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Solvable and nilpotent ultra-groups

Monireh Aliabadi, Gholamreza Moghaddasi and Parvaneh Zolfaghari

Abstract We propose several characterizations of solvable ultra-groups and investigate

the Jordan-Hölder Theorem and the Zassenhaus Lemma, in ultra-groups. We also define

nilpotent ultra-groups by using the center of ultra-groups. Finally, we establish the

relation between nilpotent and solvable ultra-groups. Our results aim to serve as a

bridge between groups and ultra-groups.

1. Introduction

Solvable and nilpotent groups are two fundamental classes of groups in
algebra, and they play a critical role in the study of Lie groups, Galois
groups and others [2, 4]. In this paper, we focus on exploring the concepts
solvability and nilpotency and their relation for ultra-groups. Ultra-groups
are defined on the use of transversals in groups. Moghaddasi et al. built
upon the concept of hypergroups and transversals to introduce the concept
ultra-groups [7, 8]. Tolue et al. [9] introduced the category of ultra-group
and investigated some properties of this category.

The organization of the paper is as follows. We first present some basic
definitions and results in ultra-groups. Next, we introduce the concept of
solvable ultra-groups and discuss some general concepts such as composition
series, subnormal series. Finally, we characterize the Zassenhaus Lemma
and generalize the Jordan-Hölder theorem for ultra-groups. In Section 3
we describe nilpotent ultra-groups and establish the relationship between
solvable and nilpotent ultra-group.

Our results can be used as a bridge between groups and ultra-groups.

The notation in this paper is as in [7] and [9].

A pair (A,B) of subsets of a group G is called transversal if the equality
ab = a′b′ implies a = a′ and b = b′, where a, a′ ∈ A, b, b′ ∈ B. It is not hard

2000 Mathematics Subject Classification: 16B50, 20F16, 20D35, 20F05

Keywords:Ultra-group, solvable ultra-group, nilpotent ultra-group, commutator.



156 M. Aliabadi, Gh. Moghaddasi and P. Zolfaghari

to deduce that a pair (H,M) of subgroups of a group G is transversal if and
only ifH∩M = {e}, where e is the identity of the groupG. Furthermore, for
a subgroupH and a subsetM of a groupG we conclude that the pair (H,M)
is a transversal if and only if M ∩Hg contains at most one element, for all
g ∈ G. A subset M of a group G is called (right unitary) complementary

set with respect to a subgroup H, if for any elements m ∈ M and h ∈ H
there exist unique elements h

′

∈ H and m
′

∈M such that mh = h
′

m
′

. We
denote h′ and m′ by mh and mh, respectively. Similarly for any elements
m1,m2 ∈ M there exist unique elements [m1,m2] ∈ M and (m1,m2) ∈ H
such that m1m2 = (m1,m2)[m1,m2]. There are a(−1) ∈ H and a[−1] ∈ M
such that a−1 = a(−1)a[−1], since G = HM .

Definition 1.1. [7] Let M be a transversal set of a subgroup H over a
group G. The set M together with a binary operation α : M ×M −→ M
and a family of unary operations βh :M −→M defined by α((m1,m2)) :=
[m1,m2] and βh(m) := mh for all h ∈ H is called a right ultra-group. An
ultra-group M is called abelian, if for all elements a, b in M , [a, b] = [b, a].

We use the notation HM to represent the right ultra-group of subgroup
H which we briefly display with the notation M .

Definition 1.2. [7] Let M be an ultra-group of a subgroup H of a group
G. A subset K ⊆ M which contains the identity element of the group G,
is called a subultra-group of M , if K is closed under operations α and βh.
This is denoted by K < M .

Proposition 1.3. [7] Let M be an ultra-group of a subgroup H over a group

G. Then we have the following properties:

(i) ahh
′

= (ah)h
′

,

(ii) [a, b]h = [a(
bh), bh],

(iii) [[a, b], c] = [a(b,c), [b, c]],

(iv) eh = e, ae = a,

(v) [e, a] = a = [a, e],

(vi) [a[−1], a] = e = [a(a
(−1)), a[−1]],

for a, b, c ∈M and h, h′ ∈ H.

Definition 1.4. [8] A subultra-group N of an ultra-group M is called nor-

mal if [N, [a, b]] = [a, [N, b]] for all a, b ∈ M and is denoted by N ⊳M .
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According to the definition, every ultra-group M , has normal subultra-
group {e}. We note that an ultra-group M is normal subultra-group of
itself, whenever the left cancellation law be established for M (see [7]).

Lemma 1.5. [7] Let K be a subultra-group of an ultra-group M . Then for

a, b ∈M the following conditions are equivalent.

(i) a ∈ [K, b],

(ii) [K, a] = [K, b],

(iii) [a(b
(−1)), b[−1]] ∈ K.

Theorem 1.6. An ultra-group N is a normal subultra-group of M , if and

only if [[N, a] , [N, b]] = [N, [a, b]], for every a, b ∈M .

Proof. If N is a normal subultra-group then [[N, a] , [N, b]] = [N, [a, b]] for
every a, b ∈ M by Lemma 2.5 in [7]. Conversely, let [[N, a] , [N, b]] =

[N, [a, b]], for b = e we have [N, a] = [N, [a,N ]]. So
[
[a,N ]a

(−1)

, a[−1]
]
∈ N

and since |
[
[a,N ]a

(−1)

, a[−1]
]
|=| N | we have

[
[a,N ]a

(−1)

, a[−1]
]
= N .

Thus
[[
[a,N ]a

(−1)

, a[−1]
]
, a
]
= [N, a] and


[a,N ]

a(−1)(a[−1], a)︸ ︷︷ ︸
e ,

[
a[−1], a

]

︸ ︷︷ ︸
e




= [N, a]. So [a,N ] = [N, a] and [a, [N, b]] = [a, [b,N ]] =
[[
a(b,N)−1

, b
]
, N

]
=

[
N,

[[
a(b,N)−1

, b
]
, N

]]
= [N, [a, [b,N ]]]=


[N, a] , [N, [b,N ]]︸ ︷︷ ︸

[N,b]


=[[N, a] , [N, b]].

So [a, [N, b]]=[N, [a, b]], hence we get the result.

Definition 1.7. [7] Let Hi
Mi be an ultra-group of a subgroupHi over group

Gi, i = 1, 2 and ϕ be a group homomorphism between two subgroups H1

and H2. A function f : H1M1 −→ H2M2 is an ultra-group homomorphism

provided that for all m,m1,m2 ∈ H1M1 and h ∈ H1:

(i) f([m1,m2]) = [f(m1), f(m2)],

(ii) (f(m))ϕ(h) = f(mh).
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Theorem 1.8. (First isomorphism theorem) [7] Let f be a surjective ultra-

group homomorphism between two ultra-groups H1M1 and H2M2 and θ a

congruence over H1M1 such that θ ⊆ Kerf . If π :H1M1 −→ H1M1/θ is a

canonical homomorphism then there exists a homomorphism g : M1/θ →M2

satisfying gπ = f .

Theorem 1.9. (Second isomorphism theorem)[7] If N,N ′ are normal subultra-

groups of an ultra-group M such that N ⊆ N ′, then

M
N
N ′

N

∼=
M

N ′
.

Theorem 1.10. (Third isomorphism theorem) [7] If K is a subultra-group

of an ultra-group M and N is a normal subultra-group of M , then

K

K ∩N
∼=

[N,K]

N
.

2. Solvable ultra-groups

First, we present some definition similar that to what we have in group
theory and refer the readers to [4, 6].

Definition 2.1. A sequence M0,M1, . . . ,Mn of subultra-groups of M is
called subnormal series if Mn ⊳ . . . ⊳ M1 ⊳M0 =M . If all Mi are normal in
M , then the series is called normal.

Every ultra-group M has normal series {e} ⊳M . A subnormal series of
ultra-groups need not be normal. Let D8=〈a, b | a4 = b2 = e, (ab)2 = e〉
and H = {e}. The series D8 > {e, b, a2, a2b} > {e, b} > {e} is subnormal
but it is not normal, since {e, b} ⋪ D8.

Definition 2.2. Let M = M0 > M1 > . . . > Mn be a subnormal series of
ultra-groups. Each series

M =M0 > M1 > . . . > Mi > N > Mi+1 > . . . > Mn or

M =M0 > M1 > . . . > Mi > . . . > Mn > N

is called a one-step refinement of this series if N is a normal subultra-group
of Mi and if i < n, Mi+1 is normal in N . A refinement of a subnormal
series is subnormal series that obtained from the finite number of one-step
refinement.
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Definition 2.3. An ultra-group M is called simple if it has just the normal
subultra-group {e}. A subnormal series M = M0 > M1 > . . . > Mn = {e}
of an ultra-group is called a composition series if each quotient ultra-group
Mi

Mi+1
is simple for every 0 6 i 6 n− 1.

Definition 2.4. A subnormal series M = M0 > M1 > . . . > Mn = {e} of

ultra-group M is called a solvable series if each factor
Mi

Mi+1
is abelian.

Definition 2.5. An ultra-group M is called solvable if it has a subnormal
series M = M0 > M1 > . . . > Mn = {e} such that Mi+1 is normal in Mi

for every 0 6 i 6 n− 1 and
Mi

Mi+1
is an abelian ultra-group.

Theorem 2.6. Every subultra-group and every quotient ultra-group of a

solvable ultra-group is solvable.

Proof. The proof of the first part is similar to groups and we omit it. Now
let N is a normal subultra-group of a solvable ultra-group M . Hence M has
a solvable series as follow M = M0 > M1 > ... > Mn = {e}. Since N is a
normal subultra-group, [M,N ] is a subultra-group of M and N ⊆ [Mi, N ]
for every 0 6 i 6 n. Now consider the series:

M

N
=

[M,N ]

N
>

[M1, N ]

N
> ... >

[Mn, N ]

N
= N

such that every Mi is normal in Mi−1. We have:

[
[N,mi] ,

[
[N,mi−1] ,

[
N,m′

i−1

]]]
=

[
[N,mi] ,

[
N,

[
mi−1,m

′
i−1

]]]

=
[
N,

[
mi,

[
mi−1,m

′
i−1

]]]

=
[
N,

[
mi−1,

[
mi,m

′
i−1

]]]

=
[
[N,mi−1] ,

[
N,

[
mi,m

′
i−1

]]]

=
[
[N,mi−1] ,

[
[N,mi] ,

[
N,m′

i−1

]]]
.

Therefore
[Mi, N ]

N
is normal in

[Mi−1, N ]

N
.

Now, by Second and Third isomorphism theorems, for ultra-groups:
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[Mi−1, N ]

N
[Mi, N ]

N

≃
[Mi−1, N ]

[Mi, N ]
=

[Mi−1, [Mi, N ]]

[Mi, N ]
≃

Mi−1

Mi−1 ∩ [Mi, N ]

≃

Mi−1

Mi

Mi−1 ∩ [Mi, N ]

Mi

.

Since every
Mi−1

Mi

is abelian and
Mi−1 ∩ [Mi, N ]

Mi

is a normal subultra-group

of
Mi−1

Mi

we see that

Mi−1

Mi

Mi−1 ∩ [Mi, N ]

Mi

is abelian. Hence, every

[Mi−1, N ]

N
[Mi, N ]

N

is

abelian and
M

N
is solvable.

Theorem 2.7. Let N be a normal subultra-group of an ultra-group M . If

N and
M

N
are solvable, then M is solvable.

Proof. It is similar to what we have for groups.

Theorem 2.8. Let K and N be normal and solvable subultra-groups of M .

Then [K,N ] is a solvable subultra-group of M .

Proof. We have
[K,N ]

N
≃

K

K ∩N
by Third isomorphism theorem for ultra-

groups. Since K is solvable, therefore the quotient
K

K ∩N
is solvable by

Theorem 2.6 and consequently
[K,N ]

N
is solvable. On the other hand N

and
[K,N ]

N
are solvable, therefore [K,N ] is solvable by Theorem 2.7.

In [7] Moghaddasi et al. proved that if N is a normal subultra-group

of an ultra-group M , then every subultra-group of
M

N
is of the form

K

N
,

where K is a subultra-group of M containing N . On the other hand,
K

N
is

a normal subultra-group of
M

N
if and only if K is a normal subultra-group

of M . Thus, when M 6= N ,
M

N
is simple if and only if N is maximal in

the set of all normal subultra-groups L of M with L 6=M .
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Theorem 2.9. Let M be an ultra-group of a subgroup H over a group G.

Then

(i) Each finite ultra-group M has composition series.

(ii) Each refinement of a solvable series of ultra-group is a solvable

series.

(iii) A subnormal series of an ultra-group M is a composition series if

and only if it has no proper refinements.

Proof. (i). Let M1 be a maximal normal subultra-group of M , then
M

M1
is simple. Let M2 be a maximal normal subultra-group of M1 and so on.
Since M is finite, this process must be stopped. Let Mn = {e}, then
M =M0 > M1 > . . . > Mn = {e} is a composition series.

(ii). If
Mi

Mi+1
is abelian and Mi+1 ⊳ M ′ ⊳ Mi, then

M ′

Mi+1
is abelian

since it is a subultra-group of an ultra-group
Mi

Mi+1
and an ultra-group

Mi

M ′

is abelian since it is isomorphic to the quotient ultra-group

Mi

Mi+1

M ′

Mi+1

by the

Second isomorphism theorem.
(iii). Let M = M0 > M1 > . . . > Mn = {e} be a composition series.
Let M = M0 > M1 > . . . > Mi > M ′ > Mi+1 > . . . > Mn = {e} be a

refinement of this series. Since Mi+1 ⊳ M ′ ⊳ Mi, then
M ′

Mi+1
is a normal

subultra-group of
Mi

Mi+1
and every proper normal subultra-group of

Mi

Mi+1
has this form. Hence the result is obtained from the fact that in this case
Mi

Mi+1
is not simple and therefore is not composition series. Conversely if

M =M0 > M1 > . . . > Mn = {e} (1)

is a subnormal series then it has no proper refinement. Suppose this series is
not composition series. Thus there exist a subultra-group Mi such that Mi

is not maximal subultra-group of Mi−1 and therefore there exist a subultra-
group Mj such that Mi−1 6= Mj 6= Mi and Mj a normal subultra-group of
Mi−1 and Mi is a normal subultra-group of Mj . This is a proper refinement
of this series. A contradiction. Thus (1) is a composition series.



162 M. Aliabadi, Gh. Moghaddasi and P. Zolfaghari

Definition 2.10. Let M be an ultra-group. Two subnormal series S and T
are called equivalent if there is a one to one correspondence between their
factors such that corresponding factors are isomorphic ultra-groups.

Lemma 2.11. Let S be a composition series of an ultra-group M , then any

refinement of S is equivalent to S.

Proof. According to Theorem 2.9, the proof is similar for groups.

Before we prove the Zassenhaus Lemma, we need to establish some
necessary lemmas.

Lemma 2.12. Let M be an ultra-group of a subgroup H of a group G.

(i) For every a, b, c ∈ M and every subultra-group K of M if [a, b] = c
and a, c ∈ K then b ∈ K.

(ii) For every a, b, c ∈ M and every subultra-group K of M if [a, b] = c
and b, c ∈ K then a ∈ K.

Proof. (i). Let [a, b] = c be such that a, c ∈ K. Therefore

[
(a[−1])(a,b)

−1
, [a, b]

]
=


(a[−1])(a,b)

−1

︸ ︷︷ ︸
∈K

, c


= k ∈ K, hence

[[
a[−1], a

]
, b
]
= k.

Thus b = k ∈ K.
(ii) Let [a, b] = c be such that b, c ∈ K. Therefore

[a, b]b
(−1)

= cb
(−1)

⇒
[
a
bb(−1)

, bb
(−1)

]
= cb

(−1)

⇒
[[
a
bb(−1)

, bb(−1)
]
, b[−1]

]
=

[
cb

(−1)
, b[−1]

]

⇒
[
a(

bb(−1))(bb(−1),b[−1]),
[
bb

(−1)
, b[−1]

]]
=

[
cb

(−1)
, b[−1]

]

⇒ a(
bb(−1))(bb(−1),b[−1]) =

[
cb

(−1)
, b[−1]

]

Now from
[
cb

(−1)
, b[−1]

]
∈ K and (bb(−1))(bb(−1), b[−1]) = e,

[
bb

(−1)
, b[−1]

]
=

e, ae = a hence a ∈ K.

Theorem 2.13. Let N,K be two subultra-groups of an ultra-group M and

N ⊳ M . Then N ∩K ⊳ K.

Proof. Let a, b ∈ K and x ∈ [a, [N ∩K, b]], thus there exists c ∈ N ∩ K
such that x = [a, [c, b]]. Since N ⊳ M , there exists c1 ∈ N such that
x = [a, [c, b]] = [c1, [a, b]]. As K is a subultra-group, there exists m ∈ K
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such that x = [m, [a, b]]. Now from x = [m, [a, b]] = [c1, [a, b]] and the right
cancellation for a binary operation, m = c1 hence, c1 ∈ N ∩K. Therefore
[a, [N ∩K, b]] ⊆ [N ∩K, [a, b]].

Now suppose a, b ∈ K and x ∈ [N ∩K, [a, b]]. Thus there exists c ∈
N ∩K such that x = [c, [a, b]]. Since N ⊳M , there exists c1 ∈ N such that
x = [c, [a, b]] = [a, [c1, b]]. By the above Lemma (i) and x, a, b ∈ K, we have
c1 ∈ K and so c1 ∈ N ∩K. Thus [N ∩K, [a, b]] ⊆ [a, [N ∩K, b]]. Hence the
assertion follows.

Lemma 2.14. Let N,K be subultra-groups of an ultra-group M . Then

[N ∪K,N ∪K] = [N,K] ∪ [K,N ] .

Proof. Assume that x ∈ [N ∪K,N ∪K], then x ∈ [K,N ] or [N,K] or
[K,K] = K or [N,N ] = N . Considering N,K ⊆ [N,K] , [K,N ], thus x ∈
[N,K] ∪ [K,N ]. Therefore [N ∪K,N ∪K] ⊆ [N,K] ∪ [K,N ]. Conversely,
it is clear that [N,K] , [K,N ] ⊆ [N ∪K,N ∪K]. Thus [N,K] ∪ [K,N ] ⊆
[N ∪K,N ∪K].

Notation 2.15. For subultra-groups N,K of an ultra-group M we denote

N
n
∪ K = [N ∪K,N ∪K]n

In particular, for n = 2, N
2
∪ K = [[N ∪K,N ∪K] , N ∪K] and for n = 3,

N
3
∪ K = [[[N ∪K,N ∪K] , N ∪K] , N ∪K].

Lemma 2.16. If N,K are two subultra-groups of an ultra-group M , then

N
n
∪ K is a subultra-group of M .

Proof. N
n
∪ K = [N ∪K,N ∪K]n. Thus by Lemma 2.14

[N ∪K,N ∪K]n = [... [[[N ∪K,N ∪K] , N ∪K] , ...] , N ∪K]
= . . . = [N,K] ∪ [K,N ] ∪ [[N,K] , N ] ∪ [[K,N ] ,K] .

Therefore N
n
∪ K = [N,K]∪ [K,N ]∪ [[N,K] , N ]∪ [[K,N ] ,K]. Clearly e ∈

[N ∪K,N ∪K]n. Let x, y ∈ [N ∪K,N ∪K]n. Then there exist n1, n2 ∈ N
such that x = [N ∪K,N ∪K]n1 and y = [N ∪K,N ∪K]n2 . Also there
exist αi, βi, γi ∈ N ∪K for i = 1, 2 such that x = [[... [α1, β1] , γ1] , ...] and
y = [[... [α2, β2] , γ2] , ...]. By considering the fact that αi, βi, γi are in N ∪K
we conclude they are in N or K thus for every h ∈ H, (αi)

h, (βi)
h, (γi)

h are
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in N or K and therefore in N
n
∪ K that is [x, y] ∈ N

n
∪ K. Also, by this

fact N
n
∪ K is closed with operation β. Thus, N

n
∪ K is a subultra-group

of M .

Lemma 2.17. If N,K are two normal subultra-groups of M , then for every

n ∈ N , N
n
∪ K = [N,K].

Proof. Since [N ∪K,N ∪K] = [N,N ]∪ [N,K]∪ [K,K]∪ [K,N ] = [N,K]∪
[K,N ] and also since N,K are normal subultra-groups we have [N,K] =

[K,N ] hence N
n
∪ K = [N,K].

The join of two ultra-groups N,K is denoted by N ∨K.

Lemma 2.18. Let N,K be two subultra-groups of ultra-group M of a sub-

group H over a group G. Then N ∨K = N
n
∪ K.

Proof. If K = {e}, then for every n ∈ N , [N ∪K,N ∪K]n = N then N ⊆
[N ∪K,N ∪K]n. Similarly K ⊆ [N ∪K,N ∪K]n, thus [N ∪K,N ∪K]n

is an upper bound for N,K. If C is an upper bound for N,K then
[N,K] ⊆ C, [K,N ] ⊆ C. Therefore [[N,K] , N ] ⊆ C and [[K,N ] ,K] ⊆ C.
Consequently [N,K]∪ [K,N ]∪ [[N,K] , N ]∪ [[K,N ] ,K] ⊆ C and hence by

Lemma 2.16, N
n
∪ K ⊆ C.

Theorem 2.19. If N,K are two subultra-groups of M such that N ⊳ M ,

then N ∨K = [N,K].

Proof. Since N ⊳ M therefore for every x ∈ M we have, [N, x] = [x,N ].
Hence [N,K] = [K,N ] and [N ∪K,N ∪K]n = [N,K]n = [N,K]. Thus
N ∨K = [N,K].

Now by Lemma 2.5 in [7] and above theorem we have:

Proposition 2.20. If N,K are normal subultra-groups of M then N∨K ⊳

M .

The next lemma that we consider it as Zassenhaus Lemma is quite
technical. Its value will be immediately apparent in the proof of Theorem
2.22.

Lemma 2.21. Let K∗, N∗, N,K be subultra-groups of an ultra-group M
such that K∗ is normal in K and N∗ is normal in N . Then
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(i) [N∗, N ∩K∗] ⊳ [N∗, N ∩K],

(ii) [K∗, N∗ ∩K] ⊳ [K∗, N ∩K],

(iii)
[N∗, N ∩K]

[N∗, N ∩K∗]
∼=

[K∗, N ∩K]

[K∗, N∗ ∩K]
.

Proof. Since K∗ is normal in K, N ∩K∗ = (N ∩K)∩K∗ is normal in N ∩K
(Theorem 2.13). Similarly, N∗ ∩K is normal in N ∩K. Consequently, by
Theorem 2.19 and Proposition 2.20, D = [N∗ ∩K,K∗ ∩N ] is normal in
N ∩K. We define

f : [N∗, N ∩K] −→ N∩K
D

, f([a, c]) = [D, c] .

f is well define because if [a, c] = [b, d] then

[
(a[−1])(a,c), [a, c]

]
=

[
(a[−1])(a,c), [b, d]

]


[
a[−1], a

]

︸ ︷︷ ︸
e

, c


 =


(a[−1])(a,c)︸ ︷︷ ︸

a2

, [b, d]


 .

Therefore cd
(−1)

= [a2, [b, d]]
d(−1)

=⇒ cd
(−1)

=


a[b,d]d(−1)

2︸ ︷︷ ︸
a3

, [b, d]d
(−1)


 =

[
a3,

[
b
d(d(−1)), dd

(−1)
]]

=⇒
[
cd

(−1)
, d[−1]

]
=







[
a
(b

d(d(−1)
,dd

(−1)
)−1

3 , b
d(d(−1))

]

︸ ︷︷ ︸
a4

, dd
(−1)


 , d

[−1]




=⇒
[
cd

(−1)
, d[−1]

]
=


a4,


dd(−1)

, d[−1]

︸ ︷︷ ︸
e






=⇒
[
cd

(−1)
, d[−1]

]

︸ ︷︷ ︸
∈N∩K

= a4 ∈ N∗

=⇒
[
cd

(−1)
, d[−1]

]
∈ N ∩K ∩N∗ = N∗ ∩K ⊆ D = [N∗ ∩K,K∗ ∩N ]

=⇒
[
cd

(−1)
, d[−1]

]
∈ D =⇒ [D, c] = [D, d] by ([7], Lemma 2.1)
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The map f is an ultra-groups homomorphism since

f [[a, c] , [b, d]] = f


a(c,[b,d])︸ ︷︷ ︸

a1

, [c, [b, d]]


 b∈N∗⊳N,∃b1∈N

∗

============f [a1, [b1, [c, d]]]

= f



[
a
(b1,[c,d])
1 , b1

]

︸ ︷︷ ︸
∈N∗

, [c, d]︸︷︷︸
∈N∩K


 = [D, [c, d]] = [[D, c] , [D, d]]

= [f [a, c] , f [b, d]] .

Also for every m = [a, c] ∈ [N∗, N ∩K] and h ∈ H we have

f(mh) = f [a, c]h = f
[
a
ch, ch

]
=

[
D, ch

]
= [D, c]h = [D, c]id(h) = (f(m))id(h)

where id : H → H is a group homomorphism. This implies that f is an
ultra-group homomorphism. The map f is clearly surjective. If [a, c] ∈
ker(f) then, f([a, c]) = [D, c] = D. Now by ( [7], Lemma 2.5), since D is
normal in N∩K, it follows that c ∈ D that is c = [a1, c1] where a1 ∈ N∗∩K
and c1 ∈ N ∩K∗. Therefore

[a, c] = [a, [a1, c1]] = [[a(a1,c1)
−1
, a1], c1] ∈ [N∗, N ∩K∗].

So ker(f) = [N∗, (N∩K∗)]. Thus [N∗, N∩K∗]⊳[N∗, N∩K]. A symmetric
argument shows that [K∗, N∗ ∩K] is normal in [K∗, N ∩K]. By the First
isomorphism theorem for ultra-groups we have

[N∗, N ∩K]

[N∗, N ∩K∗]
∼=
N ∩K

D
=

N ∩K

[N∗ ∩K,K ∩N∗]

which completes the proof.

Theorem 2.22. Let M be an ultra-group. Any two subnormal (normal)
series of M have subnormal (normal) refinements that are equivalent.

Proof. Let M = M0 > M1 > . . .Mn and M = N0 > N1 > . . .Nm be
a subnormal (resp. normal) series. Let Mn+1 = {e} = Nm+1 and for
every 0 6 i 6 n consider Mi = [Mi+1,Mi ∩N0] > [Mi+1,Mi ∩N1] >
. . . [Mi+1,Mi ∩Nj ] > [Mi+1,Mi ∩Nj+1] > . . . > [Mi+1,Mi ∩Nm] >
[Mi+1,Mi ∩Nm+1] = Mi+1 for every 0 6 j 6 m. The Zassenhaus Lemma
applied to Mi+1,Mi, Nj+1, Nj shows that [Mi+1,Mi ∩Nj+1] is normal in
[Mi+1,Mi ∩Nj ]. Inserting these ultra-groups between every Mi and Mi+1,
which we denoting [Mi+1,Mi ∩Nj ] by M(i, j). Therefore gives a subnormal
refinement of the series M =M0 > M1 > . . .Mn:
M = M(0, 0) > M(0, 1) > . . . > M(0,m) > M(1, 0) > M(1, 1) >
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M(1, 2) > . . . > M(1,m) > M(2, 0) > . . . > M(n − 1,m) > M(n, 0) >
. . . > M(n,m) where M(i, 0) =Mi. Now this refinement has (n+1)(m+1)
(not necessarily distinct) terms. A symmetric argument shows that there is
a refinement of M = N0 > N1 > . . .Nm (where N(i, j) = [Nj+1,Mi ∩Nj ]
and N(0, j) = Nj) as follows:

M = N(0, 0) > N(1, 0) > . . . > N(n, 0) > N(0, 1) > N(1, 1) > . . . >
N(n, 1) > N(0, 2) > . . . > N(n,m− 1) > N(0,m) > . . . > N(n,m).

This refinement also has (n + 1)(m + 1) terms. For every pair (i, j) where
0 6 i 6 n, 0 6 j 6 m. There is by Zassenhaus Lemma (applied to
Mi+1,Mi, Nj+1, Nj) an isomorphism
M(i, j)

M(i, j + 1)
=

[Mi+1,Mi ∩Nj ]

[Mi+1,Mi ∩Nj+1]
∼=

[Nj+1,Mi ∩Nj ]

[Nj+1,Mi+1 ∩Nj ]
=

N(i, j)

N(i+ 1, j)
.

This completes the proof.

We close this section by the following theorem which gives the Jordan-
Hölder Theorem for ultra-groups.

Theorem 2.23. Any two composition series of an ultra-group M are equiv-

alent. Therefore, every ultra-group having a composition series determines

a unique list of simple ultra-groups.

Proof. The proof follows from Lemma 2.11 and Theorem 2.22.

3. Nilpotent ultra-groups

In this section, firstly we define the center of an ultra-group and the upper
central series. Next, we describe nilpotent ultra-groups and define commu-
tators to construct the drived series. Finally, we present some results for
solvable and nilpotent ultra-groups.

Definition 3.1. Let M be an ultra-group of a subgroup H of a group G.
The center of ultra-group M is defined as

Z(M) =
{
z ∈M | zh = z, [z, [a, b]] = [a, [z, b]] , for every a, b ∈M,h ∈ H

}
.

Lemma 3.2. Z(M) is a normal subultra-group of an ultra-group M .

Proof. Clearly e ∈ Z(M). Let z1, z2 ∈ Z(M), we have [zi, [a, b]] = [a, [zi, b]]
for i = 1, 2. Consequently, [[z1, z2] , [a, b]] = [z1, [z2, [a, b]]] = [z1, [a, [z2, b]]] =
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[a, [z1, [z2, b]]] = [a, [[z1, z2] , b]] and [z1, z2]
h = [z1, z2], thus Z(M) is a

subultra-group of M . Also [Z(M), [a, b]] = [a, [Z(M), b]] for every a, b ∈M ,
therefore Z(M) is a normal subultra-group of M .

Let M be an ultra-group of a subgroup H of a group G and let Z(M)
be the center of M and π : M −→ M

Z(M) be the canonical epimorphism.

Since Z( M
Z(M)) is a normal subultra-group of M

Z(M) , by the corresponding

theorem for ultra-groups (see[7]) we have π−1(Z( M
Z(M))) ⊳ M . Hence, by

induction, Z1(M) = Z(M) and Zi(M) = π−1(Z( M
Zi−1(M))) for i > 1 where

π :Mi −→
Mi

Z(M) . Therefore we obtain the sequence

{e} = Z0(M) < Z1(M) < Z2(M) < . . .

of normal subultra-groups of M , which is called the upper central series of
an ultra-group M .

Definition 3.3. An ultra-group M is called a nilpotent ultra-group if there
exists a natural number n such that Zn(M) =M .

By the definition of the product of a family (fi)i∈I of morphisms in each
category (see Proposition 1.7 in [5] and D efinition 10.34 in [1]) , we see if
fi : Mi → M ′

i is a family of ultra-group homomorphisms then f = Πfi :
ΠMi → ΠM ′

i is an ultra-group homomorphism furthermore ker(f) = Πker(fi).

Lemma 3.4. Let {Mi | i ∈ I} and {Ni | i ∈ I} be a family of ultra-groups

such that for every i ∈ I, Ni is normal subultra-group of Mi. Then ΠNi is

a normal subultra-group of ΠMi and ΠMi

ΠNi

∼= ΠMi

Ni
.

Proof. Let πi : Mi → Mi

Ni
be the canonical epimorphism. By the above

paragraph Ππi : ΠMi → ΠMi

Ni
is an epimorphism with the kernel ΠNi. Now

by First isomorphism theorem for ultra-groups ΠMi

ΠNi

∼= ΠMi

Ni
.

Theorem 3.5. Direct product of finite nilpotent ultra-groups is nilpotent.

Proof. Let Mi be ultra-groups over the group Gi; i = 1, 2. This is sufficient
to prove this result for the direct product of two ultra-groups. The proof for
most factors is similar. Let M =M1×M2. We prove by induction Zi(M) =
Zi(M1)×Zi(M2). The proof for i = 1 is clear. Suppose πMj

is the canonical

epimorphism Mj −→
Mj

Zi(Mj)
then π is the canonical epimorphism from

M =M1×M2 onto M1
Zi(M1)

× M2
Zi(M2)

by the above paragraph. Now consider
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the ultra-group homomorphism ψ from M1
Zi(M1)

× M2
Zi(M2)

to M1×M2
Zi(M1)×Zi(M2)

that it is equal to M1×M2
Zi(M1×M2)

= M
Zi(M) by Lemma 3.4. Consider an ultra-

group epimorphism ϕ : M −→ M
Zi(M) as a composition of two ultra-group

homomorphisms ψ and π. As a result,

Zi+1(M) = ϕ−1(Z(
M

Zi(M)
)) = π−1ψ−1(Z(

M

Zi(M)
))

= π−1(Z(
M1

Zi(M1)
×

M2

Zi(M2)
))

= π−1(Z(
M1

Zi(M1)
)× Z(

M2

Zi(M2)
))

= π−1
M1

(Z(
M1

Zi(M1)
))× π−1

M2
(Z(

M2

Zi(M2)
))

= Zi+1(M1)× Zi+1(M2).

Thus for every i, Zi(M) = Zi(M1) × Zi(M2). Since M1,M2 are nilpotent,
there exists n ∈ N such that Zn(M1) =M1 and Zn(M2) =M2. Due to this
Zn(M) =M1 ×M2 =M and thus M is nilpotent.

Let M be an ultra-group of subgroup H over a group G. We define the
commutator of M as the subultra-group generated by the set{[

[a, b][b,a]
(−1)

, [b, a][−1]
]
| a, b ∈M

}
and denoted it by M ′. The element

[
[a, b][b,a]

(−1)

, [b, a][−1]
]

is called commutator of a, b and denoted by
[
â, b

]
.

Now let C be the subultra-group generated by the commutators elements
of M . We show that C is a normal subultra-group. First for every a, b ∈M

[
[a, b][b,a]

(−1)

, [b, a][−1]
]
= c1 ∈ C

⇒
[[
[a, b][b,a]

(−1)

, [b, a][−1]
]
, [b, a]

]
= [c1, [b, a]]

⇒

[
[a, b]([b,a]

(−1))([b,a]
[−1],[b,a])

,
[
[b, a][−1] , [b, a]

]]
= [c1, [b, a]]

⇒ [a, b] = [c1, [b, a]] . (∗)

So for every a, b ∈ M there exists c1 ∈ C such that [a, b] = [c1, [b, a]].
Now, using Theorem 1.6, we will prove that C is a normal subultra-group
of M . Note that for every x, y ∈ M and by (∗) we have [c1, [x, y]] =
[c1, [c2, [y, x]]] =

[[
ch1 , c2

]
, [y, x]

]
= [c3, [y, x]], where h = (c2, [y, x])

−1, c3 =
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[
ch1 , c2

]
, thus [C, [x, y]] ⊆ [C, [y, x]]. The inverse of this equation is proved

in the same way. Therefore

[C, [x, y]] = [C, [y, x]] . (∗∗)

For every x, y ∈H M and every c1, c2 ∈ C:

[[c1, x] , [c2, y]] =
[
ch1 , [x, [c2, y]]

]
h = (x, [c1, y])

=
[
ch1 , [c3, [[c2, y] , x]]

]
by(∗)

=
[[
(ch1)

(c3,[[c2,y],x])−1
, c3

]
, [[c2, y] , x]

]

= [c4, [[c2, y] , x]] c4 =
[
(ch1)

(c3,[[c2,y],x])−1
, c3

]

=
[
c4,

[
c
(y,x)
2 , [y, x]

]]

= [c5, [y, x]] c5 =

[
c
(c

(y,x)
2 ,[y,x])−1

4 , c
(y,x)
2

]

Therefore [[c1, x] , [c2, y]] ⊆ [c5, [y, x]] and hence [[C, x] , [C, y]] ⊆ [C, [y, x]].
Now by (∗∗), [c1, [x, y]] = [c2, [y, x]] =

[[
ch2 , y

]
, x

]
which h = (y, x)−1. Then

by (∗) we have,
[[
ch2 , y

]
, x

]
=

[
c3,

[
x,

[
ch2 , y

]]]
=

[[
ch

′

3 , x
]
,
[
ch2 , y

]]
, where

h′ = (x,
[
ch2 , y

]
)−1. Thus [C, [y, x]] ⊆ [[C, x] , [C, y]]. These show that C is

a normal subultra-group of M .

Theorem 3.6. Let M be an ultra-group of a subgroup H over a group G.

Then an ultra-group M is abelian if and only if M ′ = {e}.

Proof. If ultra-group M is abelian then for every a, b ∈ M , [a, b] = [b, a]

so
[
[a, b][b,a]

(−1)

, [b, a][−1]
]
=

[
â, b

]
= e by considering the fact for every

a ∈M we have
[
aa

(−1)
, a[−1]

]
= e. Conversely if for every a, b ∈M we have

[
[a, b][b,a]

(−1)

, [b, a][−1]
]
= e then in view of Proposition 1.3 and the right

cancellation law [a, b][b,a]
(−1)

= [b, a][b,a]
(−1)

and thus [a, b] = [b, a].

Theorem 3.7. Let M be an ultra-group of subgroup H over a group G and

M ′ be the commutator subultra-group of M . Then M
M ′ is abelian.

Proof. For every a, b ∈M,
[
â, b

]
∈M ′ if and only if

[
[a, b][b,a]

(−1)

, [b, a][−1]
]
∈

M ′. Thus [M ′, [a, b]] = [M ′, [b, a]]. Since M ′ is a normal subultra-group of
M , we have [[M ′, a] , [M ′, b]] = [[M ′, b] , [M ′, a]], so M

M ′ is abelian.
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Theorem 3.8. Let M be an ultra-group of a subgroup H over a group G
and N be a normal subultra-group of M . Then M

N
is abelian if and only if

M ′ < N .

Proof. Let M
N

be abelian ultra-group. It is sufficient to show thatN contains
the generators of ultra-group M ′. For x belongs to the generators of M ′,

there exist a, b ∈ M such that x =
[
[a, b][b,a]

(−1)

, [b, a][−1]
]
. On the other

hand M
N

is abelian, therefore for every a, b ∈ M we have [[N, a] , [N, b]] =
[[N, b] , [N, a]]. Thus by normality of N we have, [N, [a, b]] = [N, [b, a]] (by

Theorem 1.6). So
[
[a, b][b,a]

(−1)

, [b, a][−1]
]
∈ N . This implies that x ∈ N

and therefore M ′ < N .

Conversely if M ′ < N , then
[
[a, b][b,a]

(−1)

, [b, a][−1]
]

∈ M ′ for every

a, b ∈ M . Since M ′ < N ,
[
[a, b][b,a]

(−1)

, [b, a][−1]
]
∈ N . Thus [N, [a, b]] =

[N, [b, a]]. Since N is normal, [[N, a] , [N, b]] = [[N, b] , [N, a]].

Lemma 3.9. If X is a generating set of an ultra-group M then M ′ is

generated by the set of commutators of elements of X.

Proof. Let K be a normal subultra-group generated by the commutators of
elements of X. By definition of M ′ we have K < M ′. On the other hand,
the set X

K
generates the quotient ultra-group M

K
. Now [[K,x1] , [K,x2]] =

[[K,x2] , [K,x1]] if and only if
[
[x1, x2]

[x2,x1]
(−1)

, [x2, x1]
[−1]

]
=

[
x̂1, x2

]
∈ K.

So M
K

is abelian by Theorem 3.8 and hence M ′ < K.

Let N and K be two normal subultra-groups of an ultra-group M . Then[
N̂,K

]
is a subultra-group of M generated by {

[
n̂, k

]
|n ∈ N, k ∈ K}.

Let M be an ultra-group of a subgroup H over the group G and let A,B
be two normal subultra-group of M . Then for every a, b ∈M we have:

[
â, b

]
=

[
[a, b][b,a]

(−1)

, [b, a][−1]
]

=

[[
a(

b[b,a](−1)), b[b,a]
[−1]

]
,
[
(a[−1])b

(−1)
, b[−1]

][b,a]]

=
[[
ah1 , bh2

]
,
[
(a[−1])h3 , (b[−1])h4

]]
(2)

=
[[[

ah
′

1 , bh
′

2

]
, a[−1]h3

]
, (b[−1])h4

]
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=
[[
b′,

[
ah

′

1 , (a[−1])h3
]]
, (b[−1])h4

]
by B ⊳M

=
[
a′,

[
b′, (b[−1])h4

]]
∈ [A,B] by A ⊳M

where h1 = (b[b, a](−1)), h2 = [b, a][−1], h3 = b(−1)(b
(−1)

[b, a]), h4 = [b, a],

h′1 = ((h1)(
bh2 ((a[−1])h3 , b[−1]h4 )−1)) and h′2 = h2((a

[−1])h3 , (b[−1])h4 )−1).

Now from Lemma ?? and the normality ofB,
[
b′′,

[
b′,

[
ah

′

1 , (a[−1])h3

]]]
=

[
b′′′,

[
ah

′

1 , (a[−1])h3

]]
∈ [B,A]. Thus

[
â, b

]
∈ [A,B]∩ [B,A]. Since A,B are

normal in an ultra-group M , [A,B] and [B,A] are normal subultra-groups
of M .

Lemma 3.10. Let N be a normal subultra-group of an ultra-group M such

that every n ∈ N commute with every m ∈M and for every h ∈ H, nh = n.
Then

[
N,mh

]
= [N,m].

Proof. First for each n ∈ N and m1,m2 ∈M , h ∈ H we have

[n, [m1,m2]] = [[n,m1] ,m2] = [[m1, n] ,m2] =
[
m

(n,m2)
1 , [n,m2]

]
.

On the other hand [[m1,m2] , n] =
[
m

(m2,n)
1 , [m2, n]

]
=

[
m

(m2,n)
1 , [n,m2]

]
,

thus m
(m2,n)
1 = m

(n,m2)
1 . So m

(n,m2)(m2,n)−1

1 = m1. Now we can write

[n, [m1,m2]] = [[m1,m2] , n] =
[
m

(m2,n)
1 , [m2, n]

]
=

[[
m

(m2,n)(n,m2)−1

1 , n
]
,m2

]
= [[m1, n] ,m2]. (i)

Also
[n, [m1,m2]] = [m1, [n1,m2]] =

[[
m

(n1,m2)−1

1 , n1

]
,m2

]
. (ii)

From (i), (ii) we can deduced [m1, n] =
[
m

(n1,m2)−1

1 , n1

]
. Thus m1 =[[

m
(n1,m2)−1

1 , n1

]n(−1)

, n[−1]

]
. So m1 =

[
mh

1 , n
′
]

where n′ =
[
nn

(−1)

1 , n[−1]
]

and h = (n1,m2)
−1(n1n(−1))(nn

(−1),n[−1]
). Therefore there exist n′ ∈ N

such that m1 =
[
mh, n′

]
=

[
n′,mh

]
for every n ∈ N . So m1 ∈

[
N,mh

1

]
and[

N,mh
1

]
= [N,m1].

Theorem 3.11. Let N,K be normal subultra-groups of ultra-group M and

N < K. Then
K

N
< Z(

M

N
) if and only if

[
K̂,M

]
< N .
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Proof. First we note that:

(1). For every k ∈ K,h ∈ H we have
[
(kh)k

(−1)
, k[−1]

]
∈ N . Thus [N, k] =

[
N, kh

]
. Therefore for every [N, k] ∈

K

N
, [N, k]h =

[
Nkh , kh

]
= [N, k].

(2). For every k∈K, m∈M if
[
K̂,M

]
<N, then

[
[k,m][m,k](−1)

, [m, k][−1]
]
∈

N and [N, [k,m]] = [N, [m, k]]. Hence [[N, k] , [N,m]] = [[N,m] , [N, k]]. So,

[N, k] commute with every [N,m] ∈
M

N
.

(3). K is normal in M , thus
K

N
is normal in

M

N
since

[[N, k] , [[N,m1] , [N,m2]]] = [[N, k] , [N, [m1,m2]]]

= [N, [k, [m1,m2]]]

= [N, [m1, [k,m2]]]

= [[N,m1] , [[N, k] , [N,m2]]] .

Now, by Lemma 3.10, for
N

K
and for every m1,m2 ∈M , we have

[[N, k] , [[N,m1] , [N,m2]]] = [[[N,m1] , [N,m2]] , [N, k]]

=
[
[N,m1]

([N,m2],[N,k]) , [[N,m2] , [N, k]]
]

= [[N,m1] , [[N, k] , [N,m2]]] .

Thus [N, k] ∈ Z(
M

N
) for every k ∈ K.

Conversely, let [N, k] < Z(
M

N
). Hence for every k ∈ K,m ∈M

[[N, k] , [[N,m] , [N, e]]] = [[N,m] , [[N, k] , [N, e]]]

[[N, k] , [[N,m] , N ]] = [[N,m] , [[N, k] , N ]]

[[N, k] , [N,m]] = [[N,m] , [N, k]]

[N, [k,m]] = [N, [m, k]] .

Thus for every k ∈ K,m ∈ M we have,
[
[k,m][m,k](−1)

, [m, k][−1]
]
∈ N . So

[
K̂,M

]
< N .

Now we give an equivalent characterization of nilpotent ultra-groups,
namely by descending central series.

Let M be an ultra-group and
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γ1(M) =M, γ2(M) =
[

̂γ1(M),M
]
, γi(M) =

[
̂γi−1(M),M

]
.

Then the chain of normal subultra-groups M = γ1(M) > γ2(M) > . . . is
called descending central series of M , that have the following properties:
γi(M)⊳M for every i, and by the above lemma, γi(M)

γi+1(M) < Z( M
γi+1(M)) since[

̂γi(M),M
]
= γi+1(M).

Definition 3.12. A series {e} = M0 < M1 < . . . < Mn = M of an ultra-

group M is called central series if for each i, Mi ⊳ M and Mi+1

Mi
< Z( M

Mi
).

Lemma 3.13. If {e} = M0 < M1 < . . . < Mn = M is a central series of

an ultra-group M , then

(i) γi(M) < Mn−i+1,

(ii) Mi < Zi(M).

Proof. The proof is straightforward by induction on i.

Theorem 3.14. Let M be an ultra-group. Then M is nilpotent if and only

if γn+1(M) = {e} for some integer n > 0.

Proof. Assume that there is an integer n > 0 such that γn+1(M) = {e}.
Consider the series

M = γ1(M) > γ2(M) > . . . > γn(M) > γn+1(M) = {e}.

In this series, γi(M)
γi+1(M) < Z( M

γi+1(M)) and γn+1−i(M) < Zi(M) for all i =

0, 1, . . . , n (Lemma 3.13). Therefore M = γ1(M) < Zn(M), so M is nilpo-
tent.

Conversely, if M is nilpotent then there exists n > 1 such that Zn(M) =
M . Therefore we have a series of normal subultra-groups

{e} = Z0(M) < Z1(M) < Z2(M) < . . . < Zn(M) =M.

Then it follows that γi(M) < Zn+1−i(M) for all i and γn+1(M) < Z0(M).
So γn+1(M)={e}.

Theorem 3.15. Every subultra-group of nilpotent ultra-group is nilpotent.

Proof. Let M be an ultra-group and K be a subultra-group of M . Since
M is nilpotent, so there exists an integer n > 0 such that γn+1(M) = {e}.
Now we will show (by induction on i) that γi(K) < γi(M). For i = 1,

it is clear. Suppose that γi(K) < γi(M). Then γi+1(K) =
[

̂γi(K),K
]
<

[
̂γi(M),M

]
= γi+1(M). Hence γi+1(K) < γi+1(M) = {e}.
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Let M be an ultra-group of a subgroup H over the group G. We define
the i-th derived subultra-group of M inductively as follows:

M (1) =M ′ =
[
M̂,M

]
,

M i+1 =M (i)′ =
[

̂M (i),M (i)
]
.

So we obtain the sequence of subultra-groups of M such that each one
is normal sn the previous.

The series
M (0) =M > M1 > M2 > . . .

is called derived.

Lemma 3.16. Let M be an arbitrary ultra-group and M = M0 > M1 >
M2 > . . . be the solvable series. Then for every i, M (i) ⊆M(i).

Proof. By induction on i. If i = 0, then M (0) = M ⊆ M(0) = M . Suppose

M (i) ⊆ M(i). We show that this is true for i+ 1. By M (i) ⊆ M(i) we have[
̂M (i),M (i)

]
⊆

[
̂M(i),M(i)

]
. So M i+1 ⊆ M ′

i . According to the conditions

of the solvable series Mi

Mi+1
is abelian. Thus by Theorem 3.8, M ′

i ⊆ Mi+1.

Therefore M (i+1) ⊆M(i+1).

Theorem 3.17. Let M be an ultra-group of subgroup H over the group G.

The ultra-group M is solvable if and only if there exists n > 0 such that

M (n) = {e}.

Proof. If M is a solvable ultra-group, then it has solvable series M =M0 >
M1 > M2 > . . . > Mn = {e}. Now by the above lemma for i = n we have
M (n) > Mn = {e}. Conversely, let there exists n > 0 such that M (n) = {e}.
In this case the derived series has the conditions of a solvable series, that
means M i+1 ⊳ M i and Mi

Mi+1
is abelian. So it is a solvable series for an

ultra-group M .

We conclude this paper by presenting the following lemma, which demon-
strates the relationship between nilpotent and solvable ultra-groups.

Lemma 3.18. Every nilpotent ultra-group is solvable.

Proof. If an ultra-group M is nilpotent then the upper central series of
M , {e} < Z1(M) < Z2(M) < . . . < Zn(M) = M is a normal series. All

quotients of the upper central series are abelian since Zi(M)
Zi−1(M) = Z( M

Zi−1(M))

and Z( M
Zi−1(M)) is abelian.
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