https://doi.org/10.56415/qrs.v32.13

Solvable and nilpotent ultra-groups

Monireh Aliabadi, Gholamreza Moghaddasi and Parvaneh Zolfaghari

Abstract We propose several characterizations of solvable ultra-groups and investigate the Jordan-Hölder Theorem and the Zassenhaus Lemma, in ultra-groups. We also define nilpotent ultra-groups by using the center of ultra-groups. Finally, we establish the relation between nilpotent and solvable ultra-groups. Our results aim to serve as a bridge between groups and ultra-groups.

1. Introduction

Solvable and nilpotent groups are two fundamental classes of groups in algebra, and they play a critical role in the study of Lie groups, Galois groups and others [2, 4]. In this paper, we focus on exploring the concepts solvability and nilpotency and their relation for ultra-groups. Ultra-groups are defined on the use of transversals in groups. Moghaddasi et al. built upon the concept of hypergroups and transversals to introduce the concept ultra-groups [7, 8]. Tolue et al. [9] introduced the category of ultra-group and investigated some properties of this category.

The organization of the paper is as follows. We first present some basic definitions and results in ultra-groups. Next, we introduce the concept of solvable ultra-groups and discuss some general concepts such as composition series, subnormal series. Finally, we characterize the Zassenhaus Lemma and generalize the Jordan-Hölder theorem for ultra-groups. In Section 3 we describe nilpotent ultra-groups and establish the relationship between solvable and nilpotent ultra-group.

Our results can be used as a bridge between groups and ultra-groups.

The notation in this paper is as in [7] and [9].

A pair (A, B) of subsets of a group G is called *transversal* if the equality ab = a'b' implies a = a' and b = b', where $a, a' \in A, b, b' \in B$. It is not hard

2000 Mathematics Subject Classification: 16B50, 20F16, 20D35, 20F05

Keywords:Ultra-group, solvable ultra-group, nilpotent ultra-group, commutator.

to deduce that a pair (H, M) of subgroups of a group G is transversal if and only if $H \cap M = \{e\}$, where e is the identity of the group G. Furthermore, for a subgroup H and a subset M of a group G we conclude that the pair (H, M)is a transversal if and only if $M \cap Hg$ contains at most one element, for all $g \in G$. A subset M of a group G is called (*right unitary*) complementary set with respect to a subgroup H, if for any elements $m \in M$ and $h \in H$ there exist unique elements $h' \in H$ and $m' \in M$ such that mh = h'm'. We denote h' and m' by mh and m^h , respectively. Similarly for any elements $m_1, m_2 \in M$ there exist unique elements $[m_1, m_2] \in M$ and $(m_1, m_2) \in H$ such that $m_1m_2 = (m_1, m_2)[m_1, m_2]$. There are $a^{(-1)} \in H$ and $a^{[-1]} \in M$ such that $a^{-1} = a^{(-1)}a^{[-1]}$, since G = HM.

Definition 1.1. [7] Let M be a transversal set of a subgroup H over a group G. The set M together with a binary operation $\alpha : M \times M \longrightarrow M$ and a family of unary operations $\beta_h : M \longrightarrow M$ defined by $\alpha((m_1, m_2)) := [m_1, m_2]$ and $\beta_h(m) := m^h$ for all $h \in H$ is called a *right ultra-group*. An ultra-group M is called abelian, if for all elements a, b in M, [a, b] = [b, a].

We use the notation ${}_{H}M$ to represent the right ultra-group of subgroup H which we briefly display with the notation M.

Definition 1.2. [7] Let M be an ultra-group of a subgroup H of a group G. A subset $K \subseteq M$ which contains the identity element of the group G, is called a *subultra-group* of M, if K is closed under operations α and β_h . This is denoted by K < M.

Proposition 1.3. [7] Let M be an ultra-group of a subgroup H over a group G. Then we have the following properties:

- (*i*) $a^{hh'} = (a^h)^{h'}$,
- (*ii*) $[a,b]^h = [a^{(bh)}, b^h],$
- (*iii*) $[[a, b], c] = [a^{(b,c)}, [b, c]],$
- $(iv) \ e^h = e, \quad a^e = a,$
- (v) [e, a] = a = [a, e],
- (vi) $[a^{[-1]}, a] = e = [a^{(a^{(-1)})}, a^{[-1]}],$

for $a, b, c \in M$ and $h, h' \in H$.

Definition 1.4. [8] A subultra-group N of an ultra-group M is called *nor*mal if [N, [a, b]] = [a, [N, b]] for all $a, b \in M$ and is denoted by $N \triangleleft M$. According to the definition, every ultra-group M, has normal subultragroup $\{e\}$. We note that an ultra-group M is normal subultra-group of itself, whenever the left cancellation law be established for M (see [7]).

Lemma 1.5. [7] Let K be a subultra-group of an ultra-group M. Then for $a, b \in M$ the following conditions are equivalent.

- (i) $a \in [K, b]$,
- (ii) [K, a] = [K, b],
- (*iii*) $[a^{(b^{(-1)})}, b^{[-1]}] \in K.$

Theorem 1.6. An ultra-group N is a normal subultra-group of M, if and only if [[N, a], [N, b]] = [N, [a, b]], for every $a, b \in M$.

$$\begin{array}{l} \textit{Proof. If N is a normal subultra-group then $[[N, a], [N, b]] = [N, [a, b]]$ for every $a, b \in M$ by Lemma 2.5 in [7]. Conversely, let $[[N, a], [N, b]] = [N, [a, b]]$, for $b = e$ we have $[N, a] = [N, [a, N]]$. So $[[a, N]^{a^{(-1)}}, a^{[-1]}] \in N$ and since $| [[a, N]^{a^{(-1)}}, a^{[-1]}] |=| N |$ we have $[[a, N]^{a^{(-1)}}, a^{[-1]}] = N$. Thus $\left[[[a, N]^{a^{(-1)}}, a^{[-1]}], a \right] = [N, a]$ and $\left[[a, N]^{a^{(-1)}}, a^{[-1]} \right] = N$. Thus $\left[[[a, N]^{a^{(-1)}}, a^{[-1]}], a \right] = [N, a]$ and $\left[[a, N]^{a^{(-1)}}, a^{[-1]}, a \right] = [N, a]$. So $[a, N] = [N, a]$ and $[a, [N, b]] = [a, [b, N]] = \left[[a^{(b, N)^{-1}}, b \right], N \right] = \left[N, [a, [b, N]] = \left[[a^{(b, N)^{-1}}, b \right], N \right] = \left[N, [a, [b, N]] = \left[[N, a], [N, b] \right] = [[N, a], [N, b]] \right]$
So $[a, [N, b]] = [N, [a, b]]$, hence we get the result. □$$

Definition 1.7. [7] Let $_{H_i}M_i$ be an ultra-group of a subgroup H_i over group G_i , i = 1, 2 and φ be a group homomorphism between two subgroups H_1 and H_2 . A function $f: {}_{H_1}M_1 \longrightarrow {}_{H_2}M_2$ is an ultra-group homomorphism provided that for all $m, m_1, m_2 \in {}_{H_1}M_1$ and $h \in H_1$:

(i) $f([m_1, m_2]) = [f(m_1), f(m_2)],$

(ii)
$$(f(m))^{\varphi(h)} = f(m^h).$$

Theorem 1.8. (First isomorphism theorem) [7] Let f be a surjective ultragroup homomorphism between two ultra-groups $_{H_1}M_1$ and $_{H_2}M_2$ and θ a congruence over $_{H_1}M_1$ such that $\theta \subseteq Kerf$. If $\pi :_{H_1}M_1 \longrightarrow _{H_1}M_1/\theta$ is a canonical homomorphism then there exists a homomorphism $g: M_1/\theta \to M_2$ satisfying $g\pi = f$.

Theorem 1.9. (Second isomorphism theorem)[7] If N, N' are normal subultragroups of an ultra-group M such that $N \subseteq N'$, then

$$\frac{\frac{M}{N}}{\frac{N'}{N}} \cong \frac{M}{N'}.$$

Theorem 1.10. (Third isomorphism theorem) [7] If K is a subultra-group of an ultra-group M and N is a normal subultra-group of M, then

$$\frac{K}{K \cap N} \cong \frac{[N,K]}{N}.$$

2. Solvable ultra-groups

First, we present some definition similar that to what we have in group theory and refer the readers to [4, 6].

Definition 2.1. A sequence M_0, M_1, \ldots, M_n of subultra-groups of M is called *subnormal series* if $M_n \triangleleft \ldots \triangleleft M_1 \triangleleft M_0 = M$. If all M_i are normal in M, then the series is called *normal*.

Every ultra-group M has normal series $\{e\} \triangleleft M$. A subnormal series of ultra-groups need not be normal. Let $D_8 = \langle a, b \mid a^4 = b^2 = e, (ab)^2 = e \rangle$ and $H = \{e\}$. The series $D_8 > \{e, b, a^2, a^2b\} > \{e, b\} > \{e\}$ is subnormal but it is not normal, since $\{e, b\} \not \lhd D_8$.

Definition 2.2. Let $M = M_0 > M_1 > \ldots > M_n$ be a subnormal series of ultra-groups. Each series

 $M = M_0 > M_1 > \ldots > M_i > N > M_{i+1} > \ldots > M_n$ or

 $M = M_0 > M_1 > \ldots > M_i > \ldots > M_n > N$

is called a *one-step refinement* of this series if N is a normal subultra-group of M_i and if i < n, M_{i+1} is normal in N. A refinement of a subnormal series is subnormal series that obtained from the finite number of one-step refinement. **Definition 2.3.** An ultra-group M is called *simple* if it has just the normal subultra-group $\{e\}$. A subnormal series $M = M_0 > M_1 > \ldots > M_n = \{e\}$ of an ultra-group is called a *composition series* if each quotient ultra-group $\frac{M_i}{M_{i+1}}$ is simple for every $0 \leq i \leq n-1$.

Definition 2.4. A subnormal series $M = M_0 > M_1 > \ldots > M_n = \{e\}$ of ultra-group M is called a *solvable series* if each factor $\frac{M_i}{M_{i+1}}$ is abelian.

Definition 2.5. An ultra-group M is called *solvable* if it has a subnormal series $M = M_0 > M_1 > \ldots > M_n = \{e\}$ such that M_{i+1} is normal in M_i for every $0 \le i \le n-1$ and $\frac{M_i}{M_{i+1}}$ is an abelian ultra-group.

Theorem 2.6. Every subultra-group and every quotient ultra-group of a solvable ultra-group is solvable.

Proof. The proof of the first part is similar to groups and we omit it. Now let N is a normal subultra-group of a solvable ultra-group M. Hence M has a solvable series as follow $M = M_0 > M_1 > ... > M_n = \{e\}$. Since N is a normal subultra-group, [M, N] is a subultra-group of M and $N \subseteq [M_i, N]$ for every $0 \leq i \leq n$. Now consider the series:

$$\frac{M}{N} = \frac{[M, N]}{N} > \frac{[M_1, N]}{N} > \dots > \frac{[M_n, N]}{N} = N$$

such that every M_i is normal in M_{i-1} . We have:

$$\begin{split} \left[\left[N, m_{i} \right], \left[\left[N, m_{i-1} \right], \left[N, m'_{i-1} \right] \right] \right] &= \left[\left[N, m_{i} \right], \left[N, \left[m_{i-1}, m'_{i-1} \right] \right] \right] \\ &= \left[N, \left[m_{i}, \left[m_{i-1}, m'_{i-1} \right] \right] \right] \\ &= \left[N, \left[m_{i-1}, \left[m_{i}, m'_{i-1} \right] \right] \right] \\ &= \left[\left[N, m_{i-1} \right], \left[N, \left[m_{i}, m'_{i-1} \right] \right] \right] \\ &= \left[\left[N, m_{i-1} \right], \left[N, m_{i} \right], \left[N, m'_{i-1} \right] \right] \right] \end{split}$$

Therefore $\frac{[M_i, N]}{N}$ is normal in $\frac{[M_{i-1}, N]}{N}$. Now, by Second and Third isomorphism theorems, for ultra-groups:

$$\frac{\frac{[M_{i-1},N]}{N}}{\frac{[M_{i},N]}{N}} \simeq \frac{[M_{i-1},N]}{[M_{i},N]} = \frac{[M_{i-1},[M_{i},N]]}{[M_{i},N]} \simeq \frac{M_{i-1}}{M_{i-1} \cap [M_{i},N]} \simeq \frac{\frac{M_{i-1}}{M_{i}}}{\frac{M_{i-1} \cap [M_{i},N]}{M_{i}}}.$$

Since every $\frac{M_{i-1}}{M_i}$ is abelian and $\frac{M_{i-1} \cap [M_i, N]}{M_i}$ is a normal subultra-group of $\frac{M_{i-1}}{M_i}$ we see that $\frac{M_{i-1}}{M_i}$ is abelian. Hence, every $\frac{[M_{i-1}, N]}{N}$ is

of
$$\frac{M_{i-1}}{M_i}$$
 we see that $\frac{M_i}{\frac{M_{i-1} \cap [M_i, N]}{M_i}}$ is abelian. Hence, every $\frac{N}{\frac{[M_i, N]}{N}}$ is abelian and $\frac{M}{N}$ is solvable.

Theorem 2.7. Let N be a normal subultra-group of an ultra-group M. If N and $\frac{M}{N}$ are solvable, then M is solvable.

Proof. It is similar to what we have for groups.

Theorem 2.8. Let K and N be normal and solvable subultra-groups of M. Then [K, N] is a solvable subultra-group of M.

Proof. We have $\frac{[K,N]}{N} \simeq \frac{K}{K \cap N}$ by Third isomorphism theorem for ultragroups. Since K is solvable, therefore the quotient $\frac{K}{K \cap N}$ is solvable by Theorem 2.6 and consequently $\frac{[K,N]}{N}$ is solvable. On the other hand N and $\frac{[K,N]}{N}$ are solvable, therefore [K,N] is solvable by Theorem 2.7. \Box

In [7] Moghaddasi et al. proved that if N is a normal subultra-group of an ultra-group M, then every subultra-group of $\frac{M}{N}$ is of the form $\frac{K}{N}$, where K is a subultra-group of M containing N. On the other hand, $\frac{K}{N}$ is a normal subultra-group of $\frac{M}{N}$ if and only if K is a normal subultra-group of M. Thus, when $M \neq N$, $\frac{M}{N}$ is simple if and only if N is maximal in the set of all normal subultra-groups L of M with $L \neq M$.

a 71

[] (

Theorem 2.9. Let M be an ultra-group of a subgroup H over a group G. Then

- (i) Each finite ultra-group M has composition series.
- (ii) Each refinement of a solvable series of ultra-group is a solvable series.
- (iii) A subnormal series of an ultra-group M is a composition series if and only if it has no proper refinements.

Proof. (i). Let M_1 be a maximal normal subultra-group of M, then $\frac{M}{M_1}$ is simple. Let M_2 be a maximal normal subultra-group of M_1 and so on. Since M is finite, this process must be stopped. Let $M_n = \{e\}$, then $M = M_0 > M_1 > \ldots > M_n = \{e\}$ is a composition series.

(*ii*). If $\frac{M_i}{M_{i+1}}$ is abelian and $M_{i+1} \triangleleft M' \triangleleft M_i$, then $\frac{M'}{M_{i+1}}$ is abelian since it is a subultra-group of an ultra-group $\frac{M_i}{M_{i+1}}$ and an ultra-group $\frac{M_i}{M'}$ M_i

is abelian since it is isomorphic to the quotient ultra-group $\frac{\frac{M_i}{M_{i+1}}}{\frac{M'}{M_{i+1}}}$ by the

Second isomorphism theorem.

(*iii*). Let $M = M_0 > M_1 > \ldots > M_n = \{e\}$ be a composition series. Let $M = M_0 > M_1 > \ldots > M_i > M' > M_{i+1} > \ldots > M_n = \{e\}$ be a refinement of this series. Since $M_{i+1} \triangleleft M' \triangleleft M_i$, then $\frac{M'}{M_{i+1}}$ is a normal subultra-group of $\frac{M_i}{M_{i+1}}$ and every proper normal subultra-group of $\frac{M_i}{M_{i+1}}$ has this form. Hence the result is obtained from the fact that in this case $\frac{M_i}{M_{i+1}}$ is not simple and therefore is not composition series. Conversely if

$$M = M_0 > M_1 > \ldots > M_n = \{e\}$$
(1)

is a subnormal series then it has no proper refinement. Suppose this series is not composition series. Thus there exist a subultra-group M_i such that M_i is not maximal subultra-group of M_{i-1} and therefore there exist a subultragroup M_j such that $M_{i-1} \neq M_j \neq M_i$ and M_j a normal subultra-group of M_{i-1} and M_i is a normal subultra-group of M_j . This is a proper refinement of this series. A contradiction. Thus (1) is a composition series. \Box **Definition 2.10.** Let M be an ultra-group. Two subnormal series S and T are called equivalent if there is a one to one correspondence between their factors such that corresponding factors are isomorphic ultra-groups.

Lemma 2.11. Let S be a composition series of an ultra-group M, then any refinement of S is equivalent to S.

Proof. According to Theorem 2.9, the proof is similar for groups. \Box

Before we prove the Zassenhaus Lemma, we need to establish some necessary lemmas.

Lemma 2.12. Let M be an ultra-group of a subgroup H of a group G.

- (i) For every $a, b, c \in M$ and every subultra-group K of M if [a, b] = cand $a, c \in K$ then $b \in K$.
- (ii) For every $a, b, c \in M$ and every subultra-group K of M if [a, b] = cand $b, c \in K$ then $a \in K$.

Proof. (i). Let [a, b] = c be such that $a, c \in K$. Therefore $\left[(a^{[-1]})^{(a,b)^{-1}}, [a,b] \right] = \left[\underbrace{(a^{[-1]})^{(a,b)^{-1}}}_{\in K}, c \right] = k \in K, \text{ hence } \left[\left[a^{[-1]}, a \right], b \right] = k.$

Thus $b = k \in K$.

(ii) Let [a, b] = c be such that $b, c \in K$. Therefore

$$\begin{split} [a,b]^{b^{(-1)}} &= c^{b^{(-1)}} \Rightarrow \left[a^{b^{b^{(-1)}}}, b^{b^{(-1)}} \right] = c^{b^{(-1)}} \\ &\Rightarrow \left[\left[a^{b^{b^{(-1)}}}, b^{b^{(-1)}} \right], b^{[-1]} \right] = \left[c^{b^{(-1)}}, b^{[-1]} \right] \\ &\Rightarrow \left[a^{(^{b^{b^{(-1)}})(b^{b^{(-1)}}, b^{[-1]})}, \left[b^{b^{(-1)}}, b^{[-1]} \right] \right] = \left[c^{b^{(-1)}}, b^{[-1]} \right] \\ &\Rightarrow a^{(^{b^{b^{(-1)}})(b^{b^{(-1)}}, b^{[-1]})} = \left[c^{b^{(-1)}}, b^{[-1]} \right] \end{split}$$

Now from $\left[c^{b^{(-1)}}, b^{[-1]}\right] \in K$ and $({}^{b}b^{(-1)})(b^{b(-1)}, b^{[-1]}) = e, \left[b^{b^{(-1)}}, b^{[-1]}\right] = e, a^e = a$ hence $a \in K$.

Theorem 2.13. Let N, K be two subultra-groups of an ultra-group M and $N \triangleleft M$. Then $N \cap K \triangleleft K$.

Proof. Let $a, b \in K$ and $x \in [a, [N \cap K, b]]$, thus there exists $c \in N \cap K$ such that x = [a, [c, b]]. Since $N \triangleleft M$, there exists $c_1 \in N$ such that $x = [a, [c, b]] = [c_1, [a, b]]$. As K is a subultra-group, there exists $m \in K$

such that x = [m, [a, b]]. Now from $x = [m, [a, b]] = [c_1, [a, b]]$ and the right cancellation for a binary operation, $m = c_1$ hence, $c_1 \in N \cap K$. Therefore $[a, [N \cap K, b]] \subseteq [N \cap K, [a, b]]$.

Now suppose $a, b \in K$ and $x \in [N \cap K, [a, b]]$. Thus there exists $c \in N \cap K$ such that x = [c, [a, b]]. Since $N \triangleleft M$, there exists $c_1 \in N$ such that $x = [c, [a, b]] = [a, [c_1, b]]$. By the above Lemma (i) and $x, a, b \in K$, we have $c_1 \in K$ and so $c_1 \in N \cap K$. Thus $[N \cap K, [a, b]] \subseteq [a, [N \cap K, b]]$. Hence the assertion follows.

Lemma 2.14. Let N, K be subultra-groups of an ultra-group M. Then

$$[N \cup K, N \cup K] = [N, K] \cup [K, N]$$

 $\begin{array}{ll} \textit{Proof. Assume that } x \in [N \cup K, N \cup K], \text{ then } x \in [K, N] \text{ or } [N, K] \text{ or } [K, K] = K \text{ or } [N, N] = N. \text{ Considering } N, K \subseteq [N, K], [K, N], \text{ thus } x \in [N, K] \cup [K, N]. \text{ Therefore } [N \cup K, N \cup K] \subseteq [N, K] \cup [K, N]. \text{ Conversely, } \text{ it is clear that } [N, K], [K, N] \subseteq [N \cup K, N \cup K]. \text{ Thus } [N, K] \cup [K, N] \subseteq [N \cup K, N \cup K]. \end{array}$

Notation 2.15. For subultra-groups N, K of an ultra-group M we denote

$$N \stackrel{n}{\cup} K = [N \cup K, N \cup K]^n$$

In particular, for n = 2, $N \stackrel{2}{\cup} K = [[N \cup K, N \cup K], N \cup K]$ and for n = 3, $N \stackrel{3}{\cup} K = [[[N \cup K, N \cup K], N \cup K], N \cup K]$.

Lemma 2.16. If N, K are two subultra-groups of an ultra-group M, then $N \stackrel{n}{\cup} K$ is a subultra-group of M.

Proof. $N \stackrel{n}{\cup} K = [N \cup K, N \cup K]^n$. Thus by Lemma 2.14

$$[N \cup K, N \cup K]^{n} = [\dots [[[N \cup K, N \cup K], N \cup K], \dots], N \cup K] = \dots = [N, K] \cup [K, N] \cup [[N, K], N] \cup [[K, N], K].$$

Therefore $N \stackrel{n}{\cup} K = [N, K] \cup [K, N] \cup [[N, K], N] \cup [[K, N], K]$. Clearly $e \in [N \cup K, N \cup K]^n$. Let $x, y \in [N \cup K, N \cup K]^n$. Then there exist $n_1, n_2 \in N$ such that $x = [N \cup K, N \cup K]^{n_1}$ and $y = [N \cup K, N \cup K]^{n_2}$. Also there exist $\alpha_i, \beta_i, \gamma_i \in N \cup K$ for i = 1, 2 such that $x = [[... [\alpha_1, \beta_1], \gamma_1], ...]$ and $y = [[... [\alpha_2, \beta_2], \gamma_2], ...]$. By considering the fact that $\alpha_i, \beta_i, \gamma_i$ are in $N \cup K$ we conclude they are in N or K thus for every $h \in H$, $(\alpha_i)^h, (\beta_i)^h, (\gamma_i)^h$ are

in N or K and therefore in $N \stackrel{n}{\cup} K$ that is $[x, y] \in N \stackrel{n}{\cup} K$. Also, by this fact $N \stackrel{n}{\cup} K$ is closed with operation β . Thus, $N \stackrel{n}{\cup} K$ is a subultra-group of M.

Lemma 2.17. If N, K are two normal subultra-groups of M, then for every $n \in N$, $N \stackrel{n}{\cup} K = [N, K]$.

Proof. Since $[N \cup K, N \cup K] = [N, N] \cup [N, K] \cup [K, K] \cup [K, N] = [N, K] \cup [K, N]$ and also since N, K are normal subultra-groups we have [N, K] = [K, N] hence $N \stackrel{n}{\cup} K = [N, K]$.

The join of two ultra-groups N, K is denoted by $N \vee K$.

Lemma 2.18. Let N, K be two subultra-groups of ultra-group M of a subgroup H over a group G. Then $N \vee K = N \stackrel{n}{\cup} K$.

Proof. If $K = \{e\}$, then for every $n \in N$, $[N \cup K, N \cup K]^n = N$ then $N \subseteq [N \cup K, N \cup K]^n$. Similarly $K \subseteq [N \cup K, N \cup K]^n$, thus $[N \cup K, N \cup K]^n$ is an upper bound for N, K. If C is an upper bound for N, K then $[N, K] \subseteq C$, $[K, N] \subseteq C$. Therefore $[[N, K], N] \subseteq C$ and $[[K, N], K] \subseteq C$. Consequently $[N, K] \cup [K, N] \cup [[N, K], N] \cup [[K, N], K] \subseteq C$ and hence by Lemma 2.16, $N \stackrel{n}{\cup} K \subseteq C$. □

Theorem 2.19. If N, K are two subultra-groups of M such that $N \triangleleft M$, then $N \lor K = [N, K]$.

Proof. Since $N \triangleleft M$ therefore for every $x \in M$ we have, [N, x] = [x, N]. Hence [N, K] = [K, N] and $[N \cup K, N \cup K]^n = [N, K]^n = [N, K]$. Thus $N \lor K = [N, K]$.

Now by Lemma 2.5 in [7] and above theorem we have:

Proposition 2.20. If N, K are normal subultra-groups of M then $N \lor K \lhd M$.

The next lemma that we consider it as Zassenhaus Lemma is quite technical. Its value will be immediately apparent in the proof of Theorem 2.22.

Lemma 2.21. Let K^*, N^*, N, K be subultra-groups of an ultra-group M such that K^* is normal in K and N^* is normal in N. Then

 $\begin{array}{ll} (i) & [N^*, N \cap K^*] \lhd [N^*, N \cap K], \\ (ii) & [K^*, N^* \cap K] \lhd [K^*, N \cap K], \\ (iii) & \frac{[N^*, N \cap K]}{[N^*, N \cap K^*]} \cong \frac{[K^*, N \cap K]}{[K^*, N^* \cap K]}. \end{array}$

Proof. Since K^* is normal in $K, N \cap K^* = (N \cap K) \cap K^*$ is normal in $N \cap K$ (Theorem 2.13). Similarly, $N^* \cap K$ is normal in $N \cap K$. Consequently, by Theorem 2.19 and Proposition 2.20, $D = [N^* \cap K, K^* \cap N]$ is normal in $N \cap K$. We define

$$f:[N^*,N\cap K]\longrightarrow \tfrac{N\cap K}{D}, \ \ f([a,c])=[D,c]\,.$$

f is well define because if [a, c] = [b, d] then

$$\begin{bmatrix} (a^{[-1]})^{(a,c)}, [a,c] \end{bmatrix} = \begin{bmatrix} (a^{[-1]})^{(a,c)}, [b,d] \end{bmatrix} \\ \begin{bmatrix} \underbrace{\left[a^{[-1]}, a\right]}_{e}, c \end{bmatrix} = \begin{bmatrix} \underbrace{(a^{[-1]})^{(a,c)}}_{a_2}, [b,d] \end{bmatrix}.$$

Therefore $c^{d^{(-1)}} = [a_2, [b, d]]^{d^{(-1)}}$

$$\Rightarrow c^{d^{(-1)}} = \left[\underbrace{a_2^{[b,d]} d^{(-1)}}_{a_3}, [b,d]^{d^{(-1)}}\right] = \left[a_3, \left[b^{d(d^{(-1)})}, d^{d^{(-1)}}\right]\right]$$

$$\Rightarrow \left[c^{d^{(-1)}}, d^{[-1]}\right] = \left[\left[\underbrace{a_3^{(b^{d(d^{(-1)})}, d^{d^{(-1)})^{-1}}, b^{d(d^{(-1)})}}_{a_4}, d^{d^{(-1)}}\right], d^{d^{(-1)}}\right], d^{[-1]}\right]$$

$$\Rightarrow \left[c^{d^{(-1)}}, d^{[-1]}\right] = \left[a_4, \left[\underbrace{d^{d^{(-1)}}, d^{[-1]}}_{e}\right]\right]$$

$$\Rightarrow \underbrace{c^{d^{(-1)}}, d^{[-1]}}_{\in N \cap K} = a_4 \in N^*$$

$$\Rightarrow \left[c^{d^{(-1)}}, d^{[-1]}\right] \in N \cap K \cap N^* = N^* \cap K \subseteq D = [N^* \cap K, K^* \cap N]$$

$$\Rightarrow \left[c^{d^{(-1)}}, d^{[-1]}\right] \in D \Longrightarrow [D, c] = [D, d] \quad \text{by ([7], Lemma 2.1)}$$

The map f is an ultra-groups homomorphism since

$$\begin{split} f\left[\left[a,c\right],\left[b,d\right]\right] &= f\left[\underbrace{a^{\left(c,\left[b,d\right]\right)}}_{a_{1}},\left[c,\left[b,d\right]\right]\right] \stackrel{\underline{b\in N^{*}\triangleleft N,\exists b_{1}\in N^{*}}}{=} f\left[a_{1},\left[b_{1},\left[c,d\right]\right]\right] \\ &= f\left[\underbrace{\left[a^{\left(b_{1},\left[c,d\right]\right)}_{0},b_{1}\right]}_{\in N^{*}},\underbrace{\left[c,d\right]}_{\in N\cap K}\right] = \left[D,\left[c,d\right]\right] = \left[\left[D,c\right],\left[D,d\right]\right] \\ &= \left[f\left[a,c\right],f\left[b,d\right]\right]. \end{split}$$

Also for every $m = [a, c] \in [N^*, N \cap K]$ and $h \in H$ we have $f(m^h) = f[a, c]^h = f[a^{ch}, c^h] = [D, c^h] = [D, c]^{h} = [D, c]^{id(h)} = (f(m))^{id(h)}$ where $id : H \to H$ is a group homomorphism. This implies that f is an ultra-group homomorphism. The map f is clearly surjective. If $[a, c] \in ker(f)$ then, f([a, c]) = [D, c] = D. Now by ([7], Lemma 2.5), since D is normal in $N \cap K$, it follows that $c \in D$ that is $c = [a_1, c_1]$ where $a_1 \in N^* \cap K$ and $c_1 \in N \cap K^*$. Therefore

$$[a,c] = [a, [a_1, c_1]] = [[a^{(a_1,c_1)^{-1}}, a_1], c_1] \in [N^*, N \cap K^*].$$

So $ker(f) = [N^*, (N \cap K^*)]$. Thus $[N^*, N \cap K^*] \triangleleft [N^*, N \cap K]$. A symmetric argument shows that $[K^*, N^* \cap K]$ is normal in $[K^*, N \cap K]$. By the First isomorphism theorem for ultra-groups we have

$$\frac{[N^*, N \cap K]}{[N^*, N \cap K^*]} \cong \frac{N \cap K}{D} = \frac{N \cap K}{[N^* \cap K, K \cap N^*]}$$

which completes the proof.

Theorem 2.22. Let M be an ultra-group. Any two subnormal (normal) series of M have subnormal (normal) refinements that are equivalent.

Proof. Let $M = M_0 > M_1 > \ldots M_n$ and $M = N_0 > N_1 > \ldots N_m$ be a subnormal (resp. normal) series. Let $M_{n+1} = \{e\} = N_{m+1}$ and for every $0 \leq i \leq n$ consider $M_i = [M_{i+1}, M_i \cap N_0] > [M_{i+1}, M_i \cap N_1] >$ $\ldots [M_{i+1}, M_i \cap N_j] > [M_{i+1}, M_i \cap N_{j+1}] > \ldots > [M_{i+1}, M_i \cap N_m] >$

 $[M_{i+1}, M_i \cap N_{m+1}] = M_{i+1}$ for every $0 \leq j \leq m$. The Zassenhaus Lemma applied to $M_{i+1}, M_i, N_{j+1}, N_j$ shows that $[M_{i+1}, M_i \cap N_{j+1}]$ is normal in $[M_{i+1}, M_i \cap N_j]$. Inserting these ultra-groups between every M_i and M_{i+1} , which we denoting $[M_{i+1}, M_i \cap N_j]$ by M(i, j). Therefore gives a subnormal refinement of the series $M = M_0 > M_1 > \ldots M_n$:

 $M = M(0,0) > M(0,1) > \ldots > M(0,m) > M(1,0) > M(1,1) >$

 $M(1,2) > \ldots > M(1,m) > M(2,0) > \ldots > M(n-1,m) > M(n,0) > \ldots > M(n,m)$ where $M(i,0) = M_i$. Now this refinement has (n+1)(m+1) (not necessarily distinct) terms. A symmetric argument shows that there is a refinement of $M = N_0 > N_1 > \ldots N_m$ (where $N(i,j) = [N_{j+1}, M_i \cap N_j]$ and $N(0,j) = N_i$) as follows:

$$M = N(0,0) > N(1,0) > \ldots > N(n,0) > N(0,1) > N(1,1) > \ldots > N(n,1) > N(0,2) > \ldots > N(n,m-1) > N(0,m) > \ldots > N(n,m).$$

This refinement also has (n + 1)(m + 1) terms. For every pair (i, j) where $0 \leq i \leq n, 0 \leq j \leq m$. There is by Zassenhaus Lemma (applied to $M_{i+1}, M_i, N_{j+1}, N_j$) an isomorphism

$$\frac{M(i,j)}{M(i,j+1)} = \frac{[M_{i+1}, M_i \cap N_j]}{[M_{i+1}, M_i \cap N_{j+1}]} \cong \frac{[N_{j+1}, M_i \cap N_j]}{[N_{j+1}, M_{i+1} \cap N_j]} = \frac{N(i,j)}{N(i+1,j)}.$$

This completes the proof.

We close this section by the following theorem which gives the Jordan-Hölder Theorem for ultra-groups.

Theorem 2.23. Any two composition series of an ultra-group M are equivalent. Therefore, every ultra-group having a composition series determines a unique list of simple ultra-groups.

Proof. The proof follows from Lemma 2.11 and Theorem 2.22.

3. Nilpotent ultra-groups

In this section, firstly we define the center of an ultra-group and the upper central series. Next, we describe nilpotent ultra-groups and define commutators to construct the drived series. Finally, we present some results for solvable and nilpotent ultra-groups.

Definition 3.1. Let M be an ultra-group of a subgroup H of a group G. The *center* of ultra-group M is defined as

$$Z(M) = \left\{ z \in M \mid z^{h} = z, [z, [a, b]] = [a, [z, b]], \text{ for every } a, b \in M, h \in H \right\}.$$

Lemma 3.2. Z(M) is a normal subultra-group of an ultra-group M.

Proof. Clearly $e \in Z(M)$. Let $z_1, z_2 \in Z(M)$, we have $[z_i, [a, b]] = [a, [z_i, b]]$ for i = 1, 2. Consequently, $[[z_1, z_2], [a, b]] = [z_1, [z_2, [a, b]]] = [z_1, [a, [z_2, b]]] =$

 $[a, [z_1, [z_2, b]]] = [a, [[z_1, z_2], b]]$ and $[z_1, z_2]^h = [z_1, z_2]$, thus Z(M) is a subultra-group of M. Also [Z(M), [a, b]] = [a, [Z(M), b]] for every $a, b \in M$, therefore Z(M) is a normal subultra-group of M.

Let M be an ultra-group of a subgroup H of a group G and let Z(M)be the center of M and $\pi : M \longrightarrow \frac{M}{Z(M)}$ be the canonical epimorphism. Since $Z(\frac{M}{Z(M)})$ is a normal subultra-group of $\frac{M}{Z(M)}$, by the corresponding theorem for ultra-groups (see[7]) we have $\pi^{-1}(Z(\frac{M}{Z(M)})) \triangleleft M$. Hence, by induction, $Z_1(M) = Z(M)$ and $Z_i(M) = \pi^{-1}(Z(\frac{M}{Z_{i-1}(M)}))$ for i > 1 where $\pi : M_i \longrightarrow \frac{M_i}{Z(M)}$. Therefore we obtain the sequence

$$\{e\} = Z_0(M) < Z_1(M) < Z_2(M) < \dots$$

of normal subultra-groups of M, which is called the *upper central series* of an ultra-group M.

Definition 3.3. An ultra-group M is called a *nilpotent ultra-group* if there exists a natural number n such that $Z_n(M) = M$.

By the definition of the product of a family $(f_i)_{i \in I}$ of morphisms in each category (see Proposition 1.7 in [5] and D efinition 10.34 in [1]), we see if $f_i : M_i \to M'_i$ is a family of ultra-group homomorphisms then $f = \Pi f_i :$ $\Pi M_i \to \Pi M'_i$ is an ultra-group homomorphism furthermore $ker(f) = \Pi ker(f_i)$.

Lemma 3.4. Let $\{M_i \mid i \in I\}$ and $\{N_i \mid i \in I\}$ be a family of ultra-groups such that for every $i \in I$, N_i is normal subultra-group of M_i . Then ΠN_i is a normal subultra-group of ΠM_i and $\frac{\Pi M_i}{\Pi N_i} \cong \Pi \frac{M_i}{N_i}$.

Proof. Let $\pi_i : M_i \to \frac{M_i}{N_i}$ be the canonical epimorphism. By the above paragraph $\Pi \pi_i : \Pi M_i \to \Pi \frac{M_i}{N_i}$ is an epimorphism with the kernel ΠN_i . Now by First isomorphism theorem for ultra-groups $\frac{\Pi M_i}{\Pi N_i} \cong \Pi \frac{M_i}{N_i}$.

Theorem 3.5. Direct product of finite nilpotent ultra-groups is nilpotent.

Proof. Let M_i be ultra-groups over the group G_i ; i = 1, 2. This is sufficient to prove this result for the direct product of two ultra-groups. The proof for most factors is similar. Let $M = M_1 \times M_2$. We prove by induction $Z_i(M) =$ $Z_i(M_1) \times Z_i(M_2)$. The proof for i = 1 is clear. Suppose π_{M_j} is the canonical epimorphism $M_j \longrightarrow \frac{M_j}{Z_i(M_j)}$ then π is the canonical epimorphism from $M = M_1 \times M_2$ onto $\frac{M_1}{Z_i(M_1)} \times \frac{M_2}{Z_i(M_2)}$ by the above paragraph. Now consider the ultra-group homomorphism ψ from $\frac{M_1}{Z_i(M_1)} \times \frac{M_2}{Z_i(M_2)}$ to $\frac{M_1 \times M_2}{Z_i(M_1) \times Z_i(M_2)}$ that it is equal to $\frac{M_1 \times M_2}{Z_i(M_1 \times M_2)} = \frac{M}{Z_i(M)}$ by Lemma 3.4. Consider an ultragroup epimorphism $\varphi : M \longrightarrow \frac{M}{Z_i(M)}$ as a composition of two ultra-group homomorphisms ψ and π . As a result,

$$Z_{i+1}(M) = \varphi^{-1} \left(Z\left(\frac{M}{Z_i(M)}\right) \right) = \pi^{-1} \psi^{-1} \left(Z\left(\frac{M}{Z_i(M)}\right) \right)$$
$$= \pi^{-1} \left(Z\left(\frac{M_1}{Z_i(M_1)} \times \frac{M_2}{Z_i(M_2)}\right) \right)$$
$$= \pi^{-1} \left(Z\left(\frac{M_1}{Z_i(M_1)}\right) \times Z\left(\frac{M_2}{Z_i(M_2)}\right) \right)$$
$$= \pi_{M_1}^{-1} \left(Z\left(\frac{M_1}{Z_i(M_1)}\right) \right) \times \pi_{M_2}^{-1} \left(Z\left(\frac{M_2}{Z_i(M_2)}\right) \right)$$
$$= Z_{i+1}(M_1) \times Z_{i+1}(M_2).$$

Thus for every $i, Z_i(M) = Z_i(M_1) \times Z_i(M_2)$. Since M_1, M_2 are nilpotent, there exists $n \in \mathbb{N}$ such that $Z_n(M_1) = M_1$ and $Z_n(M_2) = M_2$. Due to this $Z_n(M) = M_1 \times M_2 = M$ and thus M is nilpotent. \Box

Let M be an ultra-group of subgroup H over a group G. We define the *commutator* of M as the subultra-group generated by the set $\left\{ \left[[a,b]^{[b,a]^{(-1)}}, [b,a]^{[-1]} \right] \mid a, b \in M \right\}$ and denoted it by M'. The element $\left[[a,b]^{[b,a]^{(-1)}}, [b,a]^{[-1]} \right]$ is called commutator of a, b and denoted by $\left[\widehat{a, b} \right]$. Now let C be the subultra-group generated by the commutators elements of M. We show that C is a normal subultra-group. First for every $a, b \in M$

$$\begin{bmatrix} [a,b]^{[b,a]^{(-1)}}, [b,a]^{[-1]} \end{bmatrix} = c_1 \in C$$

$$\Rightarrow \begin{bmatrix} [[a,b]^{[b,a]^{(-1)}}, [b,a]^{[-1]} \end{bmatrix}, [b,a] \end{bmatrix} = [c_1, [b,a]]$$

$$\Rightarrow \begin{bmatrix} [a,b]^{([b,a]^{(-1)})^{([b,a]^{[-1]}, [b,a])}}, \begin{bmatrix} [b,a]^{[-1]}, [b,a] \end{bmatrix} \end{bmatrix} = [c_1, [b,a]]$$

$$\Rightarrow [a,b] = [c_1, [b,a]]. \quad (*)$$

So for every $a, b \in M$ there exists $c_1 \in C$ such that $[a, b] = [c_1, [b, a]]$. Now, using Theorem 1.6, we will prove that C is a normal subultra-group of M. Note that for every $x, y \in M$ and by (*) we have $[c_1, [x, y]] =$ $[c_1, [c_2, [y, x]]] = [[c_1^h, c_2], [y, x]] = [c_3, [y, x]]$, where $h = (c_2, [y, x])^{-1}$, $c_3 =$ $\left[c_1^h,c_2\right],$ thus $[C,[x,y]]\subseteq [C,[y,x]].$ The inverse of this equation is proved in the same way. Therefore

$$[C, [x, y]] = [C, [y, x]]. \quad (**)$$

For every $x, y \in_H M$ and every $c_1, c_2 \in C$:

$$\begin{split} \left[\left[c_{1}, x \right], \left[c_{2}, y \right] \right] &= \left[c_{1}^{h}, \left[x, \left[c_{2}, y \right] \right] \right] & h = \left(x, \left[c_{1}, y \right] \right) \\ &= \left[c_{1}^{h}, \left[c_{3}, \left[\left[c_{2}, y \right], x \right] \right] \right] & by(*) \\ &= \left[\left[\left(c_{1}^{h} \right)^{\left(c_{3}, \left[\left[c_{2}, y \right], x \right] \right]}, \left[\left[c_{2}, y \right], x \right] \right] \right] \\ &= \left[c_{4}, \left[\left[c_{2}, y \right], x \right] \right] & c_{4} = \left[\left(c_{1}^{h} \right)^{\left(c_{3}, \left[\left[c_{2}, y \right], x \right] \right)^{-1}}, c_{3} \right] \\ &= \left[c_{4}, \left[c_{2}^{\left(y, x \right)}, \left[y, x \right] \right] \right] \\ &= \left[c_{5}, \left[y, x \right] \right] & c_{5} = \left[c_{4}^{\left(c_{2}^{\left(y, x \right)}, \left[y, x \right] \right)^{-1}}, c_{2}^{\left(y, x \right)} \right] \end{split}$$

Therefore $[[c_1, x], [c_2, y]] \subseteq [c_5, [y, x]]$ and hence $[[C, x], [C, y]] \subseteq [C, [y, x]]$. Now by $(**), [c_1, [x, y]] = [c_2, [y, x]] = [[c_2^h, y], x]$ which $h = (y, x)^{-1}$. Then by (*) we have, $[[c_2^h, y], x] = [c_3, [x, [c_2^h, y]]] = [[c_3^{h'}, x], [c_2^h, y]]$, where $h' = (x, [c_2^h, y])^{-1}$. Thus $[C, [y, x]] \subseteq [[C, x], [C, y]]$. These show that C is a normal subultra-group of M.

Theorem 3.6. Let M be an ultra-group of a subgroup H over a group G. Then an ultra-group M is abelian if and only if $M' = \{e\}$.

Proof. If ultra-group M is abelian then for every $a, b \in M$, [a, b] = [b, a]so $\left[[a, b]^{[b,a]^{(-1)}}, [b, a]^{[-1]}\right] = \left[\widehat{a, b}\right] = e$ by considering the fact for every $a \in M$ we have $\left[a^{a^{(-1)}}, a^{[-1]}\right] = e$. Conversely if for every $a, b \in M$ we have $\left[[a, b]^{[b,a]^{(-1)}}, [b, a]^{[-1]}\right] = e$ then in view of Proposition 1.3 and the right cancellation law $[a, b]^{[b,a]^{(-1)}} = [b, a]^{[b,a]^{(-1)}}$ and thus [a, b] = [b, a]. \Box

Theorem 3.7. Let M be an ultra-group of subgroup H over a group G and M' be the commutator subultra-group of M. Then $\frac{M}{M'}$ is abelian.

Proof. For every $a, b \in M$, $\left[\widehat{a, b}\right] \in M'$ if and only if $\left[[a, b]^{[b, a]^{(-1)}}, [b, a]^{[-1]}\right] \in M'$. Thus [M', [a, b]] = [M', [b, a]]. Since M' is a normal subultra-group of M, we have $\left[[M', a], [M', b]\right] = \left[[M', b], [M', a]\right]$, so $\frac{M}{M'}$ is abelian. \Box

Theorem 3.8. Let M be an ultra-group of a subgroup H over a group G and N be a normal subultra-group of M. Then $\frac{M}{N}$ is abelian if and only if M' < N.

Proof. Let $\frac{M}{N}$ be abelian ultra-group. It is sufficient to show that N contains the generators of ultra-group M'. For x belongs to the generators of M', there exist $a, b \in M$ such that $x = \left[[a, b]^{[b,a]^{(-1)}}, [b, a]^{[-1]}\right]$. On the other hand $\frac{M}{N}$ is abelian, therefore for every $a, b \in M$ we have [[N, a], [N, b]] =[[N, b], [N, a]]. Thus by normality of N we have, [N, [a, b]] = [N, [b, a]] (by Theorem 1.6). So $\left[[a, b]^{[b,a]^{(-1)}}, [b, a]^{[-1]}\right] \in N$. This implies that $x \in N$ and therefore M' < N.

Conversely if M' < N, then $\left[[a,b]^{[b,a]^{(-1)}}, [b,a]^{[-1]} \right] \in M'$ for every $a, b \in M$. Since M' < N, $\left[[a,b]^{[b,a]^{(-1)}}, [b,a]^{[-1]} \right] \in N$. Thus [N, [a,b]] = [N, [b,a]]. Since N is normal, [[N, a], [N, b]] = [[N, b], [N, a]].

Lemma 3.9. If X is a generating set of an ultra-group M then M' is generated by the set of commutators of elements of X.

Proof. Let K be a normal subultra-group generated by the commutators of elements of X. By definition of M' we have K < M'. On the other hand, the set $\frac{X}{K}$ generates the quotient ultra-group $\frac{M}{K}$. Now $[[K, x_1], [K, x_2]] = [[K, x_2], [K, x_1]]$ if and only if $[[x_1, x_2]^{[x_2, x_1]^{(-1)}}, [x_2, x_1]^{[-1]}] = [\widehat{x_1, x_2}] \in K$. So $\frac{M}{K}$ is abelian by Theorem 3.8 and hence M' < K.

Let N and K be two normal subultra-groups of an ultra-group M. Then $\left[\widehat{N,K}\right]$ is a subultra-group of M generated by $\left\{\left[\widehat{n,k}\right] | n \in N, k \in K\right\}$.

Let M be an ultra-group of a subgroup H over the group G and let A, B be two normal subultra-group of M. Then for every $a, b \in M$ we have:

$$\begin{split} \left[\widehat{a,b}\right] &= \left[[a,b]^{[b,a]^{(-1)}}, [b,a]^{[-1]} \right] \\ &= \left[\left[a^{(^{b}[b,a]^{(-1)})}, b^{[b,a]^{[-1]}} \right], \left[(a^{[-1]})^{b^{(-1)}}, b^{[-1]} \right]^{[b,a]} \right] \\ &= \left[\left[a^{h_{1}}, b^{h_{2}} \right], \left[(a^{[-1])^{h_{3}}}, (b^{[-1]})^{h_{4}} \right] \right] \\ &= \left[\left[\left[a^{h'_{1}}, b^{h'_{2}} \right], a^{[-1]^{h_{3}}} \right], (b^{[-1]})^{h_{4}} \right] \end{split}$$
(2)

$$= \begin{bmatrix} \begin{bmatrix} b', \begin{bmatrix} a^{h'_1}, (a^{[-1]})^{h_3} \end{bmatrix} \end{bmatrix}, (b^{[-1]})^{h_4} \end{bmatrix} \quad \text{by } B \triangleleft M$$
$$= \begin{bmatrix} a', \begin{bmatrix} b', (b^{[-1]})^{h_4} \end{bmatrix} \end{bmatrix} \in [A, B] \quad \text{by } A \triangleleft M$$

where $h_1 = ({}^{b}[b, a]^{(-1)}), h_2 = [b, a]^{[-1]}, h_3 = b^{(-1)}({}^{b^{(-1)}}[b, a]), h_4 = [b, a],$ $h'_1 = ((h_1)({}^{b^{h_2}}((a^{[-1]}){}^{h_3}, b^{[-1]^{h_4}}){}^{-1})) \text{ and } h'_2 = h_2((a^{[-1]}){}^{h_3}, (b^{[-1])^{h_4}}){}^{-1}).$

Now from Lemma ?? and the normality of B, $\left[b'', \left[a', \left[a^{h'_1}, \left(a^{\left[-1\right]}\right)^{h_3}\right]\right]\right] = \left[b''', \left[a^{h'_1}, \left(a^{\left[-1\right]}\right)^{h_3}\right]\right] \in [B, A]$. Thus $\left[\widehat{a, b}\right] \in [A, B] \cap [B, A]$. Since A, B are normal in an ultra-group M, [A, B] and [B, A] are normal subultra-groups of M.

Lemma 3.10. Let N be a normal subultra-group of an ultra-group M such that every $n \in N$ commute with every $m \in M$ and for every $h \in H$, $n^h = n$. Then $[N, m^h] = [N, m]$.

Proof. First for each $n \in N$ and $m_1, m_2 \in M$, $h \in H$ we have

$$[n, [m_1, m_2]] = [[n, m_1], m_2] = [[m_1, n], m_2] = \left[m_1^{(n, m_2)}, [n, m_2]\right].$$

On the other hand $[[m_1, m_2], n] = \left[m_1^{(m_2, n)}, [m_2, n]\right] = \left[m_1^{(m_2, n)}, [n, m_2]\right]$, thus $m_1^{(m_2, n)} = m_1^{(n, m_2)}$. So $m_1^{(n, m_2)(m_2, n)^{-1}} = m_1$. Now we can write

$$[n, [m_1, m_2]] = [[m_1, m_2], n] = \left[m_1^{(m_2, n)}, [m_2, n]\right] = \left[\left[m_1^{(m_2, n)(n, m_2)^{-1}}, n\right], m_2\right] = [[m_1, n], m_2].$$
(*i*)
Also

$$[n, [m_1, m_2]] = [m_1, [n_1, m_2]] = \left[\left[m_1^{(n_1, m_2)^{-1}}, n_1 \right], m_2 \right].$$
(*ii*)

From (i), (ii) we can deduced $[m_1, n] = \lfloor m_1^{(n_1, m_2)^{-1}}, n_1 \rfloor$. Thus $m_1 = \lfloor \left[m_1^{(n_1, m_2)^{-1}}, n_1 \right]^{n^{(-1)}}, n^{[-1]} \rfloor$. So $m_1 = [m_1^h, n']$ where $n' = \lfloor n_1^{n^{(-1)}}, n^{[-1]} \rfloor$ and $h = (n_1, m_2)^{-1} \binom{n_1 n^{(-1)}}{n^{(-1)}} \binom{n^{n^{(-1)}, n^{[-1]}}{n^{(-1)}}$. Therefore there exist $n' \in N$ such that $m_1 = \lfloor m^h, n' \rfloor = \lfloor n', m^h \rfloor$ for every $n \in N$. So $m_1 \in \lfloor N, m_1^h \rfloor$ and $\lfloor N, m_1^h \rfloor = \lfloor N, m_1 \rfloor$.

Theorem 3.11. Let N, K be normal subultra-groups of ultra-group M and N < K. Then $\frac{K}{N} < Z(\frac{M}{N})$ if and only if $\left[\widehat{K,M}\right] < N$.

 $\begin{array}{l} Proof. \text{ First we note that:} \\ (1). \text{ For every } k \in K, h \in H \text{ we have } \left[(k^h)^{k^{(-1)}}, k^{[-1]} \right] \in N. \text{ Thus } [N,k] = \\ \left[N,k^h \right]. \text{ Therefore for every } [N,k] \in \frac{K}{N}, \ [N,k]^h = \left[N^{k^h}, k^h \right] = [N,k]. \\ (2). \text{ For every } k \in K, m \in M \text{ if } \left[\widehat{K,M} \right] < N, \text{ then } \left[[k,m]^{[m,k]^{(-1)}}, [m,k]^{[-1]} \right] \in \\ N \text{ and } [N, [k,m]] = [N, [m,k]]. \text{ Hence } [[N,k], [N,m]] = [[N,m], [N,k]]. \text{ So,} \\ [N,k] \text{ commute with every } [N,m] \in \frac{M}{N}. \\ (3). K \text{ is normal in } M, \text{ thus } \frac{K}{N} \text{ is normal in } \frac{M}{N} \text{ since} \\ \\ \qquad [[N,k], [[N,m_1], [N,m_2]]] = [[N,k], [N, [m_1,m_2]]] \\ \qquad = [N, [k, [m_1,m_2]]] \\ \qquad = [N, [m_1, [k,m_2]]] \\ \qquad = [[N,m_1], [[N,k], [N,m_2]]] . \end{array}$

Now, by Lemma 3.10, for $\frac{N}{K}$ and for every $m_1, m_2 \in M$, we have

$$\begin{split} \left[\left[N,k \right], \left[\left[N,m_1 \right], \left[N,m_2 \right] \right] \right] &= \left[\left[\left[N,m_1 \right], \left[N,m_2 \right] \right], \left[N,k \right] \right] \\ &= \left[\left[N,m_1 \right]^{\left(\left[N,m_2 \right], \left[N,k \right] \right)}, \left[\left[N,m_2 \right], \left[N,k \right] \right] \right] \\ &= \left[\left[N,m_1 \right], \left[\left[N,k \right], \left[N,m_2 \right] \right] \right]. \end{split}$$

Thus $[N, k] \in Z(\frac{M}{N})$ for every $k \in K$. Conversely, let $[N, k] < Z(\frac{M}{N})$. Hence for every $k \in K, m \in M$ $\begin{bmatrix} [N, k], [[N, m], [N, e]]] = [[N, m], [[N, k], [N, e]]] \\ [[N, k], [[N, m], N]] = [[N, m], [[N, k], N]] \\ [[N, k], [N, m]] = [[N, m], [N, k]] \\ [N, [k, m]] = [N, [m, k]].$

Thus for every $k \in K, m \in M$ we have, $\left[[k,m]^{[m,k]^{(-1)}}, [m,k]^{[-1]}\right] \in N$. So $\left[\widehat{K,M}\right] < N$.

Now we give an equivalent characterization of nilpotent ultra-groups, namely by descending central series.

Let M be an ultra-group and

$$\gamma_1(M) = M, \quad \gamma_2(M) = \left[\gamma_1(\widehat{M}), M\right], \quad \gamma_i(M) = \left[\gamma_{i-1}(\widehat{M}), M\right].$$

Then the chain of normal subultra-groups $M = \gamma_1(M) > \gamma_2(M) > \ldots$ is called descending central series of M, that have the following properties: $\gamma_i(M) \triangleleft M$ for every i, and by the above lemma, $\frac{\gamma_i(M)}{\gamma_{i+1}(M)} < Z(\frac{M}{\gamma_{i+1}(M)})$ since $\left[\widehat{\gamma_i(M)}, M\right] = \gamma_{i+1}(M)$.

Definition 3.12. A series $\{e\} = M_0 < M_1 < \ldots < M_n = M$ of an ultragroup M is called *central series* if for each $i, M_i \triangleleft M$ and $\frac{M_{i+1}}{M_i} < Z(\frac{M}{M_i})$.

Lemma 3.13. If $\{e\} = M_0 < M_1 < \ldots < M_n = M$ is a central series of an ultra-group M, then

- (i) $\gamma_i(M) < M_{n-i+1}$,
- (ii) $M_i < Z_i(M)$.

Proof. The proof is straightforward by induction on i.

Theorem 3.14. Let M be an ultra-group. Then M is nilpotent if and only if $\gamma_{n+1}(M) = \{e\}$ for some integer $n \ge 0$.

Proof. Assume that there is an integer $n \ge 0$ such that $\gamma_{n+1}(M) = \{e\}$. Consider the series

$$M = \gamma_1(M) > \gamma_2(M) > \ldots > \gamma_n(M) > \gamma_{n+1}(M) = \{e\}.$$

In this series, $\frac{\gamma_i(M)}{\gamma_{i+1}(M)} < Z(\frac{M}{\gamma_{i+1}(M)})$ and $\gamma_{n+1-i}(M) < Z_i(M)$ for all $i = 0, 1, \ldots, n$ (Lemma 3.13). Therefore $M = \gamma_1(M) < Z_n(M)$, so M is nilpotent.

Conversely, if M is nilpotent then there exists $n \ge 1$ such that $Z_n(M) = M$. Therefore we have a series of normal subultra-groups

$$\{e\} = Z_0(M) < Z_1(M) < Z_2(M) < \ldots < Z_n(M) = M.$$

Then it follows that $\gamma_i(M) < Z_{n+1-i}(M)$ for all i and $\gamma_{n+1}(M) < Z_0(M)$. So $\gamma_{n+1}(M) = \{e\}$.

Theorem 3.15. Every subultra-group of nilpotent ultra-group is nilpotent.

Proof. Let M be an ultra-group and K be a subultra-group of M. Since M is nilpotent, so there exists an integer $n \ge 0$ such that $\gamma_{n+1}(M) = \{e\}$. Now we will show (by induction on i) that $\gamma_i(K) < \gamma_i(M)$. For i = 1, it is clear. Suppose that $\gamma_i(K) < \gamma_i(M)$. Then $\gamma_{i+1}(K) = \left[\gamma_i(\widehat{K}), K\right] < \left[\gamma_i(\widehat{M}), M\right] = \gamma_{i+1}(M)$. Hence $\gamma_{i+1}(K) < \gamma_{i+1}(M) = \{e\}$. Let M be an ultra-group of a subgroup H over the group G. We define the *i*-th derived subultra-group of M inductively as follows:

$$M^{(1)} = M' = \left[\widehat{M, M}\right],$$
$$M^{i+1} = M^{(i)'} = \left[\widehat{M^{(i)}, M^{(i)}}\right]$$

So we obtain the sequence of subultra-groups of ${\cal M}$ such that each one is normal sn the previous.

The series

$$M^{(0)} = M > M^1 > M^2 > \dots$$

is called *derived*.

Lemma 3.16. Let M be an arbitrary ultra-group and $M = M_0 > M_1 > M_2 > \ldots$ be the solvable series. Then for every $i, M^{(i)} \subseteq M_{(i)}$.

Proof. By induction on *i*. If i = 0, then $M^{(0)} = M \subseteq M_{(0)} = M$. Suppose $M^{(i)} \subseteq M_{(i)}$. We show that this is true for i + 1. By $M^{(i)} \subseteq M_{(i)}$ we have $\left[\widehat{M^{(i)}, M^{(i)}}\right] \subseteq \left[\widehat{M_{(i)}, M_{(i)}}\right]$. So $M^{i+1} \subseteq M'_i$. According to the conditions of the solvable series $\frac{M_i}{M_{i+1}}$ is abelian. Thus by Theorem 3.8, $M'_i \subseteq M_{i+1}$. Therefore $M^{(i+1)} \subseteq M_{(i+1)}$.

Theorem 3.17. Let M be an ultra-group of subgroup H over the group G. The ultra-group M is solvable if and only if there exists $n \ge 0$ such that $M^{(n)} = \{e\}.$

Proof. If M is a solvable ultra-group, then it has solvable series $M = M_0 > M_1 > M_2 > \ldots > M_n = \{e\}$. Now by the above lemma for i = n we have $M^{(n)} > M_n = \{e\}$. Conversely, let there exists $n \ge 0$ such that $M^{(n)} = \{e\}$. In this case the derived series has the conditions of a solvable series, that means $M^{i+1} \lhd M^i$ and $\frac{M_i}{M_{i+1}}$ is abelian. So it is a solvable series for an ultra-group M.

We conclude this paper by presenting the following lemma, which demonstrates the relationship between nilpotent and solvable ultra-groups.

Lemma 3.18. Every nilpotent ultra-group is solvable.

Proof. If an ultra-group M is nilpotent then the upper central series of M, $\{e\} < Z_1(M) < Z_2(M) < \ldots < Z_n(M) = M$ is a normal series. All quotients of the upper central series are abelian since $\frac{Z_i(M)}{Z_{i-1}(M)} = Z(\frac{M}{Z_{i-1}(M)})$ and $Z(\frac{M}{Z_{i-1}(M)})$ is abelian.

References

- J. Adamek, H. Herrlich and G. Strecker, Abstract and Concrete Categories, John Willy and Sons, New York (1990).
- [2] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag Graduate Texts in Mathematics, (1981).
- [3] S.H. Dalalyan, On hypergroups, prenormal subgroups and the simplest groups, Conf. dedicated to 90th-anniversary of M.M. Jrbashyan, Yerevan, (Russian),(2008), 12 - 14.
- [4] T.W. Hungerford, Algebra, Springer, New York, (2003).
- [5] M. Kilp, U. Knauer and A. Mikhalev, *Monoids, Acts and Categories*, Walter De Gruyter, Berlin, New York, (2000).
- [6] A.G. Kurosh, The Theory of Groups, Amer. Math. Soc., (1960).
- [7] Gh. Moghaddasi, B. Tolue and P. Zolfaghari, On the structure of the ultra-group over a finite group, U.P.B. Sci. Bull., Series A, 78 (2016), 173 – 187.
- [8] Gh. Moghaddasi and P. Zolfaghari, The quotient ultra-groups, Italian J. Pure Appl. Math., 36 (2016), 211 – 218.
- [9] B. Tolue, Gh. Moghaddasi and P. Zolfaghari, On the category of ultragroups, acettepe J. Math. Statistics, 46 (2017), 437 – 447.

Received November 29, 2023

M. Aliabadi, Gh. Moghaddasi

Department of Pure Mathematics, Hakim Sabzevari University, Sabzevar, Iran E-mails: mon.aliabadi@hsu.ac.ir, Moghaddasimath@yahoo.com

P. Zolfaghari

Department of Mathematics Education, Farhangian University, P.O.Box 14665-889, Tehran, Iran

E-mail: p.zolfaghari@cfu.ac.ir