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On the Cayley graphs of upper triangular

matrix rings

Nazila Vaez Moosavi, Kazem Khashyarmanesh,
Sadegh Mohammadikhah and Mojgan Afkhami

Abstract. Let R be a commutative ring with nonzero identity. In this paper, we define and
study the Cayley graph ﬁTn<R) of upper triangular matrix rings, where n is a natural number.
We obtain some graph theoretical properties of 7, (g) including its diameter, planarity and
girth. Then, we study the Cayley graph I, ), where F is a field.Let R be a commutative
ring with nonzero identity. In this paper, we define and study the Cayley graph ﬁTn(R) of
upper triangular matrix rings, where n is a natural number. We obtain some graph theoretical
properties of ﬁTn(R) including its diameter, planarity and girth. Then, we study the Cayley
graph I''1, (), where F is a field.

1. Introduction

The investigation of graphs related to various algebraic structures is a very large
and growing area of research. Many fundamental papers devoted to graphs as-
signed to a ring have appeared recently, see for example [1], [2], [5], [6] and [8].
Among all types of graphs related to various algebraic structures, Cayley graphs
have attracted serious attention in the literature, since they have many useful
applications, see [13], [14], [15] and [16].

Let R be a commutative ring with 1 # 0 and S be a subset of R. The Cayley
graph Cay(R, S) of R relative to S is defined as a digraph with vertex set R and
edge set E(R,S) consisting of those pairs (x,y) such that y = sz, for some s € S.
By the ordered pair (x,y), we mean that © — y. Also, let T,,(R) denote the n x n
upper triangular matrix ring over R and Z(R) denote the set of zero divisors of
R. When there is no confusion, we write T instead of T),(R).

In this paper, we associate a digraph to the upper triangular matrix rings. Let
J={A e T|det(A) € Z(R)} and J* = J\ {0}. The digraph on the upper
triangular matrix ring R, denoted by f"T, is a digraph whose vertex set is the
set J* and, for every two distinct vertices A and B, there is an arc from A to B
whenever there exists C € T such that A = BC. In fact the digraph "7 is the
Cayley graph Cay(J*,T*), where T* =T \ {0}.
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We define and study the graph 7. In Sections 2 and 3, we investigate some
basic properties of the graph "7 such as connectivity, diameter, girth and pla-
narity. Also, in Section 4, we study the graph I_‘7T2 (), where I is a finite field with
F* =T\ {0}.

We will use the standard terminology in graph theory from [10].

A simple graph is a pair G = (V, E), where V = V(G) and E = E(G) are the
sets of vertices and edges of G, respectively. In a graph G, the distance between two
distinct vertices a and b, denoted by dg(a, b), is the length of the shortest path con-
necting a and b, if such a path exists, otherwise, we set dg(a,b) := co. The diam-
eter of a graph G is diam(G) = sup{dg(a,b) | a and b are distinct vertices of G}.
For two distinct vertices a and b in G, a — b means that a and b are adjacent. A
graph G is said to be connected if there exists a path between any two distinct
vertices, and it is complete if each pair of distinct vertices is joined by an edge. For
a positive integer n, we use K, to denote the complete graph with n vertices. The
girth of G, denoted by gr(G), is the length of the shortest cycle in G, if G contains
a cycle; otherwise, gr(G) := co. A graph is called planar if it can be drawn in the
plane without any edge crossing. The Kuratowski Theorem says that a graph is
planar if and only if it contains no subdivision of K5 or K33 (cf. [10, p. 153]). A
simple graph is an outer planar if it can be drawn in the plane without crossings
in such a way that all of the vertices to the unbounded face of the drawing. Also,
the union of the graphs G; and Ga, which is denoted by G; U G4, where G; and
G4 are two vertex-disjoint graphs, is a graph with V(G1 U G3) = V(G1) UV (G2)
and E(G1 UG2) = E(G1) U E(G3). We say that a digraph X is connected if the
undirected underlying simple graph obtained by replacing all directed edges of X
with undirected edges is a connected graph. Also, for distinct vertices x and y in
X, we use the notation x — y to show that there is an arc from x to y.

2. Girth and diameter

We begin this section with the following result.

Theorem 2.1. (cf. [17, Theorem 2.1]) Suppose that R is a commutative ring
with identity 1 # 0, and suppose that Q(R) is the total quotient ring of R. Then

L(Tw(R)) = T(TW(Q(R))).

By Theorem 2.1, we may assume that throughout this paper every element of
R is either a unit or a zero-divisor.

Lemma 2.2. (cf. [18, Lemma 2.2|) Let A = [a;;] € T. Then det(A) is a zero-
divisor in R if and only if a;; is a zero-divisor in R for some j € {1,2,...,n}.

Lemma 2.3. (cf. [18, Lemma 2.4]) Let A€ T. Then

AeZ(T) < det(A) € Z(R) < A e Zg(T).
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Yir Y2 o Yin
0 o --- 0 -
Lemma 2.4. LetY = . . . € V(I'Y,). Suppose that A is a
0 0o --- 0
vertex such that a11 s unit. Then Y — A.
ai; aiz -+ Qin
0 ax - a2 | ) )
Proof. Suppose that A = . . ) . is an arbitrary upper trian-
0 0 - apm
i1 12 . Tin
0 0 0
gular matrix such that a;; is unit. Now consider C' = . . . . ,
0 0o --- 0
where z1; = aﬁlyh—, for i = 1,2,--- ,n. Hence clearly AC =Y. Therefore the
result holds. O

Suppose that E;; denote the matrix with 1 in the (4, j)-position and zero else-
where.

Lemma 2.5. Let A be a vertex in I‘7T such that a;; is a unit element for some
1<i<n. Then E; — A.

ajl G2 v Qlp
0 a2 e A2n —
Proof. Let A = . . . € V(I'%}) be such that a;; is unit, for
0 0 - amm
some 1 < 7 < n. Consider the matrix
([0 0 -~ 0 07
0o . -~ 0 0
=1 i oap i
o 0 --- .0
L0 0 - 0 0]
Then we have AC' = E;;, which means that E;; — A. O

Lemma 2.6. (cf. [18, Proposition 3.1]) Let R be a finite ring with |R| = k and
|Z(R)| = d. Then
n(n—1)

V(Th)| = k=5 [k — (k —d)"] — 1.

In the following example, we see that 1"7T is not connected in general.
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Example 2.7. Suppose that T5(Z2) is the set of upper triangular matrices 2 x 2

on Zsy. Then, by Lemma 2.6, |V(I_‘7T2(Zz))| = 5 and this five vertices are,

10 0 0 11 0 1 0 1
R N e F A ER N R
Hence we have,

* B

E D

Figure 1:

Now, in the following two propositions, we study the connectness of some
induced subgraphs of I'/.

Proposition 2.8. The induced subgraph X of I‘7T consists of all vertices that have
at least a unit element on the principal diagonal, is connected with diameter less
than or equal to two.

Proof. Let A and B be two arbitrary vertices in X. Without less of generality, we
may assume that a1, and by; are unit elements of A and B, respectively. Then, by

Y11 Yz 0 Yin
0 0o --- 0
Lemma 24,Y — Aand Y — B, where Y = . . . . is a vertex
0 0 --- 0
in ﬁT and y11 is unit. So we have the path A « Y — B in X. Hence the result
holds. O

-

Proposition 2.9. Let F be a finite field. Then the induced subgraph X' of T'.(F)
consists of all vertices that all elements on the principal diagonal are zero-divisor,
s connected with diameter less than or equal to two.

Proof. Let A and B be two arbitrary vertices in X’. Suppose that

Y =
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is a vertex in X'. Then clearly, A — Y’ and B — Y’. Hence we have A — Y’ + B
in X’. So the result holds. O

Now, in the following theorem, we determine a complete subgraph of F_”T.

Theorem 2.10. Let F be a finite field and
IF'={AecT,(F)|ay;eF* forl<i<n-—1and a,, =0}
Then the induced subgraph of I‘7T with vertex set I' is complete.

a1 ai2 a3

Proof. We prove this result for n = 3. Suppose that A = 0 ass ass | and
0 0 0
bi1 b1z bi3
B = 0  bos bag | are two arbitrary vertices in I'. So we have
0 0 0
a1 a2 ais bin b2 bis 11 T12 T13
0 ax a3 | = 0 by bos 0 =22 w3 |,
0 0 0 0 0 0 0 0 33
where

-1 -1 -1 -1 -1
11 = b11 ai, Ti2 = bu (alz - le(bQQ 022)), 13 = b11 (013 - 512(1722 a23))7
-1 -1
Too = 622 a29, I23 = b22 a3 and T3z = 0.

11 Ti12 T13
Hence A = BC, where C = 0 x95 x93 |. Now, for n > 4, one can
0 0 33
easily check that the result also holds. O

In the next theorem, we show that gr(I'7.) = 3.

Theorem 2.11. In the graph F_"T, we have gr(Fg) =3.

Proof. If n = 2, then consider the vertices

-1 0 1 0 1 -1
A=l 9] =]y 0] wae=]5 T

We have the cycle A — B — D — Ain I‘?. Now, if n > 3, then by considering
the vertices

A=FEn+En, B=En, D=Y,, FEyj

we obtain the cycle A — B — D — A, and so the result holds. O
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3. Planarity of F7T
II} this section, we study the planarity and outer planarity properties of the graph
I'7.
Lemma 3.12. Let E;; and Ey, be two vertices in graph I‘7T such that j > k. Then
E;j — Ej.

Proof. Suppose that E;; and E;;, are two vertices in the graph F_’} and j > k.
Then we have

o 0 -~ 0 0 0 0 0 0 0 0 0 0
0o . -+ 0 0 0 - 0 0 0 0 0
aij 0|~ ik 0 akj 0
0 0 .0 0 0 0 0 0 0
L0 0 -~ 0 0| o 0o --- 0 0]L0 O -~ 0 0|
such that a;, = ar; = a;; = 1, which means that E;; — Ej. O

Theorem 3.13. The graph ﬁTn(R) is planar if and only if n =2 and R = Z.

Proof. First assume that f’Tn( g) is planar. If n = 3, then the set of vertices

{A:E?:1E1j; B=FEn+FEy, C=En, D=A+Ey;3, E=D+ Ex},

forms a complete graph K5, which means that ﬁTn( R) is not planar and this is
impossible. If n = 4, then the vertex set

{A = E?:1E1ja B=%%_Ej, C=En+FEy», D=FEy, E=A+Ey},
forms a complete graph K5, which is again impossible. If n > 5, then, by Lemma

2.10, we have E;; — Ej, and j > k. So, we obtain a subgraph isomorphic to K

in f’Tn(R) as it is pictured in Figure 2. Hence ﬁTn(R) is not planar and this is a
contradiction.
E15

FEi» b Fy3

Figure 2:

Now, assume that n = 2. If |U(R)| > 2, then the vertices of the set



On the Cayley graphs of upper triangular matrix rings 323

Uelo o) oo s] ol o] oo ]+l o )

forms the graph K35, which is impossible. If [U(R)| = 1 and R = Zy x Zs, then
the vertices

forms a complete graph K5, which is impossible. If R = Z,, then f"Tz(Zz) is

pictured in Figure 1, which is planar. Therefor if ﬁT7L( R) is planar, then we have
n =2 and R = Z,.
The converse statement is obvious. O

Corollary 3.14. The graph ﬁTn(R) is outer planar if and only if it is planar.

4. The graph of ﬁTQ(F)

In this section, we suppose that T5(F) is the set of 2 x 2 matrices over an arbitrary
finite field. We study the graph ﬁT2(F). We begin by drawing the graph ﬁn(zg)-
This simple example provides us with a template for the structure of this graph.

Let F be a finite field and U = U(F). We first divide T5(F) into the following
disjoint subsets:

0 U U o 0 0
(0) — M) = @) —
S PR ER 1 I

U U 0 U
(3) — @ —
=[50 [0 ]

That is, V(Iqym) = TOUTMO UT@ UTE UT® is the disjoint union of the
sets T and I:’Tm is the induced subgraph of f’TQ(F) with vertex set T(%.
Proposition 4.15. Let F be a finite field with |F| = m. Then:

(i) The graph ﬁT(m is isomorphic to K1, fori=0,1,2.

(i4) The graph l:’Tm is isomorphic to K,_1y2, for i =3,4.

Proof. (i). Suppose that A and B are two arbitrary vertices in 7@ . Then for

vertices
10 =z 10y
a=lo o] =0 8]
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where z,y € U, we have,

o ol=1o 8]0 5]

which implies that A — B. Since |U| = m — 1, we have IV, is isomorphic to
K,,—1. For i = 1,2, the result follows similarly.
(#4) Suppose that A and B are two arbitrary vertices in I ps). Then for

ol xoy |z ow
w=la]oe-li 8]
where z,y, z,w € U, we have
T Yy | |z w 2 1z z_ly
0 0| |0 O 0 0 ’

So A — B, which implies that ﬁT(s) is isomorphic to K(,,—1)2. One can easily
see that I_‘7T(4> is also isomorphic to K(,,_1)2. Hence the result holds. O

Remark 4.16. Fori,j =0, 1,2, 3,4, we denote by E(i, j) the set of all the directed
edges from vertices in IV ) to vertices in I ).

Note that, every directed edge from V; to V5 can be represented by the ordered
pair (Vi,Va). With this representation, E(i,j) € T® x T, and the equality
occurs when there is an edge from every vertex in T() to every vertex in TU),

Proposition 4.17. The following statements hold:
(i) E(i,2)
(i) F(0,1) =T xTW E0,3) =T x TG E1,3)=T" x T®),

E(j,4) = E(2,3) =0, for i=0,1and j =0,1,2,3.

Proof. (i). Suppose that A and B are two arbitrary vertices in ﬁT(o) and ﬁT(z),
respectively. Then we consider the vertices

0 x 0 0
=las] =[5 v]
where z,y € U. One can easily check that A -» b and B - A. So E(0,2) = (.
For other situations the result follows easily.

(¢i). Suppose that A and B are two arbitrary vertices in ﬁT(o) and ﬁT(l),
respectively. Then for vertices

10 =z |y 0
SRR

where z,y € U, we have A — B So F(0,1) = T(® x T, For E(0,3) and E(1,3)
the result follows similarly. O
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In the following example, we study the Cayley graph 1:’T2(23).

Example 4.18. The vertex set of T5(Z3) are

0 1 0 2 [ 1 i 2
MO:[ ],M1={ ],Mzz 7M3=[0

o

1 2 2 1 [0 1] 0
MSZ{O 0},M9=[0 0}7M10: 0 1 ’MH:[O

0 1 0 2
M12|:0 2],M13[0 1}

Now, we have T = {My, My}, T = { My, M3}, T®) = { Mg, M7, Mg, My},
T® = {My, M5} and T® = {Mg, M1y, M12, My3}. The graph I'z,z,) is pic-
tured in Figure 3.

M, Ms;

]\.[1() ]\[13 I ]\[5

]\.[11 ]\[12

M,

Figure 3: ﬁTQ(Zg) = KsgUK4 UK,

Proposition 4.19. If p is a prime number, then the graph ﬁT2(Zp) is isomorphic
to the graph K2 1 U K(,_1)2 U K, 1.

Proof. We know that V(ﬁ’Tz(ZP)) =T7OuTOUT@ UTE YUT®W. Since |T®)] =
ITM| = p—1 and |T®| = (p — 1)%, by Proposition 4.17 (ii), the vertex set
{T© 7MW TG forms a complete subgraph K,2_; in ﬁTz(ZP). Also, we have
IT®| = (p—1)% and |T®| = p—1. So, by Proposition 4.15, IV = K(,—1)2 and
I_‘7T(2> = K,_1. Now, by Proposition 4.17 (i), the result holds. O
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