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A characterization of almost simple groups

related to L3(37)

Ashraf Daneshkhah and Younes Jalilian

Abstract. Let G be a �nite group, and let Γ(G) be its prime graph. The degree pattern of G

is denoted by D(G) = (deg(p1), . . . ,deg(pk)), where |G| = pα1
1 · · · p

αk
k and deg(pi) is the degree

of vertex pi in Γ(G). The group G is called k-fold OD-characterizable if there exist exactly k

non-isomorphic groups H satisfying |G| = |H| and D(G) = D(H). In this paper, we characterize

all �nite groups with the same order and degree pattern as almost simple groups related to the

projective special linear group L3(37).

1. Introduction

Let G be a �nite group. We denote by ω(G) the set of orders of elements of G and
by π(G) the set of prime divisors of the order of G. The spectrum µ(G) of G is
the set of elements of ω(G) that are maximal with respect to divisibility relation.
Let π(G) = {p1, . . . , pk}. The prime graph Γ(G) of a group G is the graph whose
vertex set is π(G) and two distinct primes p and q are adjacent (we write p ∼ q)
if and only if G contains an element of order pq, that is to say, pq ∈ ω(G). For
p ∈ π(G), the degree deg(p) of p is the degree of the vertex p in Γ(G), that is to
say, the number of vertices q ∈ π(G) which are adjacent to p. If |G| = pα1

1 · · · p
αk

k ,
then we denote D(G) := (deg(p1),deg(p2), . . . ,deg(pk)), where p1 < p2 < ... < pk.
This k-tuple is called the degree pattern of G. A group G is called k-fold OD-
characterizable if there exist exactly k non-isomorphic �nite groups having the
same order and degree pattern as G. In particular, a 1-fold OD-characterizable
group is simply called OD-characterizable. A group G is said to be an almost
simple group related to L if and only if L E G . Aut(L) for some non-abelian
simple group L.

The notion of degree patterns of prime graphs and related topics has been
introduced in [9]. There are natural questions mentioned in [9] about the structure
of �nite groups with the same degree patterns and the same orders:

Let G and M be �nite groups satisfying the conditions (1) |G| = |M | and (2)
D(G) = D(M).

(i) How far do these conditions a�ect the structure of G?
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(ii) Is the number of non-isomorphic groups satisfying (1) and (2) �nite?

It is therefore important to investigate the number of non-isomorphic groups
satisfying conditions (1) and (2) for important families of groups M . In a series
of articles, it has been proved that some �nite almost simple groups are OD-
characterizable or k-fold OD-characterizable for k > 2, for example see [5, 11, 15].
Note in passing that a few classes of �nite simple groups have been in general
characterized by their degree patterns and orders, see for example [9, 13, 16]. To
our knowledge, the lack of information on the spectra of almost simple groups
is the main reason which makes this characterization somehow di�cult in general
argument but the situation for some simple groups is rather di�erent as the spectra
of these groups are known, see for example [2, 3, 8].

Motivated by [4], in this paper, we focus on groups related to L3(37) and
show that L3(37) and L3(37) : Z2 are OD-characterizable while L3(37) : Z3 and
L3(37) : S3 are 3-fold and 5-fold OD-characterizable, respectively. Indeed, we
prove that

Theorem 1.1. Let H be an almost simple group related to L := L3(37). If G is
a �nite group such that D(G) = D(H) and |G| = |H|, then the following hold:

(a) If H = L, then G ∼= H.

(b) If H = L : Z2, then G ∼= H.

(c) If H = L : Z3, then G is isomorphic to H, Z3 × L or Z3 · L (non-split).

(d) If H = L : S3, then G is isomorphic to H, Z3 × (L : Z2), Z3 · (L : Z2)
(non-split), (Z3 × L) · Z2 or (Z3 : L) · Z2.

Throughout this article, all groups under consideration are �nite. For p ∈ π(G),
we denote by Gp and Sylp(G) a Sylow p-subgroup of G and the set of all Sylow
p-subgroups of G, respectively. All further de�nitions and notation are standard
and can be found in [1, 7].

2. Preliminaries

In this section, we mention some useful results to be used in proof of Theorem 1.1.
Here the independence number α(Γ) of a graph Γ is the maximum cardinality of
an independent set among all independent sets of Γ. Let now G be a �nite group,
and let Γ(G) be its prime graph. Then we set α(G) := α(Γ(G)). Moreover, for a
vertex r ∈ π(G), let α(r,G) denote the maximal number of vertices in independent
sets of Γ(G) containing r.

Lemma 2.1. [12, Theorem 1] Let G be a �nite group with α(G) > 3 and α(2, G) >
2, and let K be the maximal normal solvable subgroup of G. Then the quotient
group G/K is an almost simple group, that is, there exists a �nite non-abelian
simple group S such that S 6 G/K 6 Aut(S).
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Lemma 2.2. [10, Theorem 1] Let S be a �nite non-abelian simple group, and let
p be the largest prime divisor of |S| with |S|p = p. Then p - |Out(S)|.

Lemma 2.3. The orders, spectra and degree patterns of the almost simple groups
related to L3(37) are as in Table 1.

Proof. Note that Aut(L3(37)) ∼= L3(37) : S3. So if G is an almost simple group
related to L3(37), then G is isomorphic to one of the groups L3(37), L3(37) : Z2,
L3(37) : Z3, L3(37) : S3. The result for H = L3(37) can be obtained by [8,
Theorem 9] and for the remaining groups we use GAP [6].

Table 1: The orders, spectra and degree patterns of H, where H is an almost
simple group related to L3(37).

H |H| µ(H) D(H)

L3(37) 25 · 34 · 7 · 19 · 373 · 67 {7 ·67, 23 ·3 ·19, 22 ·32, 22 ·3 ·37} (3, 3, 1, 2, 2, 1)
L3(37) : Z2 26 · 34 · 7 · 19 · 373 · 67 {7 ·67, 23 ·3 ·19, 23 ·32, 22 ·3 ·37} (3, 3, 1, 2, 2, 1)
L3(37) : Z3 25 · 35 · 7 · 19 · 373 · 67 {3 · 7 · 67, 23 · 32 · 19, 22 · 32 · 37} (3, 5, 2, 2, 2, 2)
L3(37) : S3 26 · 35 · 7 · 19 · 373 · 67 {3 · 7 · 67, 23 · 32 · 19, 22 · 32 · 37} (3, 5, 2, 2, 2, 2)

3. Proof of the main result

In this section, we prove Theorem 1.1 through a series of Lemmas and propositions.
Observe that Theorem 1.1(a) follows from [4, Proposition 3.4]. Therefore in what
follows we deal with the remaining cases.

Proposition 3.1. Let H := L : Z2 where L := L3(37). If |G| = |H| and D(G) =
D(H), then G ∼= H.

Proof. Note by Table 1 that |G| = 26 ·34 ·7 ·19 ·373 ·67 and D(G) = (3, 3, 1, 2, 2, 1).
Since deg(7) = 1, there exists the unique prime p2 ∈ π(G) such that 7 is adjacent to
p2. Since also |π(G)| = 6, there are four more primes which are not adjacent to 7. If
these four vertices, say p3, p4, p5 and p6, are pairwise adjacent, then the degrees of
the vertices p3, p4, p5 and p6 are at least 3, which is impossible. Hence there exist at
least two non-adjacent vertices p3 and p4. Let ∆ = {7, p3, p4} be an independent
set in Γ(G). Then α(G) > 3. Furthermore, α(2, G) > 2 since deg(2) = 3 and
|π(G)| = 6. By Lemma 2.1, there is a non-abelian �nite simple group S such that
S 6 G/K 6 Aut(S), where K is a maximal normal solvable subgroup of G. We
show that 67 6∈ π(K). Assume to the contrary, that is, 67 ∈ π(K). We prove
that p would be adjacent to 67, where p ∈ {7, 19}. If p ∈ π(K), then K contains
a cyclic Hall subgroup of order p · 67, and so p is adjacent to 67. If p 6∈ π(K),
then it follows from Frattini argument that G = KNG(P ), where P is a Sylow
67-subgroup of K, and so NG(P ) has an element x of order p. Thus P 〈x〉 is a
cyclic subgroup of G of order p · 67. Therefore both 7 and 19 are adjacent to 67
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which contradicts the fact that the degree of 67 is 1. Therefore, 67 /∈ π(K), and
hence π(K) ⊆ {2, 3, 7, 19, 37}.

Now we prove that S is isomorphic to L. By Lemma 2.2, 67 /∈ π(Out(S)),
then 67 /∈ π(K) ∪ π(Out(S)), and so 67 ∈ π(S). Therefore by [14, Table 1], S is
isomorphic to L as claimed. Moreover, since |G| = |L : Z2| = 2|L|, we deduce that
K is isomorphic to 1 or Z2.

If K is isomorphic to Z2, then G = CG(K) as G/CG(K) isomorphic to a
subgroup of Aut(K) = 1. Therefore K 6 Z(G) which implies that deg(2) = 5,
which is a contradiction. Thus K = 1, and so G ∼= L : Z2.

Proposition 3.2. Let H := L : Z3 where L := L3(37). If |G| = |H| and D(G) =
D(H), then G is isomorphic to one of the groups H, Z3×L and Z3 ·L (non-split).

Proof. Note by Table 1 that |G| = 25 ·35 ·7 ·19 ·373 ·67 and D(G) = (3, 5, 2, 2, 2, 2).
Therefore, Γ(G) must be the graph as in Figure 1 in which {a, b, c, d} = {7, 19, 37, 67}.

Figure 1: The prime graph Γ(G) of G in Propositions 3.2 and 3.3.
3

2 d

a c

b

We observe by Figure 1 that {a, b, c} is an independent set in Γ(G), and so
α(G) > 3. Furthermore, α(2, G) > 2 since deg(2) = 3 and |π(G)| = 6. By Lemma
2.1, there is a �nite non-abelian simple group S such that S 6 G/K 6 Aut(S),
where K is a maximal normal solvable subgroup of G. By the same argument as
in Proposition 3.1, we can show that 67 6∈ π(K), and so π(K) ⊆ {2, 3, 7, 19, 37}.
It follows from Lemma 2.2, 67 /∈ π(Out(S)), then 67 ∈ π(S). Therefore by [14,
Table 1], S is isomorphic to L. Thus L 6 G/K 6 Aut(L), and so |K| = 1 or 3,
which implies that K is isomorphic to 1 or Z3.

If K = 1, then since L 6 G/K 6 Aut(L) and |G| = |L : Z3|, we conclude that
G is isomorphic to L : Z3.

IfK is isomorphic to Z3, thenG/K ∼= L. In this case, we have thatG/CG(K) 6
Aut(K) = Z2. Thus |G/CG(K)| is 1 or 2. If |G/CG(K)| = 2, then K is a
proper subgroup of CG(K), and so 1 6= CG(K)/K E G/K ∼= L. This implies
that G = CG(K), which is a contradiction. Therefore, |G/CG(K)| = 1. Then
K 6 Z(G), that is to say, G is a central extension of Z3 by L. If G splits over K,
then G is isomorphic to Z3×L, otherwise, G is isomorphic to Z3 ·L (non-split).

Proposition 3.3. Let H := L : S3 where L := L3(37). If |G| = |H| and D(G) =
D(H), then G is isomorphic to one of the groups H, Z3 × (L : Z2), Z3 · (L : Z2)
(non-split), (Z3 × L) · Z2 and (Z3 : L) · Z2.
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Proof. According to Table 1, we have that |G| = 26 · 35 · 7 · 19 · 373 · 67 and
D(G) = (3, 5, 2, 2, 2, 2). Therefore, the prime graph Γ(G) is the graph as in Figure
1, where {a, b, c} forms an independent set in Γ(G), and so α(G) > 3. Moreover,
α(2, G) > 2 as deg(2) = 3 and |π(G)| = 6. Now we apply Lemma 2.1 and conclude
that there is a �nite non-abelian simple group S such that S 6 G/K 6 Aut(S),
where K is a maximal normal solvable subgroup of G. Again, by the same manner
as in Proposition 3.1, we have that 67 6∈ π(K), and hence π(K) ⊆ {2, 3, 7, 19, 37}.
By Lemma 2.2, 67 /∈ π(Out(S)), and since 67 /∈ π(K) ∪ π(Out(S)), it follows that
67 ∈ π(S), and so by [14, Table 1], S is isomorphic to L. Thus L 6 G/K 6 Aut(L)
implying that |K| ∈ {1, 2, 3, 6}. Hence K is isomorphic to one of the groups 1, Z2,
Z3, Z6 and S3.

If K = 1, then since L 6 G/K 6 Aut(L) and |G| = 6|L|, we conclude that G
is isomorphic to L : S3.

If K is isomorphic to Z2, then K is central in G, and so deg(2) = 5 in Γ(G),
which is a contradiction.

If K is isomorphic to Z3, then K 6 CG(K) and G/K ∼= L : Z2, and so
G/CG(K) is isomorphic to a subgroup of Aut(K) ∼= Z2. Thus, |G/CG(K)| = 1 or
2. If |G/CG(K)| = 1, then K 6 Z(G), that is to say, G is a central extension of
Z3 by L : Z2. This implies that G is isomorphic to Z3 × (L : Z2) or Z3 · (L : Z2)
(non-split). If |G/CG(K)| = 2, then K is a proper subgroup of CG(K), and so
CG(K)/K is a nontrivial normal subgroup of G/K ∼= L : Z2. Thus CG(K)/K ∼=
L. Since K 6 Z(CG(K)), it follows that CG(K) is a central extension of K by
L, and hence CG(K) is isomorphic to Z3 ×L or Z3 ·L (non-split). Therefore G is
isomorphic to (Z3 × L) · Z2 or (Z3 · L) · Z2.

If K is isomorphic to Z6, then K 6 CG(K) and G/K ∼= L. Since G/CG(K)
is isomorphic to a subgroup of Z2, it follows that |G/CG(K)| = 1 or 2. If
|G/CG(K)| = 1, then K 6 Z(G), and so deg(2) = 5, which is a contradic-
tion. Thus |G/CG(K)| = 2. Since K is a proper subgroup of CG(K), the group
CG(K)/K is a nontrivial normal subgroup of G/K ∼= L, which is a contradiction.

If K is isomorphic to S3, then K ∩ CG(K) = 1 and G/K ∼= L. Note that
G/CG(K) is isomorphic to a subgroup of Aut(K) ∼= S3. Then CG(K) 6= 1.
Since CG(K) ∼= CG(K)K/K is a non-identity normal subgroup of G/K ∼= L, we
conclude that G = CG(K)K, where CG(K) ∼= L and K ∩ CG(K) = 1. This
implies that G is isomorphic to K ×CG(K) ∼= S3 × L, however this case can be
ruled out as deg(2) = 3.

Proof of Theorem 1.1. The proof of Theorem 1.1 follows immediately from Propo-
sition 3.4 in [4] and Propositions 3.1�3.3.
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