On the weight of finite groups

Mohammad Amin Morshedlo and Mohammad Mehdi Nasrabadi

Abstract. For a finite group G, let $W(G)$ denotes the set of the orders of the elements of G. In this paper we study $|W(G)|$ and show that the cyclic group of order n has the maximum value of $|W(G)|$ among all groups of the same order. Furthermore we study this notion in nilpotent and non-nilpotent groups and state some inequality for it. Among the result we show that the minimum value of $|W(G)|$ is power of 2 or it pertains to a non-nilpotent group.

1. Introduction

Let G be a finite group. The connection between structure and the set of the orders of the elements of G, has been studied in several works. In 1932, Levi and Waerden [4] showed that under some conditions the groups with weight 2 are nilpotent of class at most 3. Later in 1937, Neumann [6] proved that if $W(G) = \{1, 2, 3\}$, then G is an elementary abelian-by-prime order group. Sanov [9] showed that, when $W(G) \subseteq \{1, 2, 3, 4\}$ G is a locally finite group. Novikov and Adjan [7] in 1968 answered negatively to the following question. Does the finiteness of $W(G)$ imply G to be locally finite? In the same line of research Gupta et. al, [3] proved if $W(G) \subseteq \{1, 2, 3, 4, 5\}$ and $W(G) \neq \{1, 5\}$, then G is locally finite. In 2007, D. V. Lytkina [5] showed that for the group G, with $W(G) = \{1, 2, 3, 4\}$, either G is an extension of an elementary abelian 3-group by a cyclic or a quaternion group, or it is an extension of a nilpotent 2-group of class 2 by a subgroup of S_3. The sum of element orders in finite groups is studied by Amiri, Jafarian Amiri and Isaacs [1]. We denote by $|W(G)|$, the number of element orders of G. The group G is m-weight group, if $|W(G)| = m$. It is easy to see that if G is trivial, then $|W(G)| = 1$. If G be a non-trivial group then, the weight of G is at least 2. In the following lemma, we state a result about 2-weight group.

2010 Mathematics Subject Classification: Primary 20D15; Secondary 20K01.
Keywords: Weight of group, finite p-group, non-nilpotency property.
Lemma 1.1. Let G be a group, then G is a 2-weight group if and only if $\exp(G) = p$.

Proof. First assumethat, G is a 2-weight group. If $\exp(G) = p$ has two
distinct prime divisors p and q, then $\{1, p, q\} \subseteq W(G)$, so $\exp(G)$ must be
a p-number for some prime p. Now, if $\exp(G) = p^n$, for some $n \geq 2$, then,
$\{1, p, p^2\} \subseteq W(G)$. The converse is trivial.

2. Preliminary results

This section contains some basic properties on the weight of a finite group.
The following proposition shows the relation of the weight of a direct prod-
uct of a finite number of finite groups with the weights of its factors.

Proposition 2.1. Let H and K be two arbitrary finite groups, then
$$|W(H \times K)| \leq |W(H)| \times |W(K)|,$$
and the equality holds if $(\exp(H), \exp(K)) = 1$.

Proof. Let $m \in W(H \times K)$ then, there exists $(h, k) \in H \times K$, such that
$m = o(h, k) = [o(h), o(k)] = \frac{o(h)}{g_1} \times \frac{o(k)}{g_2} = rs$. Since $[o(h), o(k)]$ is the
least common multiple of $o(h)$ and $o(k)$, and $g_1g_2 = gcd(o(h), o(k))$, on the
other hand $r = \frac{o(h)}{g_1}, s = \frac{o(k)}{g_2}$. So we have $r \in W(H)$ and $s \in W(K)$.
Hence $|W(H \times K)| \leq |W(H)| \times |W(K)|$. Now, if $(\exp(H), \exp(K)) = 1$
and $(r, s) \in W(H) \times W(K)$, then there exist $h \in H$ and $k \in K$ of orders r
and s, respectively. Therefore, (h, k) is an element of $H \times K$ of order rs, so
the result holds.

Now, using induction in order to prove the following corollary.

Corollary 2.2. Let $G_{i=1}^n$ be a family of finite groups. Then,$|W(\prod_{i=1}^n G_i)| \leq
\prod_{i=1}^n |W(G_i)|$. Furthermore, the equality holds if the exponent of distinct
direct factors are mutully coprime.

It is easy to see that the cyclic group of order p^{m-1}, $C_{p^{m-1}}$ is an m-
weight group, in which p is an arbitrary prime number, so for every natural
number n, there exists a finite group (in fact a finite p-group) of weight m.

The following theorem gives an upper bound for the weight of a finite
group in terms of its order.
Theorem 2.3. Let G be a finite group of order n, then $|W(G)| \leq |W(C_n)|$ and the equality holds if and only if $G \cong C_n$.

Proof. Since the order of each element of G is a divisor of n and $|W(C_n)| = d(n)$, in which $d(n)$ is the number of natural divisors of n, it is trivial, such that $|W(G)| \leq |W(C_n)|$. Now, if $|W(G)| = |W(C_n)|$, then $n \in W(G)$ and hence $G \cong C_n$. □

3. Nilpotent groups

In this section, we state some facts on $W(G)$, when G is a nilpotent group. The following proposition gives the upper and lower bound for $W(G)$, when G is a finite nilpotent group.

Proposition 3.1. Let \mathcal{N} be class of nilpotent groups of order n, then for each $G \in \mathcal{N}$ we have $2^{\pi(n)} \leq |W(G)| \leq d(n)$, and equality in the first inequality holds if and only if all Sylow subgroups of G has prime exponent.

Proof. Let $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, then $d(n) = (\alpha_1 + 1) \cdots (\alpha_k + 1)$. Let G be a nilpotent group of order n, so $G \cong \prod_{i=1}^k S_i$, in which S_i is the Sylow p_i-subgroup of G of order $p_i^{\alpha_i}$ ($1 \leq i \leq k$). Now, by Proposition 2.1, we have $|W(G)| = |\prod_{i=1}^k W(S_i)|$. Applying, Theorem 2.3, thus $2^{\pi(n)} \leq |W(S_i)| \leq \alpha_i + 1$, for all $i, 1 \leq i \leq k$. So $2^{\pi(n)} \leq |W(G)| \leq \prod_{i=1}^k (\alpha_i + 1) = d(n)$. Hence, $|W(G)| = 2^{\pi(n)}$ if and only if $\alpha_i = 1$, for all $i, 1 \leq i \leq k$ which is equal to $\exp(S_i) = p_i$, for all $i, 1 \leq i \leq k$.

As an immediate result we have.

Corollary 3.2. Let G be a finite group of order n, if $|W(G)| < 2^{\pi(n)}$ then G is non-nilpotent.

Theorem 3.3. Let G be a group of prime weight then G is nilpotent if and only if G is a p-group.

Proof. Since G is a nilpotent group we have $G = P_1 \times \cdots \times P_k$ so $W(G) = W(P_1) \cdots W(P_k)$ this implies $k = 1$ hence G is a p-group □

Immediate consequence of Theorem 3.3, we get the following corollary.
Corollary 3.4. In the class of all finite groups of prime weight, each group is either a p-group or non-nilpotent.

Proposition 3.5. (See [8, Theorem 1]) Suppose that $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, in which p_i's are distinct prime numbers. Then, every finite group of order n is a nilpotent group if and only if $p_i \nmid p_j^{\beta_j} - 1$, for each j, $0 < \beta_j \leq \alpha_j$ and $i \neq j$.

In above proposition such these numbers are called nilpotent numbers.

Now in order to prove our main result, we need the following results.

Lemma 3.6. Every finite nilpotent group of order n is cyclic if and only if n is square free.

Proof. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be decomposition of n into prime factors and G be a nilpotent group of order n. By Proposition 3.1, we have $2^k \leq \lvert W(G) \rvert \leq \lvert W(C_n) \rvert$, since every nilpotent group of order n is cyclic, so both inequalities are in fact equality and hence $\alpha_i = 1$, for all i, $1 \leq i \leq k$. Conversely, let G be a nilpotent group of order $n = p_1 \cdots p_k$. Applying, Proposition 3.1 again, so we have $\lvert W(G) \rvert = 2^k = d(n) = \lvert W(C_n) \rvert$, it implies that $G \cong C_n$.

Using, the above lemma we can prove the following theorem.

Theorem 3.7. Every finite group of order n is cyclic if and only if $n = p_1 \cdots p_k$, in which $p_1 < \cdots < p_k$ and $p_i \nmid p_{i+s} - 1$, where $1 \leq i \leq k - 1$ and $1 \leq s \leq k - i$.

Proof. If every finite group of order n is cyclic, then by Lemma 3.6 and Proposition 3.5, the result holds. If $n = p_1 \cdots p_k$, in which $p_1 < \cdots < p_k$ and $p_i \nmid p_{i+s} - 1$, where $1 \leq i \leq k - 1$ and $1 \leq s \leq k - i$, then every group of order n is nilpotent, so we have $\lvert W(G) \rvert = 2^k = d(n) = \lvert W(C_n) \rvert$ and hence $G \cong C_n$.

4. Non-nilpotent groups

This section is devoted to some results on non-nilpotent groups.

Let $\mathcal{K}_{(n)}$ denote the class of all groups of order n.

Definition 4.1. We say that $\mathcal{K}_{(n)}$ has non-nilpotency property if there exists a non-nilpotent group T in $\mathcal{K}_{(n)}$, such that $\min \{ \lvert W(G) \rvert \mid G \in \mathcal{K}_{(n)} \} = \lvert W(T) \rvert$.
Theorem 4.2. If K_n has non-nilpotency property, then $K_n^{(nm)}$, has also non-nilpotency property, for any natural number m, such that $(n,m) = 1$.

Proof. Let H be a nilpotent group of order nl, since $(n,l) = 1$ and H is nilpotent, there exist normal subgroups N and L of H, such that $|L| = l$, $|N| = n$ and $H = N \times L$. Now, as $N \in K_n$ and K_n has non-nilpotency property, so there is a non-nilpotent group T in K_n such that

$$|W(T)| = \min\{|W(G)| \mid G \in K_n\}$$

so

$$|W(T)| \leq |W(N)|.$$

If $E = T \times L$, then E is also a non-nilpotent group, and clearly $|T| = |N| = n$ and $|L| = l$. Now, we have

So, as E is a non-nilpotent group, and H is nilpotent group in K_{nl} and $|W(E)| \leq |W(H)|$, then K_{nl} has non-nilpotency property. \square

Example 4.3. It is easy to see that $K_{(6)}$ has the non-nilpotency property, so $K_{(30)}$ has the non-nilpotency property, we know that

$$K_{(30)} = \{C_{30}, C_3 \times D_{10}, C_5 \times D_6, D_{30}\}$$

and

$$\omega(C_{30}) = 8, \omega(C_3 \times D_{10}) = 6, \omega(C_5 \times D_6) = 6 \text{ and } \omega(D_{30}) = 5.$$

Therefore, the minimum weight occurs at the non-nilpotent group D_{30}.

In the following lemma, we construct non-nilpotent groups with small enough weights.

Lemma 4.4. Let p and q be two distinct prime numbers and $\alpha \in \text{Aut}(C_q^r)$ be of order p. If $\{a_1, \ldots, a_m\}$ be the standard generating set for C_p^m, then the semidirect product $C_p^m \rtimes C_q^r$, by the homomorphism $\mu : C_p^m \rightarrow \text{Aut}(C_q^r)$, such that $\mu(a_i) = \alpha$, for each $i, i = 1, \ldots, m$, is a non-nilpotent group with weight at most 4.

Proof. Let $b \neq 0$ and $(0, b) \in C_p^m \rtimes C_q^r$. Clearly $(0, b)^q = (0, b^q) = (0, 0)$ and hence $o(0, b) = q$. So, if $a \neq 0$ and $(a, 0) \in C_p^m \rtimes C_q^r$, we have $(a, 0)^p = (a^p, 0) = (0, 0)$, it implies that $o(a, 0) = p$.

Now, assume that \(a \neq 0 \) and \(b \neq 0 \), as \((a,b)^{pq} = (0,0)\) and \(o(a,b) \leq pq \), it follows that
\[
W(C_p^m \ltimes C_q^n) \subseteq \{1, p, q, pq\},
\]
therefore \(C_p^m \ltimes C_q^n \) is a non-nilpotent group with maximum weight 4.

We use the following useful result in the next theorem.

Proposition 4.5. (See [2]) For a finite \(p \)-group \(G \), \(\text{Aut}(G) \cong \text{Gl}(n,p) \) if and only if \(G \) is an elementary abelian \(p \)-group of order \(p^n \).

Theorem 4.6. The class of \(K_{(n)} \) has non-nilpotency property, for any non-nilpotent natural number \(n \).

Proof. As \(n \) is not a nilpotent number according to Proposition 3.5, there exist distinct and prime divisors \(p \) and \(q \) of \(n \) such that
\[
p \mid q^i - 1
\]
Now, we consider \(n = p^m q^r k \) that \((pq,k) = 1\). By Proposition 4.5, we have
\[
|\text{Aut}(C_q^r)| = (q^r - 1)(q^r - q)\cdots(q^r - q^{r-1})
\]
As
\[
p \mid q^i - 1,
\]
thus
\[
p \mid (q^i - 1)q^{r-i} = q^r - q^{r-i}.
\]
Therefore, \(p \mid |\text{Aut}(C_q^r)| \) and hence there exists \(\alpha \in \text{Aut}(C_q^r) \) with \(o(\alpha) = p \).

Now, if \(\{a_1, \ldots, a_m\} \) is standard generator set of \(C_p^m \), we consider homomorphism \(\mu \), such that
\[
\mu : C_p^m \rightarrow \text{Aut}(C_q^r)
\]
given by \(\mu(a_i) = \alpha \) for \(i = 1, \ldots, m \). We get semidirect product \(C_p^m \) and \(C_q^r \) by homomorphism \(\mu \). Then, \(C_p^m \ltimes C_q^r \) is a non-nilpotent group of order \(p^m q^r \). On the other hand by Lemma 4.4, we have
\[
|W(C_p^m \ltimes C_q^r)| \leq 4
\]
So, if \(G \) is a nilpotent group of order \(p^m q^r \), then we have
\[
|W(G)| \geq 2^2 = 4
\]
Thus, we conclude that \(K_{(p^m q^r)} \) has non-nilpotency property. Since \((pq,k) = 1\) and \(p^m q^r k = n \), by Theorem 4.2, \(K_{(n)} \) has non-nilpotency property. \(\Box \)
Theorem 4.7. Let \(n \) be an even number, such that \(n \) is not a power of 2, then \(\mathcal{K}_n \) has the non-nilpotency property.

Proof. Suppose that \(n = 2^{\alpha_1}p^{\alpha_2}q_3^{\alpha_3} \cdots q_r^{\alpha_r} \), for some \(r \geq 2 \). Since 2 is a divisor of \(|\text{Aut}(Z_p^{\alpha_2})| \), we have \(\omega\left(Z_2^{\alpha_1} \rtimes Z_p^{\alpha_2}\right) \subseteq \{1,2,p,2p\} \). Now, let \(G \) be a nilpotent group of order \(n \), thus \(\omega(G) \geq 2^r \), also we have

\[
\omega\left((Z_2^{\alpha_1} \rtimes Z_p^{\alpha_2}) \rtimes Z_3^{\alpha_3} \times \cdots \times Z_{q_r}^{\alpha_r}\right) \leq 4(2^{r-2}) = 2^r
\]

Therefore

\[
\omega\left((Z_2^{\alpha_1} \rtimes Z_p^{\alpha_2}) \rtimes Z_3^{\alpha_3} \times \cdots \times Z_{q_r}^{\alpha_r}\right) \leq \omega(G)
\]

and the results hold.

Example 4.8. \(\mathcal{K}_{(12)} \), \(\mathcal{K}_{(22)} \) and \(\mathcal{K}_{(30)} \) has the non-nilpotency property. We know that \(\mathcal{K}_{(12)} = \{A_4,D_{12},T,C_{12},C_3 \times C_2 \times C_2\} \) in which

\[
T = \langle a,b \mid a^4 = b^3 = 1; a^{-1}ba = b^{-1} \rangle.
\]

We have \(\omega(T) = \omega(D_{12}) = \omega(C_2 \times C_2 \times C_3) = 4 \) also \(\omega(A_4) = 3 \) and \(\omega(C_{12}) = 6 \).

\[
\mathcal{K}_{(22)} = \{C_{22},D_{22}\}, \omega(C_{22}) = 4 \text{ and } \omega(D_{22}) = 3.
\]

\[
\mathcal{K}_{(30)} = \{C_{30},C_3 \times D_{10},C_5 \times D_6,D_{30}\} \text{ (see Theorem 4.2).}
\]

Here, we can prove the main theorem.

Theorem 4.9. Let \(G \) be a finite group of order \(n \), then \(|W(G)| \leq |W(C_n)| \).

If \(\min\{|W(G)| \mid |G| = n\} = m \), then \(m = 2^{\pi(n)} \) or there is a non-nilpotent group \(T \) that \(|T| = n \) and \(|W(T)| = m \). In other words, the class of groups of order \(n \), cyclic group \(C_n \) has the most weight and if the least weight on the above groups equals \(m \), then \(m \) is a power of 2, such that the power equals to numbers of distinct prime factors of \(n \). Therefore \(m \) is the weight of a non-nilpotent group.

Proof. Let \(C_n \) be a cyclic group of order \(n \). If \(m \) is a divisor of \(n \), then \(m \in W(G) \) and it follows that

\[
\{m \in \mathbb{Z} \mid m > 0, m \mid n\} \subseteq W(C_n).
\]

Now, if \(G \) is a group of order \(n \) and \(m \in W(G) \), then \(m \mid n \) and hence \(W(G) \subseteq \{m \in \mathbb{Z} \mid m > 0, m \mid n\} \).

Thus, \(W(G) \subseteq W(C_n) \), and so we have

\[
|W(G)| \leq |W(C_n)|.
\]
For the finite group G if n is a nilpotent number, then
\[|W(G)| \geq 2^{|\pi(n)|}, \]

If n is not a nilpotent number, then $\mathcal{K}(n)$ has nonnilpotency property. So, there exists a nonnilpotent group T in $\mathcal{K}(n)$, such that for every group G in $\mathcal{K}(n)$, we have
\[|W(T)| \leq |W(G)|. \]

Hence
\[|W(T)| = \min \{|W(G)| \mid G \in \mathcal{K}(n)\}, \]

Therefore, the proof is completed \[\square\]

References

Received December 23, 2021

Department of Mathematics and Statistics
University of Birjand
Birjand, Iran
E-mail: mnasrabadi@birjand.ac.ir