
Quasigroups and Related Systems 25 (2017), 189− 200

Unit and unitary Cayley graphs

for the ring of Gaussian integers modulo n

Ali Bahrami and Reza Jahani-Nezhad

Abstract. Let Zn[i] be the ring of Gaussian integers modulo n and G(Zn[i]) and GZn[i] be the

unit graph and the unitary Cayley graph of Zn[i], respectively. In this paper, we study G(Zn[i])

and GZn[i]. Among many results, it is shown that for each positive integer n, the graphs G(Zn[i])

and GZn[i] are Hamiltonian. We also �nd a necessary and su�cient condition for the unit and

unitary Cayley graphs of Zn[i] to be Eulerian.

1. Introduction

Finding the relationship between the algebraic structure of rings using properties
of graphs associated to them has become an interesting topic in the last years.
There are many papers on assigning a graph to a ring, see [1], [3], [4], [5], [7], [6],
[8], [10], [11], [12], [17], [19], and [20].

Let R be a commutative ring with non-zero identity. We denote by U(R),
J(R) and Z(R) the group of units of R, the Jacobson radical of R and the set of
zero divisors of R, respectively. The unitary Cayley graph of R, denoted by GR,
is the graph whose vertex set is R, and in which {a, b} is an edge if and only if
a − b ∈ U(R). The unit graph G(R) of R is the simple graph whose vertices are
elements of R and two distinct vertices a and b are adjacent if and only if a + b
in U(R) . There are many papers where these two concepts have been discussed.
See for examples [4], [8], [19], [20], [22] and [23].

The following facts are well known, see for examples Silverman (2006), [2] and
[16]. The set of all complex numbers a + ib, where a and b are integers, form an
Euclidean domain with the usual complex number operations and Euclidian norm
N(a+ib) = a2+b2. This domain will be denoted by Z[i] and will be called the ring
of Gaussian integers. Let n be a natural number and let (n) be the principal ideal
generated by n in Z[i], and let Zn = {0, 1, 2, . . . , n− 1} be the ring of integers

modulo n. Then the factor ring Z[i]
(n) is isomorphic to Zn[i], which implies that

Zn[i] is a principal ideal ring. The ring Zn[i] is called the ring of Gaussian integers

modulo n. Let p be a prime integer. Then p ≡ 1(mod 4) if and only if there are
integers a , b such that p = a2+ b2 if and only if there exists an integer c such that

2010 Mathematics Subject Classi�cation: 13A99, 16U99, 05C50
Keywords: Unit graph, unitary Cayley graph, Gassian integers, girth, diameter, Eulerian
graph, Hamiltonian graph



190 A. Bahrami and R. Jahani-Nezhad

c2 ≡ −1(mod p). Moreover, if n is a natural number, then there exist integers a
and b, relatively prime to p such that pn = a2 + b2, and there exists an integer z
such that z2 ≡ −1(mod pn). It was shown that a+ ib is a unit in Zn[i] if and only

if a2 + b
2
is a unit in Zn. If n =

∏s
j=1 a

kj
j is the prime power decomposition of

the positive integer n, then Zn[i] is the direct product of the rings Z
a
kj
j

[i]. Also

if m = tk for some prime t and positive integer k, then Zm[i] is local ring if and
only if t = 2 or t ≡ 3(mod 4).

In this article, some properties of the graphs G(Zn[i]) and GZn[i] are studied.
The diameter, the girth, chromatic number, clique number and independence num-
ber, in terms of n, are found. Moreover, we prove that for each n > 1, the graphs
G(Zn[i]) and GZn[i] are Hamiltonian. We also �nd a necessary and su�cient
condition for the unit and unitary Cayley graphs of Zn[i] to be Eulerian.

A local ring is a ring with exactly one maximal ideal. A local ring with
�nitely many maximal ideals is called semi− local ring. For classical theorem and
notations in commutative algebra, the interested reader is referred to [9].

Throughout this paper all graphs are simple (with no loop and multiple edges).
For a graph G, V (G) and E(G) denote the vertex set and edge set of G respectively.
The set of vertices adjacent to a vertex v in the graph G is denoted by N(v). The
degree deg(v) of a vertex v in the graph G is the number of edges of G incident
with v. The graph G is called k−regular if all vertices of G have degree k, where k
is a �xed positive integer. A walk (of length k) in a graph G between two vertices
a, b is an alternating sequence a = v0, e1, v1, e2, . . . , ek, vk = b of vertices and edges
in G, denoted by

a = v0 −→ v1 −→ . . . −→ vk = b,

such that ei = {vi−1, vi} for all 1 6 i 6 k. If the vertices in a walk are all distinct,
it de�nes a path in G. A trail between two vertices a, b is a walk between a and
b without repeated vertices. A cycle of a graph is a path such that the start and
end vertices are the same. A Hamiltonian path (cycle) in G is a path (cycle) in G
that visits every vertex exactly once. A graph is called Hamitonian if it contains
a Hamiltonian cycle. Also a graph G is called connected if for any vertices a and
b of a graph G there is a path between a and b. A connected graph G is called
Eulerian if there exists a closed trail containing every edge of G. For distinct
vertices a and b of a graph G, let d(a, b) be the length of a shortest path from a
to b; if no such paths exists, we set d(a, b) =∞. The diameter of G is de�ned as

diam(G) = sup{d(a, b); a, b ∈ V (G)}.

The girth ofG, denoted by gr(G) is the length of a shortest cycle inG, (gr(G) =∞
if G contain no cycle ). For a positive integer r, a graph is called r − partite if
the vertex set admits a partition into r classes such that vertices in the same
partition class are not adjacent. A r−partite graph is called complete if every
two vertices in di�erent parts are adjacent. The complete 2− partite graph (also
called the complete bipartite graph) with exactly two partitions of size n and m,
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is denoted by Kn,m. A graph G is called a complete graph if every two distinct
vertices in G are adjacent. A complete graph with n vertices is denoted by Kn.
A clique of a graph is a complete subgraph. A maximum clique is a clique of the
largest possible size in a given graph. the clique number, ω(G) of a graph G is
the number of vertices in a maximum clique in G. An independent set in a graph
is a set of pairwise non-adjacent vertices. The independence number, α(G) of a
graph G is the size of a largest independet set of G. A subset M of the edge set
of G, is called a matching in G if no two of the edges in M are adjacent. In other
words, if for any two edges e and f in M , both the end vertices of e are di�erent
from the end vertices of f . A perfect matching of a graph G is a matching of

G containing
n

2
edges, the largest possible, meaning perfect matchings are only

possible on graphs with an even number of vertices. A perfect matching sometimes
called a complete matching or 1− factor. A coloring of a graph is a labeling of
the vertices with colors such that no two adjacent vertices have the same color.
The smallest number of colors need to color the vertices of a graph G is called its
chromatic number, and denoted by χ(G). Let G1 and G2 be two vertex-disjoint
graphs. The tensor product or Kronecker product of G1 and G2 is denoted by
G1 ⊗G2. That is, V (G1 ⊗G2) = V (G1)× V (G2); two distinct vertices (a,b) and
(c,d) are adjacent if and only if a is adjacent to c in G1 and b adjacent to d in G2.
We refer the reader to [13] and [15] for general references on graph theory.

2. The unit and unitary Cayley graphs for Ztn[i]
In this section we �nd the diameter and girth of the unit and unitary Cayley
graphs of Ztn [i] where t is a prime integer. Three cases are considered: When
t = 2, t ≡ 3(mod 4) or t ≡ 1(mod 4). In this article p and q will denote prime
integers such that p ≡ 1(mod 4) and q ≡ 3(mod 4).

2.1. The unit and unitary Cayley graphs for Z2n [i]

Proposition 2.1. [4, Proposition 2.2]

(a) Let R be a ring. Then GR is a regular graph of degree |U(R)|.

(b) Let S be a local ring with mamximal ideal m. Then GS is a complete muti-

partite graph whose partite sets are the cosets of m in S. In paticular, GS is

a compelete graph if and only if S is a �eld.

Lemma 2.2. For each positive integer n, GZ2n [i] is a complete bipartite graph

K22n−1,22n−1 .

Proof. For each positive integer n, Z2n [i] is a local ring with its only maximal ideal
m = (1 + 1i) and the number of units in Z2n[i] is 22n−1, see [2] and [14]. Since

| Z2n [i]

(1+1i)
| = 2, by Proposition 2.1, we conclude that GZ2n [i] is a complete bipartite

graph K22n−1,22n−1 .
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Lemma 2.3. [20, Lemma 4.1] Let R be a �nite ring. For j ∈ R, the following

statements are equivalent:

(a) j ∈ JR

(b) j + u ∈ U(R) for any u ∈ U(R).

Theorem 2.4. [19, Theorem 2.6] Let R be a �nite ring. Then the following

statements hold.

(a) If (R,m) is a local ring of even order, then G(R) ∼= GR.

(b) If R is a ring of odd order, then G(R) � GR

Proposition 2.5. [19, Corollary 2.3] Let R be a �nite ring. Then 2 ∈ U(R) if

and only if |R| is odd.

Theorem 2.6. Let R be a �nite ring and R ∼= R1 × R2 × · · · × Rn. Then the

following statements are equivalent:

(i) 2 ∈ J(R).

(ii) GR = G(R).

(iii) For every i with 1 6 i 6 n, |Ri| is even.

Proof. Let 2 ∈ J(R) and a, b be two distict elements of R. Since

(a− b) + (a+ b) = 2a.

By Lemma 2.3,

a− b ∈ U(R) if and only if a+ b ∈ U(R).

This means that GR = G(R).
Now supoose that GR = G(R) and R ∼= R1 × R2 × · · · × Rn. If n = 1 then

by Proposition 2.5, we deduce that |R| is even. Now assume that n > 1. Since
GR = G(R), we have for every i with 1 6 i 6 n, GRi = G(Ri). Hence by the �rst
case, for every i with 1 6 i 6 n, |Ri| is even.

Finally, if for every i with 1 6 i 6 n, |Ri| be even. Then by Proposition 2.5, we
have 2 /∈ U(Ri); 1 6 i 6 n. This implies that 2 ∈ J(Ri), and therefore 2 ∈ J(R).
This completes the proof.

Corollary 2.7. For each positive integer n, GZ2n [i] = G(Z2n [i]).

Proof. Since |Z2n [i]| is even, by Proposition 2.5, we have 2 /∈ U(Z2n [i]). Therefore
2 ∈ J(Z2n [i]). By using Theorem 2.6 we conclude that GZ2n [i] = G(Z2n [i]).

Corollary 2.8. Let n be a positive integer. Then the following statements hold:

(i) diam(GZ2n [i]) = diam(G(Z2n [i])) = 2
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(ii) gr(GZ2n [i]) = gr(G(Z2n [i])) = 4.

Proof. For each positive integer n, GZ2n
= G(Z2n [i]) is a complete bipartite graph

with |Z2n [i]| ≥ 4, Hence

diam(GZ2n [i]) = diam(G(Z2n [i])) = 2

and

gr(GZ2n [i]) = gr(G(Z2n [i])) = 4.

2.2. The unit and unitary Cayley graphs for Zqn[i], q ≡ 3(mod4)

Theorem 2.9. Let n be a positive integer. Then the following statements hold:

(i) GZqn [i] is a complete q2− partite graph.

(ii) GZqn [i] � G(Zqn [i])

Proof. If q ≡ 3(mod 4), then Zq[i] is a �eld with q2 elements see [2]. By Proposition

2.1, GZq [i] is a complete graph with q2 vertices. If n > 1, then Zqn[i] ∼= Z[i]
(qn) is a

local ring with maximal ideal m = (q) see [2]. Also, the number of units in Zqn [i]
is q2n − q2n−2, see [14]. Clearly, |Zqn [i]m | = q2. Hence by proposition 2.1, GZqn [i] is

a complete q2− partite graph.
Since |Zqn [i]| is odd, by Theorem 2.4, GZqn [i] � G(Zqn [i])

Corollary 2.10. For each positive integer n, the following statements hold:

(i) diam(GZqn[i]
=

{
1 for n = 1
2 for n > 1

.

(ii) diam(G(Zqn[i])) = 2.

(iii) gr(GZqn[i]
) = gr(G(Zqn [i])) = 3.

Proof. Let n = 1, then G(GZq [i]) is a complete graph with q2 vertices. This implies
that diam(GZq [i]) = 1 and gr(GZq [i]) = 3. Also in this case G(Zq[i]) is a complete
q2+1
2 − partite graph. Thus

diam(G(Zq[i])) = 2 and gr(G(Zq[i])) = 3.

Now suppose that n > 1. In this case, GZqn [i] is a complete q2− partite graph.
Therefore,

diam(GZqn [i]) = 2 and gr(GZqn [i]) = 3.

Since, G(
Zqn [i]
(q)

) is a complete q2+1
2 − partite graph, we obtain that

diam(G(Zqn[i])) = 2 and gr(G(Zqn[i])) = 3.
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2.3. The unit and unitary Cayley graphs for Zpn[i], p ≡ 1(mod4)

Theorem 2.11. Let n be a positive integer. Then the following statements hold:

(i) diam(GZpn [i]) = diam(G(Zpn [i])) = 2.

(ii) gr(GZpn [i]) = gr(G(Zpn [i])) = 3.

Proof. Let p be a prime integer that is congruent to 1 modulo 4. Then there exist
integer numbers a, b such that

p = a2 + b2 = (a+ ib)(a− ib)

and

Zp[i] ∼=
Z[i]
(p)
∼= (

Z[i]
(a+ ib)

)× (
Z[i]

(a− ib)
).

Also the ideals (a + ib) and (a − ib) are the only maximal ideals in Zp[i] see [2].
The number of units in Zp[i] is (p− 1)2, see [14]. By [19, Theorem 3.5], we have

diam(GZpn [i]) = diam(G(Zpn [i])) = 2.

On the other hand, in view of the proof of [8, Proposition 5.10] and [4, Theorem3.2],
we obtain

gr(GZpn [i]) = gr(G(Zpn [i])) = 3.

To investigate the more general case, let p ≡ 1(mod 4), n > 1. By an argoment
similar to that above, we conclude that

Zpn [i] ∼=
Z[i]
(pn)

∼= (
Z[i]

((a+ ib)n)
)× (

Z[i]
((a− ib)n)

) ∼= Zpn × Zpn .

The number of units in Zpn [i] is (pn−pn−1)2, see [14]. Note that, Zpn is a local ring

with only maximal ideal, m = (p), and hence |Zp
n

m
| = p. Hence by [19, Theorem

3.5], we have that

diam(GZpn [i]) = diam(G(Zpn [i])) = 2.

On the other hand, in view of the proof of [8, Proposition 5.10] and [4, Theorem3.2],
we obtain gr(GZpn [i]) = gr(G(Zpn [i])) = 3.

3. The unit and unitary Cayley graphs for Zn[i]
In this section, the integers qj and ps are used implicitly to denote primes congruent
to 3 modulo 4 and primes congruent to 1 modulo 4 respectively. The general case
is now investigated.
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3.1. Diameter and girth for the graphs GZn[i] and G(Zn[i])

Now we �nd the diameter and girth of the unit and unitary Cayley graphs of
G(Zn[i]) where n > 1 is an integer.

Remark 3.1. If R is a �nite commutative ring, then R ∼= R1 × R2 × · · · × Rt,
where each Ri is a �nite commutative local ring with maximal ideal mi by [9,
Theorem 8.7]. This decomposition is unique up to permutation of factors. Since
(u1, . . . , ut) is a unit of R if and only if each ui is a unit in Ri, we see immediately
that

GR ∼= GR1 ⊗GR2 · · · ⊗GRt and G(R) ∼= G(R1)⊗G(R2) · · · ⊗G(Rt)

We denote by Ki the (�nite) residue �eld
Ri
mi

and fi = |Ki|. We also assume

(after appropriate permutation of factors) that f1 6 f2 6 . . . 6 ft.

Remark 3.2. If n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s is the prime power decomposition

of the positive integer n, then Zn[i] is the direct product of the rings

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i].

Also the number of units in Zn[i] is

22k−1 ×
∏m
j=1(q

2αj
j − q2αj−2

j )×
∏l
s=1(p

βs
s − pβs−1

s )2 see [2] and [14].

Theorem 3.3. Let n > 1 be an integer with at least two distinct prime factors.

Then diam(GZn[i]) = diam(G(Zn[i])) =
{

2 for 2 - n,
3 for 2 |n.

Proof. Let n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s . By Remark 3.2,

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i].

This shows that, Zn[i] is isomorphic to a direct product of �nite local rings, Ri

such that for every i, |Ri
mi
| = 2 or q2j or ps. Since n > 1 is an integer with at least

two distinct prime factors, we have J(Zn[i]) 6= {0}.
By [4, Theorem 3.1], we conclude that

diam(GZn[i]) =

{
2 for 2 - n,
3 for 2 |n.

On the other hand, by [8, Theorem 5.7] we have

diam(G(Zn[i])) =
{

2 for 2 - n,
3 for 2 |n.

Theorem 3.4. Let n > 1 be an integer with at least two distinct prime factors.

Then
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gr(GZn[i]) =

{
4 for 2 - n
3 for 2 |n

and

gr(G(Zn[i])) ∈ {3, 4}.

Proof. By an argoment similar to that above, we conclude that

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i].

Thus, by [4, Theorem 3.2], we obtain

gr(GZn[i]) =

{
4 for 2 - n,
3 for 2 |n.

On the other hand, J(Zn[i]) 6= {0}. Thus, in view of the proof of [8, Theorem
5.10], we have gr(G(Zn[i])) ∈ {3, 4}.

3.2. When are GZn[i] and G(Zn[i]) Hamiltonian or Eulerian?

In the following, we prove that for each integer n > 1, the graphs G(Zn[i]) and
GZn[i] are Hamiltonian

Theorem 3.5. For each integer n > 1, the graphs G(Zn[i]) and GZn[i] are Hami-

tonian.

Proof. Let n > 1 be an integer. By Corollary 2.10, Corollary 2.8, Theorem 2.11
and Theorem 3.3, the graphs , G(Zn[i]) and GZn[i] are connected. Thus by [23,
Theorem 2.1], G(Zn[i]) is Hamiltonian graph. On the other hand, by [21, Lemma
4], we conclude that GZn[i] is Hamiltonian graph.

Now, we are going to �nd a necessary and su�cient condition for G(Zn[i]) and
GZn[i] to be Eulerian. we recall the following well-known propossition.

Proposition 3.6. A connected graph G is Eulerian if and only if the degree of

each vertex of G is even.

Theorem 3.7. Let n > 1 be an integer. Then the following statements hold:

(i) The graph G(Zn[i]) is Eulerian if and only if 2 |n.

(ii) The graph GZn[i] is Eulerian if and only if 2 |n.

Proof. First Suppose that G(Zn[i]) and GZn[i] are Eulerian. Since these graphs
are connected, by Propossition 3.6 we deduce that the degree of each vertex of
G(Zn[i]) and GZn[i] are even. On the other hand

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i]



Unit and unitary Cayley graphs 197

and so

|U(Zn[i])| = 22k−1 ×
∏m
j=1(q

2αj
j − q2αj−2

j )×
∏l
s=1(p

βs
s − pβs−1

s )2.

Since GZn[i] and G(Zn[i]) are |U(Zn[i])|−regular graph by Proposition 2.1, and [8,
Proposition 2.4], we deduce that Zn[i] has a direct factor of the form Z2k [i], and
so 2 |n. Conversely, suppose that 2 |n. Thus |Zn[i)| is even. Hence by Proposition
2.5, 2 /∈ U(Zn[i]). On the other hand, GZn[i] and G(Zn[i]) are connected and
|U(Zn[i])|−regular graphs by Proposition 2.1 and [8, Proposition 2.4]. This means
that

|U(Zn[i])| = 22k−1 ×
∏m
j=1(q

2αj
j − q2αj−2

j )×
∏l
s=1(p

βs
s − pβs−1

s )2

is even and so the degree of each vertex of GZn[i] and G(Zn[i]) are even, and
therefore these graphs are Eulirian.

3.3. Some graph invariants of GZn[i] and G(Zn[i])

In the following, we study chromatic, clique and independence numbers of the
Graphs GZn[i] and G(Zn[i]).

Theorem 3.8. Let n > 1 be an integer and n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s .

(i) If 2 |n, then χ(GZn[i]) = ω(GZn[i]) = 2 and α(GZn[i]) =
n2

2
.

(ii) If 2 - n, then
χ(GZn[i]) = ω(GZn[i]) = min{ps, q2j | 1 6 s 6 l, 1 6 j 6 m, ps |n, qj |n}

and

α(GZn[i]) =
n2

min{ps, q2j | 1 6 s 6 l, 1 6 j 6 m, ps |n, qj |n}
.

Proof. Let 2 |n, and k, be the biggest positive integer such that 2k |n. Since

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i],

thus Zn[i] has a direct factor of the form Z2k [i]. Since |
Z2k [i]

m
| = 2, by [4, Propo-

sition 6.1], we conclude that χ(GZn[i]) = ω(GZn[i]) = 2 and α(GZn[i]) =
n2

2
.

Now suppose that 2 - n. This yields that Zn[i] is isomorphic to a direct product of

�nite local rings, Ri such that for every i, |Ri
mi
| = q2j or ps. Thus by [4, Proposition

6.1], we have

χ(GZn[i]) = ω(GZn[i]) = min{ps, q2j | 1 6 s 6 l, 1 6 j 6 m, ps |n, qj |n}

and
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α(GZn[i]) =
n2

min{ps, q2j | 1 6 s 6 l, 1 6 j 6 m, ps |n, qj |n}
.

Proposition 3.9. [13, Corollary 16.6] Every nonempty regular bipartite graph has

a perfect matching

Lemma 3.10. [18, Lemma 2.3] If G is a bipartite graph with a perfect matching

and H is a Hamiltonian graph, then α(G⊗H) =
|V (G)| × |V (H)|

2
.

Theorem 3.11. Let n > 1 be an integer and n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s .

(i) If 2 |n, then χ(G(Zn[i])) = ω(G(Zn[i])) = 2 and α(G(Zn[i])) =
n2

2

(ii) If 2 - n, then

χ(G(Zn[i]))=ω(G(Zn[i]))=
1

2m+l
×
m∏
j=1

(q
2αj
j −q

2αj−2
j )×

l∏
s=1

(pβss −pβs−1
s )2+m+2l

and α(G(Zn[i])) 6
n2

2
.

Proof. Let n = 2k ×
∏m
j=1 q

αj
j ×

∏l
s=1 p

βs
s . Then

Zn[i] ∼= Z2k [i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i].

Assume that 2 |n. Then by Proposition 2.5, 2 /∈ U(Zn[i]). Hence, in view of the
proof of [22, Theorem 2.2], we have

χ(G(Zn[i])) = ω(G(Zn[i])) = 2.

Since 2 |n, Zn[i] has a direct factor of the form Z2k [i]. Moreover, G(Z2k [i]) is
a nonempty regular graph. Thus, by Proposition 3.9 G(Z2k [i]) has a perfect

matching. On the otherhand, by Theorem 3.5, G(
∏m
j=1 Zqαjj [i] ×

∏l
s=1 Zpβss [i])

is Hamiltonian graph. Therefore, by Lemma 3.10,

α(G(Zn[i])) =
n2

2
.

Now suppose that 2 - n. Thus 2 ∈ U(Zn[i]). By an argoment similar to that
above, we conclude that

χ(G(Zn[i])) = ω(G(Zn[i])) =
1

2m+l
×

m∏
j=1

(q
2αj
j −q2αj−2

j )×
l∏

s=1

(pβss −pβs−1
s )2+m+2l.

Let n =
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i]. Then

Zn[i] ∼=
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i]

and so we have
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Z2[i]× Zn[i] ∼= Z2[i]×
∏m
j=1 Zqjαj [i]×

∏l
s=1 Zpβss [i].

Thus,

α(G(Z2[i]× Zn[i])) ∼= α(G(Z2[i]×
∏m
j=1 Zqαjj [i]×

∏l
s=1 Zpβss [i])).

Now by part (i), we coclude that

α(G(Z2[i]× Zn[i])) = 2n2.

On the other hand,

α(G(Z2[i]× Zn[i])) ≥ α(G(Z2[i]))× |Zn[i]| = 4× α(G(Zn[i])).

This implies that α(G(Zn[i])) 6
n2

2
.
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