Weakly quasi invo-clean rings

Fatemeh Rashedi

Abstract. We introduce the notion of weakly quasi invo-clean rings where every element r can be written as $r = v + e$ or $r = v - e$, where $v \in Qinv(R)$ and $e \in Id(R)$. We study various properties of weakly quasi invo-clean elements and weakly quasi invo-clean rings. We prove that the ring $R = \prod_{i \in I} R_i$, where all rings R_i are weakly quasi invo-clean, is weakly quasi invo-clean if and only if all factors but one are quasi invo-clean.

1. Introduction

Let R be an associative ring with identity. An element v of R is said to be an involution if $v^2 = 1$ and a quasi-involution if either v or $1 - v$ is an involution [6]. Let $U(R)$, $Id(R)$, $Nil(R)$, $Z(R)$, $Inv(R)$ and $Qinv(R)$ will denote respectively the set of units, the set of idempotents, the set of nilpotents, the set of centrals, the set of involutions and the set of quasi-involutions of R.

The ring R is said to be clean if each $r \in R$ can be expressed as $r = u + e$, where $u \in U(R)$ and $e \in Id(R)$ [1, 8]. The ring R is said to be invo-clean if for each $r \in R$ there exist $v \in Inv(R)$ and $e \in Id(R)$ such that $r = v + e$ [2, 4, 7]. In [2, Corollary 2.16], it is shown that, if R is an invo-clean ring, then $J(R)$ is nil with index of nilpotence not exceeding 3. In [4, Theorem 2.2], it is proved that, if R is an invo-clean ring, then eRe is also an invo-clean ring for any idempotent e of R. In addition, for all $n \in \mathbb{N}$, if $M_n(R)$ is invo-clean, then so is R.

The ring R is said to be weakly invo-clean if for each $r \in R$ there exist $v \in Inv(R)$ and $e \in Id(R)$ such that $r = v + e$ or $r = v - e$ [3]. In [3, Theorem 4.18], it is shown that, a ring R is weakly invo-clean if, and only if, $R \cong R' \times R''$, where R' is a weakly invo-clean ring which is isomorphic to

2010 Mathematics Subject Classification: 16D60, 16S34, 16U60.
Keywords: Weakly quasi-involution elements, quasi invo-clean rings, weakly quasi invo-clean rings.
either \(\mathbb{Z}_3 \) or \(\mathbb{Z}_5 \) or can be embedded in a direct product of copies of \(\mathbb{Z}_3 \) and a single copy of \(\mathbb{Z}_5 \), and \(R' \) is either \(\{0\} \) or a nil-clean ring of characteristic at most 8 for which \(z^2 = 2z \) for all \(z \in J(R) \). In particular, any weakly invo-clean ring is clean.

The ring \(R \) is said to be quasi invo-clean if for each \(r \in R \) there exist \(v \in Qinv(R) \) and \(e \in Id(R) \) such that \(r = v + e \). If, in addition \(ve = ev \), \(R \) is said to be strongly quasi invo-clean [5]. In [5, Theorem 2.4], it is proved that, a ring \(R \) is quasi invo-clean if, and only if, \(R \cong R_1 \times R_2 \times R_3 \), where \(R_1 = \{0\} \) or \(R_1 \) is an invo-clean ring of characteristic not exceeding 8 which is nil-clean, \(R_2 = \{0\} \) or \(R_2 \) is a subdirect product of a family of copies of \(\mathbb{Z}_3 \), and \(R_3 = \{0\} \) or \(R_3 \cong \mathbb{Z}_5 \).

In this paper, we introduce the notion of a weakly quasi invo-clean ring as a new generalization of a weakly invo-clean ring and a quasi invo-clean ring. Let \(R \) be a ring. Then an element \(r \in R \) is called weakly quasi invo-clean if there exist \(v \in Qinv(R) \) and \(e \in Id(R) \) such that \(r = v + e \) or \(r = v - e \). A ring \(R \) is called weakly quasi invo-clean if every element of \(R \) is weakly quasi invo-clean. We study various properties of weakly quasi invo-clean elements and weakly quasi invo-clean rings. We show that, every homomorphically image of a weakly quasi invo-clean ring is weakly quasi invo-clean (Lemm 2.10). We prove that, if \(R \) is a weakly quasi invo-clean ring with the strong property and \(4 = 0 \), then \(R \) is strongly quasi invo-clean (Lemma 2.14).

Finally, we show that the ring \(R = \prod_{i \in I} R_i \), where all rings \(R_i \) are weakly quasi invo-clean, is weakly quasi invo-clean ring if and only if all factors but one are quasi invo-clean (Theorem 2.19).

2. Main results

In conjunction with [2], [3] and [5], we start our work in this section with the following basic notion.

Definition 2.1. An element \(r \in R \) is said to be an *invo-clean element* if there exist \(v \in Inv(R) \) and \(e \in Id(R) \) such that \(r = v + e \). A ring \(R \) is said to be invo-clean if each element in \(R \) is invo-clean [2].

Simple examples of invo-clean rings that could be plainly verified are these: \(\mathbb{Z}_2 \), \(\mathbb{Z}_3 \) and \(\mathbb{Z}_4 \). Oppositely, \(\mathbb{Z}_5 \) is not invo-clean but however they are clean being finite [2].
Definition 2.2. Let \(R \) be a ring. Then an element \(r \in R \) is said to be \textit{weakly invo-clean} if there exist \(v \in \text{Inv}(R) \) and \(e \in \text{Id}(R) \) such that \(r = v + e \) or \(r = v - e \). A ring \(R \) is said to be weakly invo-clean if every element of \(R \) is weakly invo-clean [3].

Definition 2.3. An element \(v \in R \) is said to be a \textit{quasi-involution element} if \(v^2 = 1 \) or \((1-v)^2 = 1\) [5]. \(Qinv(R) \) denotes the set of all quasi-involutions in \(R \).

Definition 2.4. An element in \(R \) is said to be \textit{quasi invo-clean} if it can be written as the sum of an idempotent and a quasi-involution element. A ring \(R \) is said to be quasi invo-clean if each element in \(R \) is quasi invo-clean [5].

It is evident that invo-clean rings are both weakly invo-clean and quasi invo-clean as this implication is extremely non-reversible by looking quickly at the field \(\mathbb{Z}_5 \).

In the following, we define the weakly quasi invo-clean rings, then we study some of the basic properties of weakly quasi invo-clean rings. Moreover, we give some necessarily examples.

Definition 2.5. Let \(R \) be a ring. Then an element \(r \in R \) is called \textit{weakly quasi invo-clean} if there exist \(v \in Qinv(R) \) and \(e \in Id(R) \) such that \(r = v + e \) or \(r = v - e \). A ring \(R \) is called weakly quasi invo-clean if every element of \(R \) is weakly quasi invo-clean.

Every invo-clean or weakly invo-clean or quasi invo-clean ring is weakly quasi invo-clean. The following example shows that every weakly quasi invo-clean ring is neither weakly invo-clean nor quasi invo-clean nor invo-clean ring, in general.

Example 2.6.

(i) Let \(R = \mathbb{Z}_5 \). Then \(Inv(\mathbb{Z}_5) = \{0, 1, 2, 4\} \), \(Qinv(\mathbb{Z}_5) = \{0, 1, 2, 4\} \) and \(Id(\mathbb{Z}_5) = \{0, 1\} \). Hence \(\mathbb{Z}_5 \) is a weakly quasi invo-clean ring. Since the element 3 of \(\mathbb{Z}_5 \) cannot be expressed as sum of an idempotent and an involution, \(\mathbb{Z}_5 \) is not invo-clean.

(ii) Let \(R = \mathbb{Z}_5 \times \mathbb{Z}_5 \). Then \(R \) is not a weakly invo-clean and not quasi invo-clean ring, by [3, Example 4.16]. Since \(Qinv(\mathbb{Z}_5) = \{0, 1, 2, 4\} \) and \(Id(\mathbb{Z}_5) = \{0, 1\} \), \(R \) is a weakly quasi invo-clean ring.
(iii) Let \(R = \mathbb{Z}_7 \). Then \(\text{Qinv}(\mathbb{Z}_7) = \{0, 1, 2, 6\} \) and \(\text{Id}(\mathbb{Z}_7) = \{0, 1\} \). Since the element 4 of \(\mathbb{Z}_7 \) cannot be expressed as sum or difference of an idempotent and an quasi involution, \(\mathbb{Z}_7 \) is not a (weakly) quasi invo-clean ring.

(iv) Let \(R = \mathbb{Z}_8 \). Then \(\text{Qinv}(\mathbb{Z}_8) = \{0, 1, 2, 5, 6, 7\} \) and \(\text{Id}(\mathbb{Z}_8) = \{0, 1\} \). Hence \(\mathbb{Z}_8 \) is a weakly quasi invo-clean ring. Since the element 4 of \(\mathbb{Z}_8 \) cannot be expressed as sum of an idempotent and an quasi involution, \(\mathbb{Z}_8 \) is not quasi invo-clean.

Proposition 2.7. Let \(R \) be a ring and \(r \in R \). Then \(r \) is weakly quasi invo-clean if and only if \(r \) or \(r + 1 \) is quasi invo-clean.

Proof. Suppose that \(r \) is weakly quasi invo-clean. Hence \(r = v + e \) or \(r = v - e \) for some \(v \in \text{Qinv}(R) \) and \(e \in \text{Id}(R) \). If \(r = v + e \), then \(r \) is quasi invo-clean. If \(r = v - e \), then \(r + 1 = v - e + 1 = v + (1 - e) \). Conversely, if \(r \) is quasi invo-clean, then it is clear that \(r \) is weakly quasi invo-clean. If \(r + 1 \) is quasi invo-clean, then \(r + 1 = v + e \), where \(v \in \text{Qinv}(R) \) and \(e \in \text{Id}(R) \), and so \(r = v - (1 - e) \). Therefore \(r \) is weakly quasi invo-clean.

Proposition 2.8. Let \(R \) be a ring and \(r \in R \). Then \(r \) is weakly quasi invo-clean if and only if \(1 - r \) or \(1 + r \) is quasi invo-clean.

Proof. Suppose that \(r \) is weakly quasi invo-clean. Hence \(r = v + e \) or \(r = v - e \) for some \(v \in \text{Qinv}(R) \) and \(e \in \text{Id}(R) \). Hence \(1 - r = 1 - v - e = -v + (1 - e) \) or \(1 + r = v + (1 - e) \). Conversely, if \(1 - r \) or \(1 + r \) is quasi invo-clean, then \(1 - r = v + e \) or \(1 + r = v - e \) for some \(v \in \text{Qinv}(R) \) and \(e \in \text{Id}(R) \). Hence \(r = -v + (1 - e) \) or \(r = v - (1 - e) \). Therefore \(r \) is quasi invo-clean.

Proposition 2.9. Let \(R \) be a ring and \(r \in R \). Then \(r \) is weakly quasi invo-clean if and only if \(r = v + e \), where \(v \in \text{Qinv}(R) \) or \(1 + v \in \text{Qinv}(R) \).

Proof. Suppose that \(r \) is weakly quasi invo-clean. Hence \(r = v + e \) or \(r = v - e \) for some \(v \in \text{Qinv}(R) \) and \(e \in \text{Id}(R) \). If \(r = v + e \), then \(v \in \text{Qinv}(R) \). If \(r = v - e \), then \(r = (v - 1) + (1 - e) \), where \(1 + (v - 1) = v \in \text{Qinv}(R) \). Conversely, is clear.

Lemma 2.10. Every homomorphic image of a weakly quasi invo-clean ring is weakly quasi invo-clean.
\textbf{Proof.} Since homomorphic images of quasi involutions and idempotents are again quasi involutions and idempotents, respectively, the assertion holds. \hfill \Box

\textbf{Lemma 2.11.} Let \(R \) be a weakly quasi invo-clean ring and \(3, 7 \in U(R) \). Then \(120 = 0 \). In particular, \(30 \in \text{Nil}(R) \).

\textbf{Proof.} Suppose that \(R \) is weakly quasi invo-clean. Hence \(5 = v + e \) or \(5 = v - e \) for some \(v \in Qinv(R) \) and \(e \in Id(R) \). If \(5 = v + e \) and \(v^2 = 1 \), then \(e = 5 - v \), and so \((5 - v)^2 = 5 - v \). Hence \(9v = 21 \). Since \(3 \in U(R) \), \(3v = 7 \). Then \(9v^2 = 49 \), and so \(40 = 0 \). So \(3 \cdot 40 = 120 = 0 \). If \(5 = v + e \) and \((1 - v)^2 = 1 \), then \(e = 5 - v \), and so \((5 - v)^2 = 5 - v \). Hence \(-13 = 7(1 - v) \), and so \(169 = 49 \). Then \(120 = 0 \). If \(5 = v - e \) and \(v^2 = 1 \), then \(31 = 11v \), and so \(961 = 121 \). Hence \(840 = 0 \). Since \(7 \in U(R) \), \(120 = 0 \). If \(5 = v - e \) and \((1 - v)^2 = 1 \), then \(-21 = 9(1 - v) \). Since \(3 \in U(R) \), \(-7 = 3(1 - v) \). Hence \(49 = 9 \), and so \(40 = 0 \). Then \(3 \cdot 40 = 120 = 0 \). Therefore in the every case \(120 = 0 \). Since \(30^3 = 120 \cdot 225 = 0, 30 \in \text{Nil}(R) \). \hfill \Box

\textbf{Corollary 2.12.} Let \(R \) be a weakly quasi invo-clean ring and \(3, 7 \in U(R) \). Then the following statements hold.

(i) \(5 \in U(R) \) if and only if \(6 \in \text{Nil}(R) \).

(ii) \(6 \in U(R) \) if and only if \(5 \in \text{Nil}(R) \).

\textbf{Proof.} Since \(1 + \text{Nil}(R) \subseteq U(R) \) and by Lemma 2.11, \(30 \in \text{Nil}(R) \), the assertion holds. \hfill \Box

\textbf{Lemma 2.13.} Let \(R \) be a weakly quasi invo-clean ring. If \(R \) is strongly indecomposable and \(4 = 0 \), then \(R \) is quasi invo-clean.

\textbf{Proof.} Suppose that \(r \in R \). Hence \(r = v \) or \(r = v + 1 \) or \(r = v - 1 \) for some \(v \in Qinv(R) \). If \(r = v \) or \(r = v + 1 \), then \(r = v + 0 \) or \(r = v + 1 \), where \(v \in Qinv(R) \) and \(0, 1 \in Id(R) \). If \(r = v - 1 \) and \(v^2 = 1 \), then \(r = (v - 2) + 1 \), where \(v - 2 \in Qinv(R) \) and \(1 \in Id(R) \). If \(r = v - 1 \) and \((1 - v)^2 = 1 \), then \(r = -(1 - v) + 0 \), where \(-(1 - v) \in Qinv(R) \) and \(0 \in Id(R) \). Then even \(R \) is quasi invo-clean. \hfill \Box

\textbf{Lemma 2.14.} Let \(R \) be a weakly quasi invo-clean ring with the strong property and \(4 = 0 \), then \(R \) is strongly quasi invo-clean.
Proof. Suppose that \(r \in R \). Hence \(r = v + e \) or \(r = v - e \) with \(ev = ve \) for some \(v \in Qinv(R) \) and \(e \in Id(R) \). If \(r = v + e \), then the assertion holds. If \(r = v - e \) and \(v^2 = 1 \), then \(r = (v - 2e) + e \) and \((v - 2e)e = e(v - 2e)\), where \(v - 2e \in Qinv(R) \) and \(e \in Id(R) \). If \(r = v - e \) and \((1 - v)^2 = 1 \), then \(r = -(1 - v) + (1 - e) \) and \((v - 1)(1 - e) = (1 - e)(v - 1)\), where \(-(1 - v) \in Qinv(R) \) and \(1 - e \in Id(R) \). Then even \(R \) is strongly quasi invo-clean.

\(\Box \)

Proposition 2.15. Let \(R \) be a weakly quasi invo-clean ring and \(4 = 0 \). Then \(Z(R) \) is quasi invo-clean.

Proof. Suppose that \(R \) is weakly quasi invo-clean and \(z \in Z(R) \). Hence \(z = v + e \) or \(z = v - e \) for some \(v \in Qinv(R) \) and \(e \in Id(R) \). If \(z = v - e \) and \(v^2 = 1 \), then \((z + e)^2 = 1 \), and so \(z^2 + 2ze = 1 - e \). Since \(4 = 0 \) and \((z^2 + 2ze)^2 = 1 - e \), \(z^4 = 1 - e \). Hence \(e = 1 - z^4 \in Z(R) \). Therefore \(v \in Z(R) \), and so \(z = (v - 2e) + e \), where \((v - 2e)^2 = 1 \) and \(e^2 = 1 \). If \(z = v - e \) and \((1 - v)^2 = 1 \), then \((1 - (z + e))^2 = 1 \), and so \(e = 2z - z^2 - 2ze \). Since \(4 = 0 \), \(e = z^4 \in Z(R) \) and \(1 - e \in Z(R) \). Therefore \(v \in Z(R) \), and so \(z = (v - 1) + (1 - e) \), where \((v - 1)^2 = 1 \) and \((1 - e)^2 = 1 \). Similarly, if \(z = v + e \) for some \(v \in Qinv(R) \) and \(e \in Id(R) \), then \(e \in Z(R) \), and so \(v \in Z(R) \). Therefore even \(Z(R) \) is quasi invo-clean.

\(\Box \)

Lemma 2.16. Let \(R \) be a weakly quasi invo-clean ring. If \(R \) is indecomposable and \(2 \in U(R) \), then \(R \cong Z_3 \) or \(R \cong Z_5 \).

Proof. Assume that \(R \) is a weakly quasi invo-clean ring and \(Id(R) = \{0, 1\} \). Assume that \(r \in R \). Hence \(r = v \) or \(r = v + 1 \) or \(r = v - 1 \) for some \(v \in Qinv(R) \). If \(v^2 = 1 \), then \((1 - v)^2 \in Id(R) = \{0, 1\} \). Hence \(v = 1 \) or \(v = -1 \). Then \(R = \{0, -1, 1, -2, 2\} \). Since \(2 \in U(R) \), \(3 = 0 \) or \(5 = 0 \). Then \(R \cong Z_3 \) or \(R \cong Z_5 \). If \((1 - v)^2 = 1 \), then \((2 - v)^2 \in Id(R) = \{0, 1\} \). Hence \(v = 0 \) or \(v = 2 \). Then \(R = \{0, -1, 1, 2, 3\} \). Since \(2 \in U(R) \), \(3 = 0 \) or \(5 = 0 \). Then \(R \cong Z_3 \) or \(R \cong Z_5 \).

\(\Box \)

Corollary 2.17. Let \(R \) be a weakly quasi invo-clean ring. If \(R \) is indecomposable and \(3 \in Nil(R) \), then \(R \cong Z_4 \).

Proof. Since \(1 + Nil(R) \subseteq U(R) \), \(2 \in U(R) \). Hence \(R \) is a field of three elements, by Lemma 2.16.

\(\Box \)
Let \(R \) be a ring and \(R M_R \) be an \(R-R \)-bimodule which is a ring possibly without a unity in which \((mn)r = m(nr), (mr)n = m(rn)\) and \((rm)n = r(mn)\) hold for all \(m, n \in M \) and \(r \in R \). The ideal extension of \(R \) by \(M \) is defined to be the additive abelian group \(I(R, M) = R \oplus M \) with multiplication \((r, m)(s, n) = (rs, rn + ms + mn)\).

Lemma 2.18. Let \(R \) be a weakly quasi invo-clean ring and \(R M_R \) be an \(R-R \)-bimodule such that for any \(m \in M \) and \(v \in \text{Qinv}(R) \), \(vm + mv + m^2 = 1 \) and \(4 - 4m - v = 1 \). Then the ideal-extension \(I(R, M) \) of \(R \) by \(M \) is weakly quasi invo-clean.

Proof. Suppose that \((r, m) \in I(R, M)\). Hence \(r = v + e \) or \(r = v - e \) for some \(e \in Id(R) \) and \(v \in \text{Qinv}(R) \). Then \((r, m) = (v, m) + (e, 0)\) or \((r, m) = (v, m) - (e, 0)\). It is clear that \((e, 0) \in Id(I(R, M))\). Assume that \(v^2 = 1 \). Hence \((v, m)^2 = (v^2, vm + mv + m^2) = (1, 1)\), and so \((v, m) \in \text{Qinv}(I(R, M))\). If \((1 - v)^2 = 1, ((1, 1) - (v, m))^2 = ((1 - v)^2, 4 - 4m - v) = (1, 1)\), and so \((v, m) \in \text{Qinv}(I(R, M))\). Therefore \(Id(I(R, M))\) is weakly quasi invo-clean.

Theorem 2.19. Let \(R = \prod_{i \in I} R_i \), where all rings \(R_i \) are weakly quasi invo-clean. Then \(R \) is weakly quasi invo-clean ring if and only if all factors but one are quasi invo-clean.

Proof. Suppose that \(R' = (R_1, R_2, \cdots, R_n) \) is a direct factor of \(R \), where \(n \geq 1 \) and \(|I| \geq n\). Assume that \(R' \) is weakly quasi invo-clean. If \(R_1 \) and \(R_2 \) are not quasi invo-clean, then there exist \(r_1 \in R_1 \) and \(r_2 \in R_2 \) such that \(r_1 \in \text{Qinv}(R_1) + Id(R_1) \) and \(r_2 \in \text{Qinv}(R_2) - Id(R_2) \) but \(r_1 \notin \text{Qinv}(R_1) - Id(R_1) \) and \(r_2 \notin \text{Qinv}(R_2) + Id(R_2) \). Then \(r = (r_1, r_2, 0, \cdots, 0) \notin \text{Qinv}(R) \leq Id(R)\), a contradiction. Conversely, Assume that \(r = (r_1, r_2, \cdots) \in R \). Suppose that \(R_1 \) is weakly quasi invo-clean whereas \(R_i \) is quasi invo-clean for every \(i \neq 1 \). Since \(r_1 \in R_1, r_1 = v_1 - e_1 \) or \(r_1 = v_1 + e_1 \) for some \(v \in \text{Qinv}(R) \) and \(e \in Id(R) \). Since \(R_i \) is quasi invo-clean for every \(i \neq 1, r_i = v_i + e_i \) for some \(v \in \text{Qinv}(R_i) \) and \(e \in Id(R_i) \) for every \(i \neq 1 \). Suppose that \(r_1 = v_1 - e_1 \). Since \(R_i \) is quasi invo-clean for every \(i \neq 1, 1 + r_i = v_i + f_i, \) and so \(r_i = v_i - (1 - f_i) = v_i + e_i \) for every \(i \neq 1 \). Then \(r = (r_1, r_2, \cdots) = (v_1, v_2, \cdots) - (e_1, e_2, \cdots) \). Therefore \(r \) is weakly quasi invo-clean. If \(r_1 = v_1 + e_1 \), then the assertion holds.

The following example shows that the condition all factors but one are quasi invo-clean is essential.
Example 2.20. Let $R = \mathbb{Z}_8 \times \mathbb{Z}_8$. Hence $Id(\mathbb{Z}_8) = \{0, 1\}$ and $Qinv(\mathbb{Z}_8) = \{0, 1, 2, 5, 6, 7\}$. Then \mathbb{Z}_8 is weakly quasi invo-clean. Since the element 4 of \mathbb{Z}_8 cannot be expressed as sum of an idempotent and an quasi involution, \mathbb{Z}_8 is not quasi invo-clean. Since the element $(3, 4)$ of R cannot be expressed as sum or difference of an idempotent and an quasi involution, R is not weakly quasi invo-clean.

Corollary 2.21. Let R be a ring and $n \geq 2$. Then R^n is weakly quasi invo-clean if and only if R^n is quasi invo-clean if and only if R is quasi invo-clean.

Proof. It follows from Theorem 2.19. \qed

Acknowledgement. I would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript.

References

Received September 22, 2022

Department of Mathematics
Technical and Vocational University (TVU)
Tehran, Iran
E-mail: frashedi@tvu.ac.ir