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Prime spectra and �nitely generated algebras

Dawood Hassanzadeh-Lelekaami and Hajar Roshan-Shekalgourabi

Abstract. In this paper we investigate the class of modules whose prime spectrum equipped with

the Zariski topology is homeomorphic to maximal spectrum of some �nitely generated reduced

K-algebra. We investigate the algebraic structure of these modules and provide some methods

to construct some examples of such modules.

1. Introduction

Throughout the article, R is a commutative ring with non-zero identity and all
modules are unitary. Also, K is an algebraically closed �eld and AnK denotes a�ne

n-space over K. For each set S of polynomials in K[x1, . . . , xn], we de�ne the zero
set V(S) to be the set of points in AnK on which the functions in S simultaneously
vanish, that is to say

V(S) = {a ∈ AnK | f(a) = 0,∀f ∈ S}.

A subsetW of AnK is called an a�ne (algebraic) variety ifW = V(S) for some S ⊆
K[x1, . . . , xn]. Note that here, the a�ne varieties are not necessarily irreducible.
The ideal of an a�ne variety W is denoted by

I(W ) = {f ∈ K[x1, . . . , xn] | ∀a ∈W ; f(a) = 0}.

We use K[W ] to designate the coordinate ring K[x1, . . . , xn]/I(W ) of W . The
reader can refer to [27] for basic properties of a�ne varieties. We recall some
de�nitions.

De�nition 1.1. Let M be an R-module and let N be a submodule of M .

1. (N :R M) denotes the ideal {r ∈ R | rM ⊆ N} and the annihilator of M ,
denoted by AnnR(M), is the ideal (0 :R M). If there is no ambiguity, we will write
(N : M) (resp. Ann(M)) instead of (N :R M) (resp. AnnR(M)).

2. N is said to be prime if N 6= M and whenever rm ∈ N (where r ∈ R and
m ∈ M) then r ∈ (N : M) or m ∈ N . If N is prime, then ideal p = (N : M) is a
prime ideal of R. In this case, N is said to be p-prime (see [15, 24]).

3. The set of all prime submodules of an R-module M is called the prime

spectrum of M and denoted by Spec(M). Similarly, the collection of all p-prime
submodules of an R-module M for any p ∈ Spec(R) is designated by Specp(M).
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4. The set of all prime submodules of M containing N is denoted by V ∗(N)
(see [25]). Following [18], we de�ne V (N) as

{P ∈ Spec(M) | (P : M) ⊇ (N : M)}.

Set Z(M) = {V (N) : N 6 M} and Z
∗(M) = {V ∗(N) : N 6 M}. Then the

elements of the set Z(M) satisfy the axioms for closed sets in a topological space
Spec(M). The resulting topology due to Z(M) is called the Zariski topology relative
to M and denoted by τ (see [18]). There is another topology, τ∗ say, on Spec(M)
due to Z∗(M) as the collection of all closed sets if and only if Z∗(M) is closed
under �nite union. When this is the case, we call the topology τ∗ the quasi-Zariski
topology on Spec(M) and M is called a top module (see [25]).

The concept of prime submodule has led to the development of topologies on
the spectrum of modules. Topologies are considered by Duraivel, McCasland,
Moore, Smith, and Lu in [11, 18, 25]. It is well-known that Zariski topology
on the spectrum of prime ideals of a ring is one of the main tools in algebraic
geometry. In the literature, there are many papers devoted to the Zariski topology
on the spectrum of modules [1, 2, 8, 13, 21, 26, 28]. Finding relationship between
topological properties of prime spectra of modules and algebraic properties of those
modules is one of interesting subject in many articles. In this paper, we consider
the class of modules whose prime spectrum equipped with the Zariski topology
is homeomorphic to the maximal spectrum of some �nitely generated reduced K-
algebra, namely QC modules. We are interesting to study the algebraic structure
of these modules and provide some methods to construct some examples of such
modules. For this aim, we use some notions that come from algebraic geometry,
such as a�ne variety.

2. Preliminaries

In the present section, we recall brie�y de�nitions and basic properties of certain
topological spaces that we shall use.

Remark 2.1. Let M be an R-module and N be a submodule of M .
1. Note that Spec(0) = ∅ and that Spec(M) may be empty for some non-zero

R-module M . For example, Zp∞ as a Z-module has no prime submodule for any
prime integer p (see [17]). Such a module is said to be primeless.

2. M is called primeful if either M = (0) or M 6= (0) and the natural map

ψ : Spec(M)→ Spec(R/Ann(M)) de�ned by ψ(P ) = (P : M)/Ann(M) for every
P ∈ Spec(M), is surjective (see [20]).

3. The radical of N , denoted by radM (N) or brie�y rad(N), is de�ned to be
the intersection of all prime submodules of M containing N . In the case where
there are no such prime submodules, rad(N) is de�ned as M . If rad(N) = N , we
say that N is a radical submodule (see [16, 23]).
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4. Let p be a prime ideal of R. By the saturation of N with respect to p, we
mean the contraction of Np in M and designate it by Sp(N) (see [19]).

5. M is said to be multiplication (see [7] and [12]) if every submodule N of
M is of the form IM for some ideal I of R and M is called weak multiplication if
every prime submodule P of M is of the form IM for some ideal I of R (see [3]
and [5]).

6. (See [25, Theorem 3.5].) Consider the following statements. (1) M is
a multiplication module; (2) M is a top module; (3) |Specp(M)| 6 1 for every
prime ideal p of R; (4) M/pM is cyclic for every maximal ideal p of R. Then
(1)⇒ (2)⇒ (3)⇒ (4). Moreover, if M is �nitely generated then (4)⇒ (1).

7. (See [18, Theorem 6.1].) The following statements are equivalent: (1)
(Spec(M), τ) is a T0-space; (2) |Specp(M)| 6 1 for every p ∈ Spec(R).

8. IfM is a top R-module, then (Spec(M), τ) is a T0-space ([18, Corollary 6.2]).

Remark 2.2. Let X be a topological space.
1. X is said to be Noetherian if the open subsets of X satisfy the ascending

chain condition. X is said to be irreducible if X 6= ∅ and if every pair of non-empty
open sets in X intersect ([9]). For more examples of modules with Noetherian
spectrum we refer the reader to [21] and [1].

2. Let M be an R-module and Y be a subset of Spec(M).
(a) We will denote the intersection of all elements in Y by =(Y ) and the

closure of Y in Spec(M) with respect to the (quasi-)Zariski topology by
Cl(Y ). By [18, Proposition 5.1], V (=(Y )) = Cl(Y ).

(b) An element y ∈ Y is called a generic point of Y if Y = Cl({y}).
3. Following M. Hochster [14], we say that a topological space Y is a spectral

space in the case where Y is homeomorphic to Spec(S), with the Zariski topology,
for some ring S. For some examples of modules such that their prime spectrum
are spectral see [1, 18].

4. A Noetherian space is spectral if and only if it is T0 and every non-empty
irreducible closed subspace has a generic point ([14, pp. 57-58]). We recall that
if M is a top R-module, then (Spec(M), τ∗) is a T0-space and every irreducible
closed subset of Spec(M) has a generic point (see [4, Theorem 3.3]).

3. Main results

De�nition 3.1. An R-module M is called quasi-coordinate (or brie�y QC) if
(Spec(M), τ) is homeomorphic to Max(B), for some �nitely generated reduced
K-algebra B.

Recall that any �nitely generated reduced K-algebra B is the coordinate ring
of some a�ne variety (see [27]). Hilbert's Nullstellensatz allows us to identify
the points of any a�ne variety with the maximal ideals of its coordinate ring.
Therefore, we can consider the prime spectra of a QC module as a geometric
object, in a sense. Recall that, a�ne varieties and their morphisms are essentially
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equivalent to �nitely generated reduced K-algebras and their homomorphisms,
only with the arrows reversed.

Let N be a QC R-module. Then there exists a �nitely generated reduced K-
algebra D such that (Spec(N), τ) is homeomorphic to Max(D). We use notation
[N ] to designate the class of all a�ne variety W such that K[W ], coordinate ring
of W , is isomorphic to D.

In the next theorem, we present some properties of the QC modules. Recall
that if R is an integral domain with the quotient �eld Q(R), the rank of an R-
module M which is written as rankRM , is the dimension of the vector space
Q(R)M = M ⊗RQ(R) over the �eld Q(R); i.e., rankRM = dimQ(R)Q(R)M (see,
[22, p. 84]).

Theorem 3.2. Let M be a non-primeless QC R-module.

(1) Every prime submodule of M is a maximal element of Spec(M) and more-

over, is of the form Sp(pM) for some prime ideal p ∈ Spec(R).

(2) rad(0) is a prime submodule of M if and only if Spec(M) is a singleton

set.

(3) If R is an integral domain and Spec(M) is not singleton, then M is not

torsion-free.

(4) If {(P : M) |P ∈ Spec(M)} ⊆ Max(R), then Spec(M) = Max(M) and M
is weak multiplication.

(5) If R is an integral domain, then rankRM 6 1.

(6) M/mM is cyclic for every maximal ideal m of R.

(7) If M is �nitely generated, then M is multiplication.

(8) If M is free, then M is cyclic.

(9) LetM be a �at R-module. Then,M is weak multiplication and (Spec(M), τ)
is a spectral space.

Proof. Suppose that W ∈ [M ].

(1). By [14, Proposition 11], (Spec(M), τ) is a T1-space. Therefore, by Re-
mark 2.2(2),

Cl({P}) = V (P ) = {P},
for any prime submodule P of M . If there exists a prime submodule Q of M such
that P ⊆ Q, then (P : M) ⊆ (Q : M). Hence, Q ∈ V (P ) = {P}. This implies that
P = Q. Thus, every prime submodule of M is a maximal element of Spec(M).
Now, let P be a p-prime submodule of M . Then, by [19, Corollary 3.7], Sp(pM)
is a p-prime submodule of M . So, in the light of Remark 2.1(2.1), P = Sp(pM)
since (Spec(M), τ) is a T1-space.

(2). If Spec(M) := {Q} is a singleton set, clearly rad(0) = Q is a prime
submodule of M . Conversely, if rad(0) is a prime submodule of M , then it is a
maximal element of Spec(M) which is contained in every prime submodule of M ,
by (1). Hence, Spec(M) = {rad(0)} is a singleton set.
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(3). Suppose that M is torsion-free. Then by [19, Lemma 4.5], (0) is a prime
submodule of M . By (2), M has only one prime submodule, a contradiction.

(4). Let P be a prime submodule of M and N be a proper submodule of M
such that P ⊆ N . Then

(P : M) = (N : M) ∈ Max(R).

This implies that N is a prime submodule by [15, Proposition 2] and so P = N
by (1). Hence, Max(M) = Spec(M). Also, (P : M)M ⊆ P is a (P : M)-prime
submodule. By Remark 2.1(2.1), P = (P : M)M . This shows that M is weak
multiplication.

(5). Suppose that rankRM = dimQ(R)M > 1 and x1, x2 are linearly indepen-
dent element of Q(R)M . Then, (x1) ⊆ (x1, x2) is a chain of subspaces of Q(R)M .
But every proper subspace of a vector space is a (0)-prime submodule. Then

(x1) ∩M ⊆ (x1, x2) ∩M

is a chain of (0)-prime submodules ofM , by [17, Proposition 1]. By Remark 2.1(2.1),

(x1) ∩M = (x1, x2) ∩M.

This implies that (x1) = (x1, x2), a contradiction.

(6). Use Remark 2.1(2.1) and (1).

(7). Use Remark 2.1(2.1) and (1).

(8). Let {fλ}λ∈Λ be a basis for M and m be a maximal ideal of R. Then
M/mM is a free R/m-module with basis {fλ +mM}λ∈Λ. But M/mM is cyclic by
(6). Thus, M is cyclic.

(9). Let P be a p-prime submodule of M . Then pM ⊆ P . By [15, Theorem 3],
pM is a prime submodule of M . Now, according to (1), P = pM . Therefore, M is
weak multiplication. By de�nition (Spec(M), τ) is a Noetherian space. Also, by
(1) and Remark 2.2(4), it is enough to show that every irreducible closed subset of
(Spec(M), τ) has a generic point. Let Y = V (N) be an irreducible closed subset of
(Spec(M), τ), where N is an arbitrary submodule of M . By [18, Proposition 5.4],
p := (=(Y ) : M) is a prime ideal of R. It follows [18, Result 3 and Proposition
5.1] that

V (pM) = V ((=(V (N)) : M)M) = V (=(V (N))) = V (N) = Y.

Since M is �at and pM ⊆ =(Y ) 6= M , we deduce from [15, Theorem 3] that pM
is a prime submodule of M . Hence, Y has a generic point.

We will show that if M is a QC R-module, then the elements of [M ] determine
some properties of the ring R.

Corollary 3.3. LetM be a QC R-module andW ∈ [M ] be a variety with in�nitely

many points. Then, R has in�nitely many prime ideals.
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Proof. Let Spec(R) = {p1, . . . , ps}. Then for any prime submodule P of M there
exists pi ∈ Spec(R) such that (P : M) = pi. As we mentioned in the proof
Theorem 3.2(1), Spec(M) is a T1-space. Hence, by Remark 2.1(2.1), Spec(M) is
a �nite set, a contradiction.

Recall that the dimension, dimV , of a variety V is de�ned to be the length d
of the longest possible chain of distinct non-empty irreducible subvarieties of V ,
Vd ) · · · ) V1 ) V0.

Proposition 3.4. Let M be a QC R-module and W ∈ [M ] be a variety of dimen-

sion n. Then dimR > n.

Proof. Let

Vn ) · · · ) V1 ) V0

be a descending chain of irreducible closed subsets of Spec(M). Then

=(Vn) ( · · · ( =(V1) ( =(V0)

is a strictly ascending chain of submodules of M , by Remark 2.2(2). Thus, we
obtain an acsending chain

(=(Vn) : M) ( · · · ( (=(V1) : M) ( (=(V0) : M)

of prime ideals of R, by [18, Proposition 5.4]. Therefore, dimR > n.

Corollary 3.5. Any non-primeless QC module M over a zero-dimensional ring

R has only �nitely many prime submodules.

Proof. By Proposition 3.4, every irreducible closed subset of Spec(M) is an irre-
ducible component of Spec(M). As we mentioned in the proof of Theorem 3.2,
Spec(M) is a Noetherian topological space, and so has �nitely many irreducible
components. Since Cl{P} = V (P ) = {P}, we infer that Spec(M) is a �nite
set.

In the sequel, we provide some examples of QC modules. First, we show that
every a�ne variety is homeomorphic to the prime spectrum of a certain module.

For an ideal I of R we recall that the I-torsion submodule of M is ΓI(M) =
{m ∈M | Inm = 0 for some n ∈ N} and M is said to be I-torsion if M = ΓI(M)
(see [10]). We recall that a family {Mi}i∈I of R-modules is said to be prime-

compatible if, for all i 6= j in I, there does not exist a prime ideal p in R with
Specp(Mi) and Specp(Mj) both non-empty (see [25]).

Theorem 3.6. For any a�ne variety W ⊆ AnK there exists a QC R-module M
such that W ∈ [M ].
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Proof. Let R = K[x1, . . . , xn]. If λ := (λ1, . . . , λn) ∈ AnK , then

mλ := (x1 − λ1, . . . , xn − λn)

is a maximal ideal of R. Let {Mλ}λ∈W be a family of R-modules such that Mλ

is qλ-torsion with a unique prime submodule, where qλ is an mλ-primary ideal
of R. Put M =

⊕
λ∈W Mλ. Let α, β ∈ W such that Pα ∈ Specp(Mα) and

Pβ ∈ Specp(Mβ) for some p ∈ Spec(R). Then it is easy to see that qα ⊆ p and
qβ ⊆ p. So, qα + qβ ⊆ p, a contradiction. Hence, the family {Mλ}λ∈W is prime-
compatible. Therefore, M is a top R-module by [25, Theorem 5.1]. Hence, by
Remark 2.1(2.1), (Spec(M), τ) is a T0-space. According to Remark 2.1(2.1),

Spec(M) = {mλM |λ ∈W}.
We de�ne

β : Spec(M) −→ Max(K[W ])

mM 7→ m := m/I(W )

Obviously, β is bijective. Suppose that V (J) is a closed subset of Max(K[W ]), for
some ideal J = J/I(W ) of K[W ]. Then

β−1(V (J)) = {mM |β(mM) ∈ V (J)}
= {mM |m ∈ V (J)}
= {mM | J ⊆ m} = V (JM).

Hence, β is a continuous map. We claim that β is a closed map. Let V (N) be a
closed set of Spec(M), for some submodule N of M . Then

β(V (N)) = {β(mM) |mM ∈ V (N)}
= {m | (N : M) ⊆ (mM : M) = m}
= {m | (N : M) + I(W ) ⊆ m} = V ((N : M) + I(W )).

Therefore, (Spec(M), τ) is homeomorphic to Max(K[W ]). Thus, M is a QC R-
module such that W ∈ [M ].

Example 3.7. Let R := C[x, y] and W := V(y − x2) be a variety of A2
C. Then in

the light of Theorem 3.6,

M =
⊕

(a,b)∈W
R/(x− a, y − b)3

is a QC R-module such that W ∈ [M ]. Note that by the construction of M , this
R-module is not unique. For example,

M ′ =
⊕

(a,b)∈W
R/((x− a)3, y − b)5

is a QC R-module such that W ∈ [M ′].
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Example 3.8. In Example 3.7, we showed that for a varietyW of As

K , there exists
a QC module over the ring R = K[x1, . . . , xs] such that W ∈ [M ]. Here, we show
that for a variety W ⊆ AsK it may be found a QC module M over K[x1, . . . , xm],
where s > m > dimW and W ∈ [M ] (see Proposition 3.4).

Let R = C[x, y] and W = V(y − x2) be a variety of A2
C. Then by the proof of

Theorem 3.6, we have

M =
⊕

a∈C
C[t]/(t− a)

is a QC C[t]-module such that W ∈ [M ].

It follows from Theorem 3.6 and Example 3.7 that there exists a QC R-module
M such that (Spec(M), τ) is homeomorphic to the a�ne n-space AnK and every
variety W of AnK is homeomorphic to the prime spectrum of a certain submodule
N of M . More precisely:

Proposition 3.9. Let R := K[x1, . . . , xn] and mλ := (x1 − λ1, . . . , xn − λn) be a

maximal ideal of R. Let {Mλ}λ∈Kn be a family of R-modules such that for any

λ ∈ Kn, Mλ is qλ-torsion with a unique prime submodule, where qλ is an mλ-
primary ideal of R. Put M =

⊕
λ∈Kn Mλ. Then M is a QC R-module such that

AnK ∈ [M ]. Moreover, if W is an a�ne variety of AnK , then N =
⊕

λ∈W Mλ is a

QC submodule of M such that W ∈ [N ].

Suppose that {Mi}ni=1 is a family of the QC R-modules. As we mentioned, the
prime spectra of each Mi presents an a�ne variety, in a sense. The union of these
varieties is a variety, namely W . In the next proposition, we state a method to
obtain a new QC module M from {Mi}ni=1 such that W ∈ [M ].

Proposition 3.10. Let {Mi}ti=1 be a family of prime-compatible QC R-modules.

Then M =
⊕t

i=1Mi is a QC R-module.

Proof. By Theorem 3.2, (Spec(Mi), τ) is a T1-space, for each i ∈ {1, . . . , t}. We
claim that (Spec(M), τ) is a T0-space.

Let Q1 and Q2 be two q-prime submodules of M . Then there are a, b ∈
{1, . . . , t} such that Ma * Q1 and Mb * Q2. By [25, Lemma 1.6],

Q1 ∩Ma ∈ Specq(Ma) and Q2 ∩Mb ∈ Specq(Mb).

Since Ma and Mb are prime-compatible, we conclude that a = b. Thus, it follows
from Remark 2.1(2.1) that

Q1 ∩Ma = Q2 ∩Ma

For all i ∈ {1, . . . , t} with i 6= a, Specq(Mi) is an empty set by hypothesis and
hence, again using [25, Lemma 1.6], Q1 ∩Mi = Mi. Therefore,

Q1 = (Q1 ∩Ma)⊕ (

t⊕

i=1,i6=a
Mi) = Q2.
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By Remark 2.1(2.1), we deduce that (Spec(M), τ) is a T0-space.

Let j ∈ {1, . . . , t} and put

Xj = {Pj ⊕ (

t⊕

i=1,i6=j
Mi) |Pj ∈ Spec(Mj)}.

Then Xj ⊆ Spec(M), by [20, Lemma 4.6]. On the other hand, if P is a p-prime
submodule of M , then there exists c ∈ {1, . . . , t} such that Mc * P . Thus,

P ∩Mc ∈ Specp(Mc) and (P ∩Mc)⊕ (

t⊕

i=1,i6=c
Mc)

is a p-prime submodule of M . Since (Spec(M), τ) is a T0-space, we infer that

P = (P ∩Mc)⊕ (

t⊕

i=1,i6=c
Mc),

by Remark 2.1(2.1). This implies that P ∈ Xc. Therefore, Spec(M) =
⋃t
i=1Xi,

as disjoint union. It is easy to see that Xj is homeomorphic to Spec(Mj). By
assumption for each j ∈ {1, . . . , t}, there exists an a�ne variety Wj ∈ [Mj ] such

that Wj
∼= Xj . Hence, (Spec(M), τ) is homeomorphic with

⋃t
i=1Wi. Since a

�nite union of the a�ne varieties is also an a�ne variety, M is a QC R-module
and

⋃t
i=1Wi ∈ [M ].

Remark 3.11. The "prime-compatible" condition in Proposition 3.10 is neces-
sary. For example, consider varieties W1 = V(y − x3) and W2 = V(y + x − 5) in
A2

C. If

M1 =
⊕

(a,b)∈W1

C[x, y]/(x− a, y − b)3

and

M2 =
⊕

(a,b)∈W2

C[x, y]/((x− a)3, y − b)5,

then Wi ∈ [Mi] for i = 1, 2. But, M = M1 ⊕M2 is not a QC R-module. Since, as
shown in the �gure below, there are prime submodules Pi ∈ Spec(Mi) for i = 1, 2
such that P1 ⊕ M2 and M1 ⊕ P2 are correspond to the point B ∈ A2

C. Thus,
Spec(M) is not a T0-space. This shows that M is not a QC R-module.
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by Remark 1(7). This implies that P ∈ Xc. Therefore, Spec(M) =
∪t

i=1Xi,
as disjoint union. It is easy to see that Xj is homeomorphic to Spec(Mj). By
assumption for each j ∈ {1, . . . , t}, there exists an affine variety Wj ∈ [Mj ] such
that Wj

∼= Xj . Hence, (Spec(M), τ) is homeomorphic with
∪t

i=1Wi. Since a
finite union of the affine varieties is also an affine variety, M is a QC R-module
and

∪t
i=1Wi ∈ [M ].

Remark 3. The "prime-compatible" condition in Proposition 3 is necessary. For
example, consider varieties W1 = V(y − x3) and W2 = V(y + x− 5) in A2

C. If

M1 =
⊕

(a,b)∈W1

C[x, y]/(x− a, y − b)3

and
M2 =

⊕

(a,b)∈W2

C[x, y]/((x− a)3, y − b)5,

then Wi ∈ [Mi] for i = 1, 2. But, M = M1 ⊕M2 is not a QC R-module. Since, as
shown in the figure below, there are prime submodules Pi ∈ Spec(Mi) for i = 1, 2
such that P1 ⊕ M2 and M1 ⊕ P2 are correspond to the point B ∈ A2

C. Thus,
Spec(M) is not a T0-space. This shows that M is not a QC R-module.

B

V(y − x3)

V(y + x− 5)

As an important consequence of Proposition 3, a QC R-module induces differ-
ent QC R-modules which all of them geometrically are the same.

Corollary 3. Let M1 be a QC R-module and M2 be a primeless R-module, then
M = M1 ⊕M2 is a QC R-module.

Proof. Use Proposition 3.

As an important consequence of Proposition 3.10, a QC R-module induces
di�erent QC R-modules which all of them geometrically are the same.

Corollary 3.12. Let M1 be a QC R-module and M2 be a primeless R-module,

then M = M1 ⊕M2 is a QC R-module.

Proof. Use Proposition 3.10.

Proposition 3.13. Let M be an R-module such that

{(P : M) |P ∈ Spec(M)} ⊆ Max(R).

Let Y be a subspace of (Spec(M), τ) such that with induced topology is homeo-

morphic with Max(B) for some �nitely generated reduced K-algebra B. Then M
induces a top R-module L such that Max(B) ∈ [L].

Proof. We de�ne L =
⊕

P∈Y M/P . Similar to the proof of Theorem 3.2, it is
easy to see that every prime submodule in Y is a maximal submodule of M , since
Max(B) is a T1-space and

{(P : M) |P ∈ Spec(M)} ⊆ Max(R).

Therefore, the R-module M/P has only one prime submodule, for every P ∈
Y , and hence is a top module. Since Y is a T1-space, {M/P}P∈Y is a prime-
compatible family of the top modules, by Remark 2.1(2.1). Hence, L is a top
R-module (see [25, Theorem 5.1]).

Let Q ∈ Specq(L), where q ∈ Spec(R). Then there is an element P ∈ Y such
that M/P * Q. Therefore, Q ∩ (M/P ) is a q-prime submodule of M/P and

q = (Q : L) = (P : M) ∈ Max(R).

Hence,
Spec(L) = {(P : L)L |P ∈ Y }.

Now, it is easy to see that Max(B) ∈ [L].

In Proposition 3.10, we considered the relationship between the union of va-
rieties and the QC modules. It is natural to ask about the relationship between
the intersection of varieties and the QC modules. As an immediate consequence
of Proposition 3.13, we obtain the following:
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Corollary 3.14. Let {Mj}j∈J be a family of the QC R-modules such that Wj ∈
[Mj ], for each j ∈ J . Let

{(P : Mα) |P ∈ Spec(Mα)} ⊆ Max(R)

for some α ∈ J . Then there exists an R-module M such that
⋂
j∈JWj ∈ [M ].

Proof. Let W =
⋂
j∈JWj and Y be a subspace of (Spec(Mα), τ) homeomorphic

to W . By Proposition 3.13, M =
⊕

P∈Y (Mα/P ) is the desired module.

Corollary 3.15. Let M be an Artinian R-module and let Y be a subspace of

(Spec(M), τ) such that with induced topology is homeomorphic to Max(B) for some

�nitely generated reduced K-algebra B. Then, M induces a top R-module L such

that Max(B) ∈ [L].

Proof. By [6, Corollary 2.4], we have {(P : M) |P ∈ Spec(M)} ⊆ Max(R). Thus,
the result follows from Proposition 3.13.
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