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Action of the group (z,y: 2% =y%=1)

on imaginary quadratic fields

Abdul Razaq

Abstract. Let H =< z,y : 22 = y% = 1 > be acting on Q (v/—n) and denote the subset
{% " a, “2;5”,0 € 7\ {0}} of Q (v=n) by Q* (v/=n). Also d(n) denotes the arithmetic

function which is defined as the number of positive divisors of n which are multiple of 3. In this
paper, we show that the total number of orbits of Q* (v/=n) under the action of H are

4 ifn =3,
d(n) if n =0 (mod3), but n # 3,
2d(n+1) if n=2(mod3).

1. Introduction

Let F be an extension field of degree two over the field Q of rational num-
bers. Then any element x € F\Q is of degree two over Q and is a primi-
tive element of F' (that is F' = Q[z] and {1,z} is a base of F over Q). Let
p(x) = 2% + bx + ¢, where b,c € Q, be the minimal polynomial of such an ele-
ment x € F. Then 2x = —b + /b2 — 4c and so, F = Q(v/b2 — 4c). Since b* — 4c
is a rational number % = Y3 with u,v € Z, we obtain ' = Q(y/uv). In fact
it is possible to write F' = Q(y/n), where n is a square-free integer. If n is a
negative square-free integer, then Q(y/n) is called an imaginary quadratic field
and the elements of Q(4/n) are of the form a + by/n with a,b € Q. The imagi-
nary quadratic fields are usually denoted by Q(v/=n) = {a+by/=n:a, be Q},
where n is a square-free positive integer. Imaginary quadratic fields are the only
type (apart from Q) with a finite unit group. This group has order 4 for Q(y/—1)

(and generator v/—1), order 6 for Q(/—3) (and generator @) , and order
2 (and generator — 1) for all other imaginary quadratic fields. We denote the
subset {‘”'3@ :a, ‘123% € Z and c € Z\ {0}} of Q (\/fn) by Q* (\/fn) . Some
fundamental properties of imaginary quadratic fields have been discussed in [2]
and [3].

Let G be a group generated by the linear fractional transformations z and y

satisfying the relations 22 = y™ = 1. If y : 2 — zjjrrg is to act on all imaginary
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quadratic fields, then a, b, ¢, d must be rational numbers and can taken to be inte-
(ﬂ+d)2 az+b

ad—bc cz+d
(at+d)?

S = w+w ! + 2, where w is a primitive mth root of unity. Now w + w™!
is rational, for a primitive mth root w, only if m = 1,2,3,4 or 6. So these are the
only possible orders of y. The group < x,y > is cyclic of order 2, when m = 1.
When m = 2, it is an infinite dihedral group and does not give inspiring informa-
tion while studying its action on imaginary quadratic numbers. For m = 3, the
group < x,y > is the modular group PSL (2,7) and its action on real quadratic
numbers has been discussed in detail in [4] and [5].
In this paper, we are interested in the action of the group H =< z,y : 22 =
1 are linear fractional transfor-

¥ =1 >, where (z)z = 3% and (2)y = 3(%1)

mations, on Q* (v/—n) = {% VN g, 040 ¢ 7, and ¢ € 2\ {0}} Note that,
Q* (\/—n) remains invariant under the action of H. We show that the total num-
ber of orbits of Q* (\/—n) under the action of H are

gers, so that is rational. But ify: z — is of order m, one must have

4 itn=3
d(n) if n =0 (mod3), but n # 3
2d(n+1) if n=2(mod3)

2. Coset Diagrams

We use coset diagrams for the group H and study its action on the projective line
over imaginary quadratic fields. The coset diagrams for the group H are defined
as follows. The six cycles of transformation y are represented by six unbroken
edges of a hexagon (may be irregular) permuted counter-clockwise by y. Any two
vertices which are interchanged by involution z, is joined by an edge. The fixed
points of z and y, if they exist, are denoted by heavy dots. This graph can
be interpreted as a coset diagram,with the vertices identified with the cosets of
Stab, (H) , the stabilizer of some vertex v of the graph, or as 1-skeleton of the cover
of the fundamental complex of the presentation which corresponds to the subgroup
Stab, (H) . For more details about coset diagrams, one can refer to [1],[6],[7] and
8]

A general fragment of the coset diagram of the action of H on Q* (\/jn) will
look as follows.
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Definition 2.1. If a = % " € Q* (\/fn) is such that ac < 0 then « is called
a totally negative imaginary quadratic number and it is called a totally positive
imaginary quadratic number if ac > 0.

As d = azg"c'", so dc is always positive. Thus d and ¢ will have the same

sign. Hence an imaginary quadratic number oo = % — e Q* (\/—n) is totally
atv—n c
3c

negative if either a < 0 and d,c > 0 or @ > 0 and d, ¢ < 0. Similarly o =
Q* (v/=n) is totally positive if either a,d,c > 0 or a,d,c < 0.

For a = “J”ﬁ € Q* (v/=n) , norm of a is denoted by || a || and || o [|=| a | .

3. Main results

Theorem 3.1. If a = “‘“ —" € Q* (v/=n), then n does not change its value in
the orbit aH.

a+\/7 a +n _ =1 _ -1 _ —c _
Proof. Let oo = and d = . Since (a)r = 3 = E=a i

= 76(2;:{;7) = —a+f , therefore the new values of a and c for (a)z are —a and

d respectively. The new value of d for (a)x is “35” = 3(’(12%71) = c. Since (a)y =
1 o 1 o 1 _ 736(@“”367\/7”) _ —a—3ctv/—=n
Slatl) T g(etyongn) o s(engrie) 0 (a3 an] o SQetdiEe) )" therefore

the new values of @ and ¢ for (a)y are —a — 3¢ and (2a + d + 3¢) respectively.
(—=a=3c)®4+n _ a®+n+9c2+6ac
3(2a+d+3c)  3(2a+d+3c)

we can calculate the new values of a,d and ¢ for («) 37, where j = 2,3,4,5.

Moreover, the new value of d for (a)y is = ¢. Similarly

o a d 3c

(a)x —a c 3d

()y —a— 3¢ c 3(2a+d+ 3c)
(@)y? —5a —3d—6¢c | 2a+d+ 3c 3 (4a + 3d + 4c)
()y> | —Ta—6d—6¢ | 4a+3d+4c | 3(4a+4d+ 3c)
(a)y? —5a — 6d — 3¢ | 4a+4d + 3¢ 3(2a+3d+¢)
(@)y® —a—3d 2a+3d+c 3d

(v)yz | a+3c (2a + d + 3c) 3c

(a)y®x | ba + 3d + 6¢ da + 3d + 4c 3(2a+d+ 3c) (Table 1)
(@)y’z | Ta+6d+ 6¢ 4a 4+ 4d + 3¢ 3 (4a + 3d + 4c)
(a)y*z | ba+6d+3c | 2a+3d+c 3 (4a + 4d + 3c)
(a)y°z | a+3d d 3(2a+3d+¢)
(v)zy | a—3d d 3(—2a+3d+c)
(a)zy® | ba — 6d — 3¢ —2a+3d+c | 3(—4a+4d+ 3c)
(a)xy® | 7Ta —6d —6¢c | —4a+4d +3c | 3(—4a + 3d + 4c)
(a)zy® | 5a — 3d — 6¢ —4a+3d+4c | 3(—2a+d+ 3c)
(a)zy® | a—3c —2a+d+3c | 3c
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From above information we see that all the elements in aH are of the form % V(_”

Hence non square positive integer n does not change its value in aH. O

Theorem 3.2. The fized points under the action of H on Q* (\/—n) exist only if
n = 3.

Proof. Let g be a linear fractional transformation in H. Therefore (z)g can be

taken as ‘c’jis, where ad—bc = 1 or 3. Let zjjrrdb = 2z which yields quadratic equation

¢z + (d—a)z —b = 0. It has imaginary roots only if (a + d)* — 4 (ad — bc) < 0.
If ad — bc = 1, then (a + d)2 < 4 implies a + d = 0,£1, and if ad — bc = 3, then
(a + d)2 < 12 implies a + d = 0, +1, 42, +3. Hence we have the following cases.

() If a+d =trace(g) = 0, then g is involution and hence it is conjugate to the
linear fractional transformation z or 3.

(ii) If trace(g) = £1 and det (g) = 1, then (trace (¢))* = det (g) implying that
order of g is 3 and hence g is conjugate to 32 or y*.

(iii) If trace(g) = +3 and det (g) = 3, then (trace (g))*> = 3det (g) imply-
ing that order of g will be six and hence it is conjugate to the linear fractional
transformation y or y5.

(iv) If trace(g) = +1, det (g) # 1 or trace(g) = +3, det (g) # 3 or trace(g) =
42, then the order of ¢ is infinite and it is conjugate to the linear fractional
transformation (xy)"

Hence fixed points of g are imaginary if it is conjugate to the linear fractional

transformation z,y,y% y, y* or y°. Since fixed points of z and y are £¥=2 and

%\/TB respectively, and the conjugates of z and y having the same discriminant.
Hence fixed points exist only if n = 3. O

Example 3.3. Let g = zyz € H. Then (2)g = z yields the quadratic equation
322 — 32 4+ 1 = 0, which has roots % which are fixed points of g = zyx.

Example 3.4. Let g = yzy~! € H. Then (2)g = 2 yields the quadratic equation
322 + 62z + 4 = 0. This equation has roots %‘/TP’, which are fixed points of
g=yay "

Theorem 3.5.

(1) = maps a totally negative imaginary quadratic number onto a totally positive
imaginary quadratic number and vice versa.

(ii) If a = % e QF (\/fn) 18 totally positive tmaginary quadratic number,
then (a)y’ is totally negative imaginary quadratic number for j = 1,2,3,4,5.

Proof. (i) Let « be a totally negative imaginary quadratic number, then ac < 0
implies that either ¢ > 0 and ¢,d < 0 or a < 0 and ¢,d > 0. Now we have the
following table.

e a d | 3c
(v)r | —a | ¢ | 3d
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If a <0 and ¢,d > 0, then from above information we can see that new values of
a,d, c for (a)z are all positive. This implies that («)z is totally positive imaginary
quadratic number.

On the other hand, if @ > 0 and ¢,d < 0 then new values of a,d,c are all
negative. So («)z is a totally positive imaginary quadratic number.

Similarly = maps a totally positive imaginary quadratic number to a totally
negative imaginary quadratic number.
(i7) Following table gives the new values of a,d, ¢ for (a)y?, where j = 1,2,3,4,5.

« a d 3c
y | —a—3c c 3(2a+d+ 3c)
71 —5a—3d—6c | 2a+d+3c | 3(4a+3d+ 4c)
y? | =Ta—6d —6c | 4a+3d +4c | 3 (4a + 4d + 3c)
T —5a —6d —3c | 4a +4d+3c | 3(2a+3d +¢)
1 —a—3d 2a+3d+c | 3d

Since « is a totally positive, so either a,d,c > 0 or a,d,c < 0. If a,d,c > 0,
then (a)y’ are all totally negative imaginary quadratic numbers. Now if a, d, ¢ < 0,
then again from above table, we can see (a)y’ are all totally negative imaginary
quadratic numbers. Thus (a)y’ are all totally negative imaginary quadratic num-
bers. O

Theorem 3.6.
(i) If a = 5= € Q* (v=n), then ||a| = ||()z].

() If a = % Y€ Q" (v/=n) is totally positive imaginary quadratic number,
then [lof| < [[(e)y’|| for j =1,2,3,4,5.

Proof. (i) Consider the following table.

o a d | 3c
()x | —a | ¢ | 3d

which implies ||« =] a |= ||(a)z]].
(1) The values of (a)y’ for j = 1,2,3,4,5 are given in the following table.

a a d 3c

(a)y | —a—3c c 3(2a+d+3c)
(@)y? | =5a—3d —6¢c | 2a+d+3c | 3(4a+ 3d + 4c)
(@)y® | —Ta—6d —6¢ | 4a+ 3d+4c | 3 (4a + 4d + 3c)
()y" | =5a—6d —3c | 4a+4d+3c | 3(2a+3d+c)
(a)y” | —a—3d 2a+3d+c | 3d

Since « is a totally positive imaginary quadratic number, so ac > 0. Therefore
either a,d,c > 0 or a,d,c < 0. This implies |[()y| =| a + ¢ |>] a |. Also,
[(@)y?ll =| 5a +3d +2¢ [>| a |, [()y*| =] Ta+6d+2c > al, [(a)y*] =
| ba+6d+c|>|al, |l(a)y5|| =la+3d|>|a].

Thus ||« < ||[(@)y?] for j =1,2,3,4,5. O
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Theorem 3.7. If a = % e QF (\/fn) , then denominator of every element
in aH has the same sign.

Proof. Consider the following table.

« a d 3c
T —a c 3d
y | —a—3c c 3(2a+d+ 3c)

71 —5a—3d—6c | 2a+d+3c | 3(4a+3d+ 4c)
31 —7a —6d — 6¢ | 4da+ 3d+ 4c | 3 (da + 4d + 3c)

y* | —5a —6d — 3¢ | 4a +4d+3c | 3(2a+3d + ¢)
1 —a—3d 2a+3d+c | 3d

If a = ’H'V — e Q* (\/fn) with ¢ > 0, then d is also positive. So it can be
easily observed from the above information that every element in aH has positive

denominator. If o = “J” — e Q* (\/—n) with ¢ < 0, then d is also negative. So
it can be easily observed from the above information that every element in aH
has negative denominator. O

Theorem 3.8. Ifa = a+3“ e (\/fn), then there ezists a sequence of positive

integers |laol[, [larl, [lazll, - - [laml[| such that |lag|| > flaa ][ > flag| > ... > flam],
0.3 ifn=3
where ||an| =< 0 if n=0(mod3), but n # 3

1 if n =2 (mod 3)

Proof. Let a = a; be a totally positive imaginary quadratic number so (a7)x is a
totally negative imaginary quadratic number and || (o) ||=|| aq ||. Since (oq)z
is a totally negative imaginary quadratic number, then by Theorem 3.5 (ii), one
of (a1)zy? for j = 1,2,3,4,5 is a totally positive imaginary quadratic number. If
(a)xy’ = i is a totally positive imaginary quadratic number, then by Theorem 3.6
Il az [[< || (1) ||=]| @1 ||. Similarly, we obtain another totally positive imaginary
quadratic number a3 in the adjacent hexagon to that containing as such that
llaol] > [Jea|| > ||z Ultimately, we get a decreasing sequence of positive integers
lewolls [lecal; [leczl; - - s [Jevm | such that [of = [laoll > llaall > llag|[... > [lewm]].
After a finite number of steps it must terminate.

(¢) If n = 3, then after a ﬁnite number of steps we reach to a,, such that

lam|l = 0 or 3. If ap, = 73iv , then because 3i6V =3 are fixed points of ¥,
therefore, we can not reach at an imaginary quadratic number whose norm is
equal to zero. Otherwise we reach at a,, = —Vi_?)?’

(#) f n = 0(mod 3), but n # 3, then we reach at an imaginary quadratic
number ., such that |ay,| = 0.

X n = 2 (mo , then we reach at an imaginary quadratic number «,,

i) If 2 d3), th h at imagi drati b

such that |lay,| = 1. O

Example 3.9. Let oy = 7+‘3/j2, which is totally positive imaginary quadratic

number. Then (ap)z = _7‘271 V=2 which is totally negative imaginary quadratic
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number. Also in the hexagon containing (o), (ap)zy® = 4+\3/*72

4+v—=2
3

is totally

positive imaginary quadratic number. Take oy =
— 442
18

» 50 [len]l > laz]|.

is totally negative imaginary quadratic number, then in
14+v/—=2
3

Now (ag)z =

the hexagon containing (az)z, (ag)xy® = is totally positive imaginary

1+v-2
3

quadratic number. Take a3 = , implying that ||ao|| > |Jaa|| > [Jas]|-

Theorem 3.10. There are exactly four orbits of Q* (\/73) under the action of
H.

Proof. Since we know that there exists a sequence of positive integers |aol|, |1l
ezl .. ; llaam | such that [laoll > [lasll > [lozl] > [lasl| > [leal| > ... > |lan],
where ||| = 0 or 3. If a,, = :I:@ or 3i6ﬁ then :i:*/: and %‘/3 are
fixed points of z and y respectively. Therefore in this case there are four orbits
of Q* (v/=3). That is, FH FH, %H and 3+_7‘/6T3H. Hence there are
exactly four orbits of Q* (\/j3) under the action of H. O

Theorem 3.11. Let a € Q¥ (\/—n), where n # 3.

() If a = @ where n = 0 (mod 3) then ‘/3_7 and ‘/7 lie in aH.

)

(7)) If = 1+ﬁ, where n = 2 (mod 3) then 1+ﬁ and 1:;\_/17 lie in aH.

(i7) If a = _1%‘/?", where n = 2 (mod 3) then _1+§/j" and H;ﬁ lie in aH.

(iv) If a = Yonwhere n = 0(mod 3) and ¢ # £1,+2 2, n = 3ccy then V= and

S 7 3c
\?{C_T" lie in oM.
(v) If a = 1+there n = 2(mod3) and n + 1 = 3cey , then 1+3\/Cfn and

*1;7\/ lie in oH.
c1

(vi) If a = *1+\/7where n = 2(mod3) and n + 1 = 3ccy , thenil%ﬁ and
% lie in o H.

Proof. (i) If a = ‘/j" , then we have the following information.

o 0 3 3
a)x 0 1 n
(a)
()y | —3 1 n+9
()y® | -6—n oty 3(4+n)
()| —2n—6 | 4+n | 9+4n

1 _ _ 9+4n
(a)y 2n —3 5 3(n+1)
(a)y® | —n n+1|n

Hence from the above table, we see that Y= and ¥ lie in the same orbit.
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(i) f a = @, then we have the following information.

o 1 "T"'l 3
T -1 1 1+n
y —4 1 16 +n
y' [ -12—n [ BB 197430

—10—2n | B 112+ 3n
Y —2—-n 4+n 14+n

2

v | —15—2n | 94n | 25+4n
I
5

Hence from the above table, we see that H'VB_” and _1;;}1_” lie in o H.

(wi) If a = _1%\/?", then we have the following information.
o -1 "TH 3
() |1 1 1+n
()y | -2 1 4+n
@)y | —2—n ian 3(1+n)
(| —1—-2n | 1+n | 1+4n
(a)y™ | —2n LEIn 1 3
(a)y® | —n n n+1

Hence from the above table, we see that _1+3V = and 1‘:1+V T lie in the same orbit.

w) Ifa= @, then we have the following information.
3c g

«@ 0 c1 3c
(Q)CL’ 0 C 3 C1
(v)y | =3¢ c 3(Bc+c1)
(@)y” | —6c—3ci | 3ctci | 3(dc+3c1)
(@)y® | =6c—6c1 | dc+3c1 | 3(3c+4c1)
(@y? | =3c—6¢c1 | 3c+4c1 | 3(c+3c1)
(@)y® | —3c1 c+3a1 3c1

3 3c
(v) If = 14'3@, then we have the following information.

Hence from the above table, we see that ¥ and ¥ _1" lie in the same orbit.

o 1 c1 3c

() | -1 c 3

(v)y | —1—3c c 3(2+3c+c1)
(a)y? | =5—=6c—3c1 | 24+ 3c+ar 3(4+4c+3c1)
(a)y* | =T—6c—6c1 | 4+4c+3c1 | 3(4+3c+4c1)
(@)y”
(@)y”

-5 —3c — 6c1 4+ 3c+4cq 324+ c¢c+3c)
y —1—3¢; 2+ c+ 3¢ 3c1

Hence from the above table, we see that 1+3VC_" and _1;; =" lie in aH.

(vi) If & = 7127;/?", then we have the following information.
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« -1 c1 3c
() |1 c 3ca
()y | 1—3c c 3(2+3c+c1)
(a)y2 5—6¢c— 3c; 24+ 3c+c1 3(4+4c+3c1)
(@)y® [ T—6c—6c1 | 4+4c+3ci | 3(4+3c+4cr)
(a)y* | 5—3c—6¢c1 | 4+3c+4der | 3(2+c+3cr)
(a)y5 1—3¢; 2+ c+ 3c1 3c1
Hence from the above table, we see that _l'g\c/j” and 1‘?6/1?" lie in aH. O

Example 3.12. By using Theorem 9, the orbits of Q* (\/—30) are

(i) ¥ 7330 and VS_OSO lie in Vg?’OH. (i1) ”:g’o and Lj(’)o lie in V:g’OH.
(i1i) Y52 and Y522 lie in Y220 H. (iv) ¥=2% and Y520 lie in Y=2"H.

So, there are four orbits of Q* (v/—30).

Example 3.13. By using Theorem 9, the orbits of Q* (\/—11) are

(4) 1+v3—11 and _1+1V2_11 lie in /=1 VB_HH

(i1) YL and =YL e in LR,
(i1i) == and Y lie in =HY=U

(iv) 71+_V3711 and H_Vl;ll lie in =Hv=11 V3711H.

(v) 1+V6711 and 71+6V711 lie in 11 V(;HH.

(UZ) 1+\7/6—ﬁ and —1+7\é—;11 1+\EH.

lie in
So, there are six orbits of Q* (v/—11).

Definition 3.14. If n is a positive integer, then d(n) denotes the arithmetic
function defined by the number of positive divisors of n which are multiple of 3.

Theorem 3.15. If n # 3 then the total number of orbits of Q* (\/Tn) under the
action of H are
d(n) if n = 0(mod3), but n # 3.
{ 2d(n+1) if n=2(mod3).

Proof. If n = 0(mod3), then the divisors of n which are multiples of 3 are
+3,+mq, £my, £ms,...,£n. Then by Theorem 3.11 (i) there exist two orbits
of Q* (\/—n) corresponding to the divisors +3,+n of n. We therefore left with
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2d (n) — 4 divisors of n. Then by Theorem 3.11 (iv), there exist %;)_4 or-

bits corresponding to the remaining 2d (n) — 4 divisors of n. Hence there are
2+ %2)74 = d(n) orbits of Q* (v/—n).

If n = 2 (mod 3), then the divisors of n+1 which are multiples of 3 are +3, +n,
+ng, +n3,...,+t(n+1). By Theorem 3.11 (%) and (4i7) , there exist four orbits cor-
responding to the divisors 3, +(n+1) of n+1. Thus we are left with 2d (n +1)—4
divisors of n 4+ 1. By Theorem 3.11 (v) and (vi) corresponding to the remaining
2d (n+ 1) — 4 divisors of n + 1, there exist 2d (n 4+ 1) — 4 orbits. Hence there are
4+2d(n+1)—4=2d(n+ 1) orbits of Q* (v/=n). O

Example 3.16. Consider Q* (v/=30) . Then the positive divisors of 30 which are
multiple of 3 are 3,6,15,30. Therefore d (30) = 4, which implies that the total
number of orbits are four.

Example 3.17. In Q* (v/—11) . The number of positive divisors of 12 which are
multiple of three are 3,6,12. Therefore d (12) = 3. Hence the total number of
orbits are 2d (12) =2 x 3 = 6.

Corollary 3.18. The action of H on Q* (\/—n) is intransitive.
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