are semirings. Again, since (S,+) is a completely regular semigroup, so
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each H+-class is a subgroup of (S,+). To show each H+-class is a subsemi-
group of (S, ·), let b, c ∈ H+

a , where H+
a is the H+-class containing an ele-

ment a ∈ S. Then bH+ aH+ c. This implies bR+ aR+ c and bL+ aL+ c.
Therefore, bcR+ a2R+ a and bcL+ a2 L+ a and thus bcH+ a. Therefore,
bc ∈ H+

a and hence each H+-class is a semiring. Thus each H+-class is a
skew-ring and hence by [6, Theorem 3.6], it follows that S is a completely
regular semiring.
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