
Quasigroups and Related Systems 26 (2018), 149− 154

On bi-ideals of ordered semigroups

Ze Gu

Abstract. The concepts of strongly quasi-prime, quasi-prime, quasi-semiprime, strongly irre-

ducible and irreducible bi-ideals of an ordered semigroup are introduced. Moreover, we chara-

cterize regular and intra-regular ordered semigroups using bi-ideals, and investigate the ordered

semigroups in which every bi-ideal is strongly quasi-prime.

1. Introduction and preliminaries

Ideal theory play an important role in characterizations of semigroups and ordered
semigroups. Lajos �rst introduced the concept of bi-ideals in semigroups (see [7]).
Li and He characterized the semigroups whose all bi-ideals are prime in [8]; the
semigroups whose all bi-ideals are strongly prime were determined by Shabir in
[9]. Kehayopulu did much work on characterizations of regular and intra-regular
ordered semigroups by ideals, quasi-ideals and bi-ideals (see [1, 2, 3, 4, 5, 6]).
The characterizations of regular and intra-regular ordered semigroups in terms of
fuzzy subsets were given by Xie and Tang in [10]. In this paper, we �rst intro-
duce the notions of strongly quasi-prime, quasi-prime, quasi-semiprime, strongly
irreducible and irreducible bi-ideals in ordered semigroups, and then characterize
regular and intra-regular ordered semigroups by bi-ideals. Finally, we characterize
those ordered semigroups in which all bi-ideals are strongly quasi-prime.

We recall some basic notions in ordered semigroups. An ordered semigroup is
a semigroup (S, ·) endowed with an order relation 6 such that

(∀a, b, x ∈ S) a 6 b⇒ xa 6 xb and ax 6 bx.

Let (S, ·,6) be an ordered semigroup. A non-empty subset B of S is called a
bi-ideal of S if it satis�es the following conditions: (1) BSB ⊆ B; (2) a ∈ B and
b ∈ S, b 6 a implies b ∈ B. For a nonempty subset H of S, we denote

(H] = {t ∈ S | t 6 h for some h ∈ H}.
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It is well known that the intersection of any number of bi-ideals of S is either
empty or a bi-ideal of S. For any bi-ideals B1, B2 of S, (B1B2] is a bi-ideal of S.

An ordered semigroup S is called regular ([2, 5]) if for every a ∈ S there exists
x ∈ S such that a 6 axa. Equivalent de�nitions: (1) A ⊆ (ASA] (∀A ⊆ S);
(2) a ∈ (aSa] (∀a ∈ S). An ordered semigroup S is called intra-regular ([2, 3]) if
for every a ∈ S there exist x, y ∈ S such that a 6 xa2y. Equivalent de�nitions:
(1) A ⊆ (SA2S] (∀A ⊆ S); (2) a ∈ (Sa2S] (∀a ∈ S).

2. Several classes of bi-ideals

In this section, we mainly introduce and study quasi-prime, strongly quasi-prime,
quasi-semiprime, irreducible and strongly irreducible bi-ideals in ordered semi-
groups.

De�nition 2.1. Let S be an ordered semigroup and B a bi-ideal of S. B is called
quasi-prime (strongly quasi-prime) if B1B2 ⊆ B ((B1B2] ∩ (B2B1] ⊆ B) implies
B1 ⊆ B or B2 ⊆ B for any bi-ideals B1 and B2 of S. B is called quasi-semiprime

if B2
1 ⊆ B implies B1 ⊆ B for any bi-ideal B1 of S.

Remark 2.2. From De�nition 2.1, we know that every strongly quasi-prime bi-
ideal of an ordered semigroup S is quasi-prime, and every quasi-prime bi-ideal
is quasi-semiprime. However, a quasi-prime bi-ideal is not necessarily strongly
quasi-prime and a quasi-semiprime bi-ideal is not necessarily quasi-prime.

Example 2.3. (See [2]) Consider the ordered semigroup S = {a, b, c, d, e} with
the multiplication “ · ” and the order “ 6 ” below:

· a b c d e
a a a a a a
b a b a d a
c a e c c e
d a b d d b
e a e a c a

6:= {(a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (c, c), (d, d), (e, e)}.

We can deduce that the bi-ideals of S are

{a}, {a, b}, {a, c}, {a, d}, {a, e}, {a, b, d}, {a, c, d}, {a, b, e}, {a, c, e}, S.

It is easy to see that the bi-ideal {a, b, e} is quasi-prime. But it is not strongly
quasi-prime. Indeed: we have

({a, c}{a, d}] = ({a, c}] = {a, c};

({a, d}{a, c}] = ({a, d}] = {a, d};
{a, c} ∩ {a, d} = {a} ⊆ {a, b, e}.

But neither {a, c} nor {a, d} is contained in {a, b, e}.
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Example 2.4. (See [2]) Consider the ordered semigroup S = {a, b, c, d, e} with
the multiplication “ · ” and the order “ 6 ” below:

· a b c d e
a a b a a a
b a b a a a
c a b c a a
d a b a a d
e a b a a e

6:= {(a, a), (a, b), (b, b), (c, a), (c, b), (c, c)(d, a), (d, b), (d, d), (e, e)}.

We can obtain that the bi-ideals of S are

{a, c, d}, {a, b, c, d}, {a, c, d, e}, S.

It is easy to deduce that the bi-ideal {a, c, d} is quasi-semiprime. But it is not
quasi-prime. Indeed: we have

{a, b, c, d}{a, c, d, e} = {a, c, d}.

However, neither {a, b, c, d} nor {a, c, d, e} is contained in {a, c, d}.
De�nition 2.5. A bi-ideal B of an ordered semigroup S is called irreducible

(strongly irreducible) if B1 ∩ B2 = B (B1 ∩ B2 ⊆ B) implies B1 = B or B2 = B
(B1 ⊆ B or B2 ⊆ B) for any bi-ideals B1 and B2 of S.

Remark 2.6. Clearly, every strongly irreducible bi-ideal of an ordered semigroup
is irreducible. The following example shows that the converse is not true.

Example 2.7. Consider the ordered semigroup S in Example 2.3. The bi-ideal
{a, b, d} is irreducible but not strongly irreducible because

{a, c} ∩ {a, e} = {a} ⊆ {a, b, d}.

But neither {a, c} nor {a, e} is contained in {a, b, d}.
Proposition 2.8. The intersection of any family of quasi-prime bi-ideals of an

ordered semigroup is either empty or a quasi-semiprime bi-ideal.

Proof. Let Γ be a family of quasi-prime bi-ideals and B a bi-ideal. It is well-
known that

⋂
α∈ΓBα is either empty or a bi-ideal. Suppose that

⋂
α∈ΓBα 6= ∅

and B2 ⊆
⋂

α∈ΓBα. Then B
2 ⊆ Bα for every α ∈ Γ. Since Bα is quasi-prime, we

have B ⊆ Bα. Thus B ⊆
⋂

α∈ΓBα and so
⋂

α∈ΓBα is quasi-semiprime.

Proposition 2.9. Let B be a strongly irreducible quasi-semiprime bi-ideal of an

ordered semigroup S. Then B is strongly quasi-prime.

Proof. Let B1, B2 be two bi-ideals of S such that (B1B2] ∩ (B2B1] ⊆ B. Since
(B1 ∩ B2)2 ⊆ B1B2 and (B1 ∩ B2)2 ⊆ B2B1, we have (B1 ∩ B2)2 ⊆ B1B2 ∩
B2B1 ⊆ (B1B2] ∩ (B2B1] ⊆ B. Moreover, since B is a quasi-semiprime bi-ideal,
B1 ∩B2 ⊆ B. In addition, from the strong irreducibility of B, we have B1 ⊆ B or
B2 ⊆ B. Thus B is a strongly prime bi-ideal of S.
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3. Regular and intra-regular ordered semigroups

In this section, we mainly characterize regular and intra-regular ordered semi-
groups by bi-ideals, and investigate the ordered semigroups in which all bi-ideals
are strongly quasi-prime.

Theorem 3.1. Let S be an ordered semigroup. Then the following statements are

equivalent:

(i) S is both regular and intra-regular;

(ii) (B2] = B for every bi-ideal B of S;

(iii) B1 ∩B2 = (B1B2] ∩ (B2B1] for all bi-ideals B1 and B2 of S;

(iv) Every bi-ideal of S is quasi-semiprime.

Proof. (i)⇒ (ii). Let B be a bi-ideal of S. Then BSB ⊆ B. Since S is regular and
intra-regular, B ⊆ (BSB] and B ⊆ (SB2S]. Thus B ⊆ (BSB] ⊆ ((BSB](SB]] =
(BSBSB] ⊆ ((BS](SB2S](SB]] ⊆ (BSSB2SSB] ⊆ (BSBBSB] ⊆ (B2]. Also,
(B2] ⊆ ((BSB](BSB]] = (BSBBSB] ⊆ (BSB] ⊆ (B] = B.

(ii) ⇒ (i). Let a ∈ S. Then B(a) = (a ∪ aSa]. Since B = (B2] for every
bi-ideal B of S, we have a ∈ B(a) = (B2(a)] = ((B2(a)](B(a)]] = (B3(a)] =
((a ∪ aSa](a ∪ aSa](a ∪ aSa]] ⊆ ((a ∪ aSa)(a ∪ aSa)(a ∪ aSa)] ⊆ (aSa]. Hence S
is regular.

Similarly, we have a ∈ B(a) = (B2(a)] = ((B2(a)](B2(a)]] = (B4(a)] = ((a ∪
aSa](a∪aSa](a∪aSa](a∪aSa]] ⊆ ((a∪aSa)(a∪aSa)(a∪aSa)(a∪aSa)] ⊆ (Sa2S].
Thus S is intra-regular.

(ii) ⇒ (iii). Let B1 and B2 be two bi-ideals of S. Then B1 ∩ B2 is either
empty or a bi-ideal of S.

Case 1). Suppose that B1∩B2 = ∅. Next we prove that (B1B2]∩ (B2B1] = ∅.
Otherwise, (B1B2]∩ (B2B1] is a bi-ideal (Since (B1B2] and (B2B1] are bi-ideals).
Thus (B1B2]∩(B2B1] = (((B1B2]∩(B2B1])((B1B2]∩(B2B1])] ⊆ ((B1B2](B2B1]] ⊆
((B1B2B2B1]] = (B1B2B2B1] ⊆ (B1SB1] ⊆ (B1] = B1. Similarly, (B1B2] ∩
(B2B1] ⊆ B2. Hence (B1B2] ∩ (B2B1] ⊆ B1 ∩B2 = ∅, which is impossible.

Case 2). Suppose that B1∩B2 6= ∅. By hypothesis, B1∩B2 = ((B1∩B2)2] =
((B1 ∩ B2)(B1 ∩ B2)] ⊆ (B1B2]. In the same way, we have B1 ∩ B2 ⊆ (B2B1].
Thus,

B1 ∩B2 ⊆ (B1B2] ∩ (B2B1]. (1)

Hence (B1B2] ∩ (B2B1] 6= ∅ and so (B1B2] ∩ (B2B1] is a bi-ideal. Similar to the
proof of Case 1), we have

(B1B2] ∩ (B2B1] ⊆ B1 ∩B2. (2)
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By (1) and (2), we obtain that

B1 ∩B2 = (B1B2] ∩ (B2B1].

(iii) ⇒ (iv). Let B1 and B be two bi-ideals of S such that B2
1 ⊆ B. By

hypothesis, B1 = B1 ∩ B1 = (B2
1 ] ∩ (B2

1 ] = (B2
1 ]. Thus, we have B1 = (B2

1 ] ⊆
(B] = B. Hence every bi-ideal of S is quasi-semiprime.

(iv) ⇒ (ii). Let B be a bi-ideal of S. Then (B2] is a bi-ideal. By hypothesis,
(B2] is quasi-semiprime. Since B2 ⊆ (B2], we have B ⊆ (B2]. Furthermore,
(B2] ⊆ ((B2](B]] = (B3] ⊆ (BSB] ⊆ (B] = B. Hence B = (B2].

The following result can be directly obtained from Theorem 3.1.

Proposition 3.2. Let S be a regular and intra-regular ordered semigroup and B
a bi-ideal of S. Then the following statements are equivalent:

(i) B is strongly irreducible;

(ii) B is strongly quasi-prime.

Next we characterize those ordered semigroups in which every bi-ideal is strongly
quasi-prime and also those ordered semigroups in which every bi-ideal is strongly
irreducible.

Lemma 3.3. Let S be an ordered semigroup. Then the following statements are

equivalent:

(i) The set of bi-ideals of S is totally ordered under inclusion;

(ii) Every bi-ideal of S is strongly irreducible and B1 ∩ B2 6= ∅ for any bi-ideals

B1 and B2 of S;

(iii) Every bi-ideal of S is irreducible and B1 ∩ B2 6= ∅ for any bi-ideals B1 and

B2 of S.

Proof. (i)⇒ (ii). By condition (i), it is obvious that B1∩B2 6= ∅ for any bi-ideals
B1 and B2 of S. Let B be a bi-ideal of S and B1, B2 two bi-ideals such that
B1 ∩B2 ⊆ B. Since the set of bi-ideals of S is totally ordered, either B1 ⊆ B2 or
B2 ⊆ B1. Thus either B1∩B2 = B1 or B1∩B2 = B2. Hence B1∩B2 ⊆ B implies
that B1 ⊆ B or B2 ⊆ B. This shows that B is strongly irreducible.

(ii)⇒ (iii). The conclusion is obvious.
(iii)⇒ (i). Let B1 and B2 be two bi-ideals of S. Since B1∩B2 6= ∅, B1∩B2 is

a bi-ideal. By hypothesis, either B1 = B1 ∩B2 or B2 = B1 ∩B2, that is, B1 ⊆ B2

or B2 ⊆ B1. Hence the set of bi-ideals of S is totally ordered.

Theorem 3.4. Let S be an ordered semigroup. Then every bi-ideal of S is strongly

quasi-prime and B1 ∩B2 6= ∅ for any bi-ideals B1 and B2 of S if and only if S is

regular, intra-regular and the set of bi-ideals of S is totally ordered.
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Proof. (⇒). Let every bi-ideal of S be strongly quasi-prime. Then every bi-ideal
of S is quasi-semiprime. From Theorem 3.1, we have S is regular and intra-
regular. Furthermore, we know that every bi-ideal of S is strongly irreducible
from Proposition 3.2. Thus by Lemma 3.3, the set of bi-ideals of S is totally
ordered under inclusion.

(⇐). Since the set of bi-ideals of S is totally ordered under inclusion, we
have B1 ∩ B2 6= ∅ for any bi-ideals B1 and B2 of S and every bi-ideal of S is
strongly irreducible from Lemma 3.3. Since S is regular and strongly regular, from
Proposition 3.2, we obtain that every bi-ideal of S is strongly quasi-prime.
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