Semigroup action on groupoid ordered under co-order

Daniel Abraham Romano

Abstract. In this paper we prove that if S is a commutative semigroup with apartness acting on an ordered groupoid G under co-order \notin_G , then there exists a commutative semigroup \mathfrak{S} , constructed by S, acting on the ordered groupoid $(G \times S)/q$ under \notin_q , where $(x, a)q \notin_q (y, b)q \iff$ $bx \notin_G ay$ and $q = \rho \cup \rho^{-1}$, $((x, a), (y, b)) \in \rho \iff bx \notin_G ay$ for any $(x, a), (y, b) \in G \times S$.

1. Introduction

Actions of commutative semigroups on groupoids have been considered by Tamura and Burnell in [12], based on the following definition: If G is a groupoid and Γ a commutative semigroup, the pair (G, Γ) is called a groupoid G with Γ if there is a mapping of $\Gamma \times G$ into G, $(\alpha, x) \mapsto \alpha x$ such that $\alpha(x + y) = \alpha x + \alpha y$, $(\alpha\beta)x = \alpha(\beta x) = (\beta\alpha)x$ and $\alpha x = \alpha y$ implies x = y for every $\alpha, \beta \in \Gamma$ and $x, y \in G$. In paper [12], they proved that each (G, Γ) can be embedded in a groupoid \overline{G} with $\overline{\Gamma}$, and studied groupoids G with Γ , in general. In paper [7] Kehayopulu and Tsingelis studies actions of commutative semigroups on ordered groupoids. In the present paper we study actions of commutative semigroups with apartness on groupoids ordered under co-order. Background for this research is the Bishop's constructive mathematics - a mathematics with the Intuitionistic logic.

It is quite natural to ask the question: What is the difference between the results offer by Kehayopulu and Tsingelis in [7] and the results expressed in this text? First, we use the Intuitionist logic instead of the Classical logic. Since the principle of exclusion of the third is not valid in the Intuitionist logic, each set X is regarded as a relational system $(X, =, \neq)$. As a consequence of this, in the constructive algebra we have a significantly larger collection of substructures than in classical algebra. It is not uncommon for classically equivalent formulas to be non equivalent in constructive algebra. Therefore, in the constructive algebra, when determining algebraic concepts, the equivalency of formulas containing an equality and formulas containing a diversity/apartness must be taken into account. For example, in this text we use co-quasiorder and co-order relations on algebraic structures compatible with their internal operations instead of order and quasi-order relations.

²⁰¹⁰ Mathematics Subject Classification: 03F65, 06F99; 20M99

Keywords: Bishop's constructive mathematics, intuitionistic logic, semigroup with apartness, ordered groupoid under co-order, action, co-quasiorder

2. Preliminaries

This investigation is in Bishop's constructive mathematics in a sense of papers [5, 6, 8, 9, 10, 11] and books [1, 2, 3, 4] and [13] (Chapter 8: Algebra). Let $(S, =, \neq)$ be a constructive set (i.e., it is a relational system with the relation " \neq "). The diversity relation " \neq " is a binary relation on S, which satisfies the following properties:

$$\neg (x \neq x), \quad x \neq y \Longrightarrow y \neq x, \quad x \neq y \land y = z \Longrightarrow x \neq z .$$

If it satisfies the following condition

$$(\forall x, z \in S)(x \neq z \Longrightarrow (\forall y \in S)(x \neq y \lor y \neq z)),$$

then it is called *apartness* (A. Heyting). For subset X of S, we say that it is a strongly extensional subset of S if and only if $(\forall x \in X)(\forall y \in S)(x \neq y \lor y \in S)$. Following Bridges and Vita's (see for example [4]) definition for subsets X and Y of S, we say that set X is set-set apartness from Y, and it is denoted by $X \bowtie Y$, if and only if $(\forall x \in X)(\forall y \in Y)(x \neq y)$. We set $x \bowtie Y$, instead of $\{x\} \bowtie Y$, and, of course, $x \neq y$ instead of $\{x\} \bowtie \{y\}$. With $X^c = \{x \in S : x \bowtie X\}$ we denote apartness complement of X. In the Cartesian product of sets X and Y we have

$$(\forall x, x' \in X)(\forall y, y' \in Y)((x, y) = (x', y') \iff (x = x' \land y = y'))$$

$$(\forall x, x' \in X)(\forall y, y' \in Y)((x, y) \neq (x', y') \iff (x \neq x' \lor y \neq y')).$$

For a function $f: (S, =, \neq) \longrightarrow (T, =, \neq)$ we say that it is a *strongly extensional* if and only if

$$(\forall a, b \in S)(f(a) \neq f(b) \Longrightarrow a \neq b);$$

a function f is an *embedding* if it holds

$$(\forall a, b \in S) (a \neq b \Longrightarrow f(a) \neq f(b)).$$

Let $(S, =, \neq)$ be a set with apartness. A total and strongly extensional function $w: S \times S \longrightarrow$ is an internal binary operation in S and $((S, =, \neq), w)$ is a groupoid. Let us note that, in that case, the operation w satisfies the following implications

$$(\forall x, y, x', y' \in S)((x, x') = (y, y') \Longrightarrow w(x, y) = w(x', y')),$$
$$(\forall x, y, x', y' \in S)(w(x, y) \neq w(x', y') \Longrightarrow (x \neq x' \lor y \neq y')).$$

A relation \leq on a nonempty set $G = (G, =, \neq)$ (groupoid $(G, =, \neq, +)$) is called a *co-quasiorder* on G (see [9, 11]) if it is consistent and co-transitive (and compatible with the groupoid operation on G ([5, 6]) in the following sense

$$(\forall x, y, z \in G)((x + y \nleq x + z \lor y + x \nleq z + x) \Longrightarrow y \nleq z).$$

A co-quasiorder \leq on a set G (a groupoid G) is a co-order ([9, 10]) if holds $\leq \cup \leq^{-1} = \neq$ (linearity). The concept of co-quasiorder plays an essential role in studying the structure of ordered sets and semigroups. This is because if \leq is a coquasiorder on G, then the relation $q = \leq \cup \leq^{-1}$ is an co-equality relation on G ([8]) (co-congruence on groupoid G ([10])) and the the family $G/(q^c, q) = \{q^c x : x \in G\}$ is an ordered set (ordered groupoid)([9]).

For convenience, we give the following well known facts: An ordered groupoid under a co-order, is a groupoid at the same time an ordered set under a co-order and the operation being compatible with the ordering. Now let $(G, +, \leq G)$ and $(H, +, \not\leqslant_H)$ be ordered groupoids and f a strongly extensional mapping of G into H. The mapping f is called *isotone* if $x \notin_G y$ implies $f(x) \notin_H f(y)$ and *reverse isotone* if $x, y \in G$, $f(x) \notin_H f(y)$ implies $x \notin_G y$. Let us note that each reverse isotone mapping between two ordered set under co-orders is a strongly extensive. The strongly extensional mapping f is called a *homomorphism* if it satisfies the property f(x+y) = f(x) + f(y) for all $x, y \in G$. An isotone and reverse isotone injective, embedding and surjective homomorphism f is called an *isomorphism*. We say that G is *embedded* in H if G is isomorphic to a subgroupoid of G, i.e., if there exists a mapping $f: G \longrightarrow H$ which is isotone and reverse isotone injective and embedding homomorphism. For example, if q is a co-equality relation on a set G (a co-congruence relation on a groupoid G), then there exists the isomorphism φ between factor-set $G/(q^c, q)$ and the family $G/q = \{xq : x \in S\}$ defined by $\varphi(xq^c) = xq$. Besides, if we define a operation on G/q by

$$xq + yq = \varphi(xq^c) + \varphi(yq^c) = \varphi((x+y)q^c) = (x+y)q \ (x, y \in G),$$

then the family G/q is a groupoid too. Further on, there exist the canonical surjective homomorphism π from G onto G/q given by $\pi = \varphi \circ \mathfrak{i}_G$, where $\mathfrak{i}_G : G \longrightarrow G/(q^c, q)$ is the canonical epimorphism.

An ordered groupoid $(G, +, \nleq)$ under co-quasiorder \nleq is said to be *stable* with respect to co-quasiorder \nleq if for each $x, y, z \in G$, we have

$$y \nleq z \Longrightarrow (x + y \nleq x + z \land y + x \nleq z + x).$$

In the present paper we first introduce the concept of acting semigroup with apartness $(S, =, \neq, \cdot)$ on ordered groupoid with apartness $(G, =, \neq, +)$ under coorder \leq . Using this concepts we show that if a commutative semigroup $(S, =, \neq, \cdot)$ acts on an ordered groupoid $(G, =, \neq, +)$ under co-quasirder \leq_G , then there exists a commutative semigroup \mathfrak{S} , constructed by S, acting on the groupoid $(G \times S)/q$ ordered under \leq_q , where $(x, a)q \leq_q (y, b)q \iff bx \leq_G ay$ and $q = \rho \cup \rho^{-1}$, $((x, a), (y, b)) \in \rho \iff bx \leq_G ay$ for any $(x, a), (y, b) \in G \times S$.

3. The main results

Definition 3.1. Let $(G, =, \neq, +, \notin_G)$ be an ordered groupoid under a co-order \notin_G and let $(S, =, \neq, \cdot)$ a commutative semigroup. Suppose there exists a strongly

extensional mapping $*: S \times G \ni (a, x) \longmapsto ax \in G$ satisfying the properties:

- (i) $(\forall a \in S)(\forall x, y \in G)(a(x+b) = ax + bx),$
- (*ii*) $(\forall a, b \in S)(\forall x \in G)((ab)x = a(bx)),$
- (*iii*) $(\forall a \in S)(\forall x, y \in S)(ax \leq_G ax \iff x \leq_G y).$

Then we say that S acts on G (by *) and write (G, S, *).

Clearly, if (G, S, *), $a \in S$ and $x, y \in G$, then we have $ax \neq ay$ if and only if $x \neq y$. Indeed: $ax \neq ay$ is equivalent to $ax \notin_G ay \lor ay \notin_G ax$. Thus, by (*iii*), we have $x \notin_G y \lor y \notin_G x$. Finally, we have $x \neq y$. The opposite implication we give by analogy to previous.

Also, by (ii), for $a, b \in S$ and $x \in G$ we have b(ax) = (ba)x = (ab)x = a(bx).

Theorem 3.2. Let be (S, G, *) an action of a semigroup S on a commutative groupoid G ordered under a co-iorder \notin_G . Then the relation ρ on $G \times S$, defined by

$$((x,a),(y,b)) \in \rho \iff bx \not\leq_G ay$$

is a co-quaiorder on $G \times S$.

Proof. (a). Let (x, a), (y, b) and (c, z) be arbitrary elements of $G \times S$ such that $(x, a)\rho(z, c)$. Thus $cx \notin_G az$ and, by (*iii*), $bcx \notin_G baz$. Hence, by co-transitivity of \notin_G we have

$$bcx \not\leq_G cay \lor cay \not\leq_G baz$$

and, by (iii)

 $bx \not\leq_G ay \lor cy \not\leq_G bz.$

This means

$$(x,a)\rho(y,b) \lor (y,b)\rho(z,c).$$

So, the relation ρ is a co-transitive relation on $G \times S$.

(b). Let (x, a), (y, b) and (u, d) be arbitrary elements of $G \times S$ such that $(x, a)\rho(y, b)$. According to part (a) of this proof, we have

$$(x,a)\rho(u,d) \lor (u,d)\rho(y,b)$$

This means

 $dx \not\leq_G au \lor bu \not\leq_G du.$

By co-transitivity of the co-order $\not\leq_G$, we have

 $(dx \not\leq_G du \lor du \not\leq_G au) \lor (bu \not\leq_G by \lor by \not\leq_G dy).$

From this, we conclude

$$(x \neq u \ \lor \ d \neq a) \ \lor \ (u \neq y \ b \neq d).$$

Therefore, we have $((x, a), (y, b)) \neq ((u, d), (u, d))$. Therefore, the relation ρ is a consistent relation on $G \times S$.

Since the relation ρ is consistent and co-transitive, then it is a co-quasiorder on $G \times S$.

In the following we always denote by ρ the co-quasiorder on $G \times S$ defined in Theorem 3.2. Since ρ is a co-quasiorder on $G \times S$, the relation $q = \rho \cup \rho^{-1}$ is an co-equality relation on $G \times S$ and we can construct the factor-set $(G \times S)/(q^c, q)$ with

$$(x, a)q^{c} \cong (y, b)q^{c} \iff ((x, a), (y, b)) \in q^{c}$$
$$(x, a)q^{c} \ncong (y, b)q^{c} \iff ((x, a), (y, b)) \in q$$

and the family $(G \times S)/q$ with

$$(x, a)q \cong (y, b)q \iff ((x, a), (y, b)) \in q^{c}$$

$$(x,a)q \not\cong (y,b)q \iff ((x,a),(y,b)) \in q.$$

Theorem 3.3. Let (G, S, *) be an action from a commutative semigroup S on a groupid G. Then the function

$$\otimes: (G\times S)/q\times (G\times S)/q \longrightarrow (G\times S)/q$$

define by

$$(x,a)q \otimes (y,b)q \cong (bx+ay,ab)q$$

is the binary internal operation in $(G \times S)/q$.

Proof. (a). Let (x, a)q, (x', a')q, (y, b)q, (y', b')q be arbitrary elements of $(G \times S)/q$ such that $(x, a)q \cong (x', a')q$ and $(y, b)q \cong (y', b')q$ and let $((u, c), (v, d)) \in q$. Thus

$$(u,c)q(bx + ay, ab) \lor (bx + ay, ab)q(b'x' + a'y', a'b') \lor (b'x' + a'y', a'b')q(v,d).$$

If we suppose that the second case is holds, we will have

$$(bx + ay, ab)\rho(b'x' + a'y', a'b') \lor (b'x' + a'y', a'b')\rho(bx + ay, ab)$$

 and

$$a'b'(bx+ay) \not\leq_G ab(b'x'+a'y') \lor ab(b'x'+a'y') \not\leq_G a'b'(bx+ay).$$

From, for example, $a'b'(bx + ay) \not\leq_G ab(b'x' + a'y')$ we conclude

 $a'b'bx + a'b'ay \leq_G abb'x' + aba'y'.$

Thus,

 $a'b'bx \not\leq_G abb'x' \lor a'b'ay \not\leq_G aba'y'.$

and

$$a'x \not\leq_G ax' \lor b'y \not\leq_G by'.$$

This means

$$(x,a)\rho(x',a') \lor (y,b)\rho(y',b').$$

Finally, we have

$$(x,a)q(x',a') \lor (y,b)q(y',b')$$

which is in contradiction with $(x, a)q \cong (x', a')q$ and $(y, b)q \cong (y', b')q$. Therefore, have to be $(bx + ay, ab)q \ncong (u, c)q$ or $(b'x' + a'y', a'b') \ncong (v, d)q$. So,

 $(bx + ay, ab)q \cong (b'x' + a'y', a'b')q$

which means that \otimes is a function.

(b). Let (x,a)q,(x',a')q,(y,b)q,(y',b')q be arbitrary elements of $(G\times S)/q$ such that

$$(x,a)q\otimes(y,b)q\ncong(x',a')q\otimes(y',b')q.$$

This means

$$(bx + ay, ab)q \ncong (b'x' + a'y', a'b')q,$$
$$((bx + ay, ab), (b'x' + a'y', a'b')) \in q$$

and

$$(bx + ay, ab)\rho(b'x' + a'y', a'b') \lor (b'x' + a'y', a'b')\rho(bx + ay, ab)$$

Thus

$$a'b'(bx+ay) \not\leq_G ab(b'x'+a'y') \lor ab(b'x'+a'y') \not\leq_G a'b'(bx+ay),$$

$$a'b'bx + a'b'ay \not\leq_G abb'x' + aba'y' \lor abb'x' + aba'y' \not\leq_G a'b'bx + a'b'ay.$$

Hence

$$a'b'bx \notin_G abb'x' \lor a'b'ay \notin_G aba'y' \lor abb'x' \notin_G a'b'bx \lor aba'y' \notin_G a'b'ay.$$

$$a'x \not\leq_G ax' \lor b'y \not\leq_G by' \lor ax' \not\leq_G a'x \lor by' \not\leq_G b'y.$$

Therefore

$$(x,a)\rho(x',a') \lor (y,b)\rho(y',b') \lor (x',a')\rho(x,a) \lor (y',b')\rho(y,b)$$

and

$$((x,a),(x',a')) \in q \lor ((y,b),(y',b')) \in q.$$

Finally, from

$$(a,x)q \ncong (x',a')q \lor (y,b)q \ncong (y',b')q$$

we conclude that the mapping \otimes is a strongly extensional function.

So, the mapping \otimes is an internal binary operation in $(G\times S)/q$ and

$$((G \times S)/q, \cong, \not\cong, \otimes)$$

is a groupoid.

Theorem 3.4. Let (G, S, *) be an action from a commutative semigroup S on a groupid G. Then the relation \notin_q on $(G \times S)/q$ given by

$$(x,a)q \not\leq_q (y,b)q \iff bx \not\leq_G ay$$

is a co-order on the gruoid $((G \times S)/q, \cong, \not\cong, \otimes)$.

Proof. Since ρ is a co-quasiorder on $G \times S$, then the relation $\not\leq_q$ is a co-order in the set $(G \times S)/q$. It remains to prove that the operation \otimes is compatible with the ordering. Let (x, a)q, (y, b)q, (z, c)q be arbitrary elements of $(G \times S)/q$ such that

 $(x,a)q \otimes (z,c)q \leq q (y,b)q \otimes (z,c)q.$

Hence

$$(cx + az, ac)q \nleq_q (cy + bz, bc)q,$$
$$bc(cx + az) \nleq_G ac(cy + bz)$$

and

bccx + bcaz	$\not \leq G$	accy	+	acbz.
-------------	---------------	------	---	-------

Thus

 $bccx \not\leq_G accy$

and

 $bx \notin_G ay.$

Therefore, we have

 $(x,a)q \not\leq_q (y,b)q.$

The proof for implication

$$(z,c)q \otimes (x,a) \not\leq_q (z,c)q \otimes (y,b)q \Longrightarrow (x,a)q \not\leq_q (y,b)q$$

we can give by analogy to previous proof. So, the relation $\not\leq_q$ is compatible with the groupoid operation \otimes and it is a co-order in the groupoid $((G \times S)/q, \cong, \not\cong, \otimes)$. \Box

Lemma 3.5. Let (G, S, *) be an action from a commutative semigroup S on a groupoid G and $a \in S$. Them the mapping

$$F_a: (x,b)q \longmapsto (ax,b)q$$

is an isomorphism on $((G \times S)/q, \cong, \not\cong, \otimes, \not\leq_q)$.

Proof. It is obviously that F_a is surjective.

(i). Let (x, b)q, (y, c)q be arbitrary elements of $(G \times S)/q$ such that $(x, b)q \cong (y, c)q$ and let ((u, d), (v, e)) be an arbitrary element of q. We have $(x, b)q^c(y, c)q$. Secondly, from $((u, d), (v, e)) \in q$ follows

$$((u,d),(ax,b)) \in q \lor ((ax,b),(ay,c)) \in q \lor ((ay,c),(v,e)) \in q.$$

Suppose that $((ax, b), (ay, c)) \in q$ holds. Thus

 $(ax, b)\rho(ay, c) \lor (ay, c)\rho(ax, b).$

This means $cax \notin_G bay \lor bay \notin_G cax$ and $cx \notin_G by \lor by \notin_G cx$. Hence

 $(x,b)\rho(y,c) \lor (y,c)\rho(x,b)$

and (x, b)q(y, c) which is in contradiction with $(x, b)q^c(y, c)q$. Finally have to be $(u, d)q \not\cong (ax, b)q$ or $(ay, c)q \not\cong (v, e)q$. This means $(ax, b)q^c(ay, c)$ and $(ax, b)q \cong (ay, c)q$. So, the mapping F_a is well defined.

(ii). Let (x, b)q and (y, c)q be arbitrary elements of $(G \times S)/q$ such that $(ax, b)q \ncong (ay, c)q$. Thus (ax, b)q(ay, c) and

$$(ax, b)\rho(ay, c) \lor (ay, c)\rho(ax, b).$$

Hence

$$cax \not\leq_G bay \lor bay \not\leq_G cax,$$
$$cx \not\leq_G by \lor by \not\leq_G cx$$

and

This means $((x, b), (cy, c)) \in q$ and $(x, b)q \not\cong (y, c)q$. Therefore, the mapping F_a $(a \in S)$ is a strongly extensional function.

(iii). Let (x, b)q and (y, c)q be arbitrary elements of $(G \times S)/q$ such that $(x, b)q \ncong (y, c)q$. This means $(x, b)\rho(y, c) (y, c)\rho(x, b)$ and $cx \nleq_G by \lor by \nleq_G cx$. Thus

$$acx \not\leq_G aby \lor aby \not\leq_G acx.$$

Hence $(ax, b)\rho(ay, c)$ or $(ay, c)\rho(ax, b)$ and (ax, b)q(ay, c). So, we have $F_a((x, b)q) \ncong F_a((y, c)q)$ which means that F_a is an embedding mapping.

(iv). Let (x, b)q and (y, c)q be arbitrary elements of $(G \times S)/q$ such that

 $F_a((x,b)q) \cong (ax,b)q \cong (ay,c)q \cong F_a((y,c)q)$

and ((u, d), (v, e)) be an arbitrary element of q. Thus

$$(u,d)q(x,b) \lor (x,b)q(y,c) \lor (y,c)q(v,e).$$

Since the mapping F_a is an embedding, from (x,b)q(y,c) follows $F_a((x,b)q) \ncong F_a((y,c)q)$ which is in contradiction with $F_a((x,b)q) \cong F_a((y,c)q)$. So, have to be $(u,d)q(x,b) \lor (y,c)q(v,e)$ which means $(x,b)q^c(y,c)$, i.e., $(x,b)q \cong (y,c)q$. Therefore, F_a is an injective mapping.

(v). The mapping F_a is isotone and reverse isotone mapping. Indeed:

$$\begin{aligned} (x,b)q &\leqslant_q (y,c)q \Longleftrightarrow cx \leqslant_G by \\ &\Leftrightarrow acx \leqslant_G aby \\ &\Leftrightarrow (ax,b)q \leqslant_q (ay,c)q \\ &\Leftrightarrow F_a((x,b)q) \leqslant_q F_a((y,c)q). \end{aligned}$$

For ease of writing, we put $\mathfrak{S} = \{F_a : a \in S\}$ with

$$F_a = F_b \iff (\forall (x,c)q \in (G \times S)/q)(F_a((x,c)q) \cong F_b((x,c)q))$$

$$F_a \neq F_b \iff (\exists (x,c)q \in (G \times S)/q)(F_a((x,c)q) \ncong F_b((x,c)q)).$$

Without serious difficulties we can construct a proof for the following theorem.

Theorem 3.6. Let (G, S, *) be an action from a commutative semigroup S on a groupoid G. Then the family \mathfrak{S} is commutative semigroup.

Proof. Let (x,c)q be an arbitrary element of $(G \times S)/q$ and $a, b \in S$. Then $(F_a \circ F_b)((x,c)q) \cong F_a(F_b((x,c)q)) \cong F_a((bx,c)q) \cong (a(bx),c)q \cong ((ab)x,c)q \cong F_{ab}((x,c)q)$. Since the composition of mappings is associative, (\mathfrak{S}, \circ) is a semigroup. Since S is commutative, the semigroup \mathfrak{S} is commutative also. \Box

At end of this research, we give the following theorem.

Theorem 3.7. Let (G, S, *) be an action from a commutative semigroup S on a groupoid G. If we consider the mapping \circledast from $\mathfrak{S} \times (G \times S)/q$ to $(G \times S)/q$ defined by

$$\circledast: \mathfrak{S} \times (G \times S)/q \ni (F_a, (x, b)q) \longmapsto F_a((x, b)q) \in (G \times S)/q$$

then $(\mathfrak{S}, (G \times S)/q, \circledast)$ is an action from commutative semigroup \mathfrak{S} on groupoid $(G \times S)/q$ ordered under co-order \notin_q .

Proof. To prove this theorem, it is sufficient to check the axioms in Definition 3.1. (i). Let $F_a \in \mathfrak{S}$ and $(x, b)q, (y, c)q \in (G \times S)/q$ be arbitrary elements. Then

$$\begin{split} F_a \circledast ((x,b)q \otimes (y,c)q)) &\cong F_a \circledast ((cx+by,bc)q) \cong (a(cx+by,bc)q \cong (a(cx)+a(by),bc)q \cong (c(ax)+b(ay),bc)q \cong (ax,b)q \otimes (ay,c)q \cong F_a((x,b)q) \otimes F_a((y,c)q) \cong F_a \circledast ((x,b)q) \otimes F_a \circledast ((y,c)q). \end{split}$$

(ii). Let
$$F_a, F_b \in \mathfrak{S}$$
 and $(x, c)q \in (G \times S)/q$ be arbitrary elements. Then
 $(F_a \circ F_b) \circledast ((x, c)q) \cong (F_a \circ F_b)((x, c)q) \cong F_a(F_b((x, c)q) \cong F_a \circledast (F \circledast ((x, c)q)).$

(iii). Let $F_a \in \mathfrak{S}$ and $(x, b)q, (y, c)q \in (G \times S)/q$ be arbitrary elements. Then

$$F_a \circledast ((x,b)q) \nleq_q F_a((y,c)q) \iff F_a((x,b)q) \nleq_q F_a((y,c)q)$$
$$\iff (ax,b)q \nleq_q (ay,c)q$$
$$\iff c(ax) \nleq_G b(ay)$$
$$\iff a(cx) \nleq_G a(by)$$
$$\iff cx \nleqslant_G by$$
$$\iff (x,b)q \nleq_q (y,c)q.$$

References

[1] E. Bishop, Foundations of Constructive Analysis, New York: McGraw-Hill, 1967.

- [2] E. Bishop and D.S. Bridges, Constructive Analysis, Grundlehren der mathematischen Wissenschaften 279, Berlin: Springer, 1985.
- [3] D.S. Bridges and F. Richman, Varieties of Constructive Mathematics, Cambridge: London Mathematical Society Lecture Notes, No. 97, Cambridge University Press, 1987.
- [4] D.S. Bridges and L.S. Vita, *Techniques of constructive analysis*, New York: Springer, 2006.
- [5] S. Crvenković, M. Mitrović and D.A. Romano, Semigroups with apartness, Math. Logic Quarterly, 59 (2013), No. 6, 407-414.
- [6] S. Crvenković, M. Mitrović and D.A. Romano, Basic notions of (Constructive) semigroups with apartness, Semigroup Forum, 92 (2016), No. 3, 659-674.
- [7] N. Kehayopulu and M. Tsingelis, Semigroup actions on ordered groupoids, Math. Slovaca, 63 (2013), No. 1, 41-52.
- [8] D.A. Romano, Equality and coequality relations on the Cartesian product of sets, Math. Logic Quarterly, 34 (1988), No.5, 471-480.
- [9] D.A. Romano, A note on quasi-antiorder in semigroup, Novi Sad J. Math., 37 (2007), No. 1, 3-8.
- [10] D.A. Romano, On quasi-antiorder relation on semigroups, Matematiki vesnik (Beograd), 64 (2012), No. 3, 190–199.
- [11] D.A. Romano, On some mappings between co-quasiordered relational systems, Bull. Int. Math. Virtual Inst., 7 (2017), No. 2, 279-291.
- [12] T. Tamura and D.G. Burnell. Extension of groupoids with operators, Amer. Math. Monthly, 71(1964), 385-391.
- [13] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction, Amsterdam: North-Holland, 1988.

Received August 07, 2017

International Mathematical Virtual Institute 6, Kordunaška Street, 78000 Banja Luka, Bosnia and Herzegovina e-mail: bato49@hotmail.com