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Unit and unitary Cayley graphs

for the ring of Gaussian integers modulo n

Ali Bahrami and Reza Jahani-Nezhad

Abstract. Let Zy[i] be the ring of Gaussian integers modulo n and G(Zx[i]) and Gz, |; be the
unit graph and the unitary Cayley graph of Zy[i], respectively. In this paper, we study G(Zn[i])
and Gz, ;- Among many results, it is shown that for each positive integer n, the graphs G(Zn [z])
and Gz, ;) are Hamiltonian. We also find a necessary and sufficient condition for the unit and

unitary Cayley graphs of Zy[i] to be Eulerian.

1. Introduction

Finding the relationship between the algebraic structure of rings using properties
of graphs associated to them has become an interesting topic in the last years.
There are many papers on assigning a graph to a ring, see [1], [3], [4], [5], [7], [6],
[8], [10], [11], [12], [17], [19], and [20].

Let R be a commutative ring with non-zero identity. We denote by U(R),
J(R) and Z(R) the group of units of R, the Jacobson radical of R and the set of
zero divisors of R, respectively. The unitary Cayley graph of R, denoted by Gg,
is the graph whose vertex set is R, and in which {a,b} is an edge if and only if
a —b € U(R). The unit graph G(R) of R is the simple graph whose vertices are
elements of R and two distinct vertices a and b are adjacent if and only if a + b
in U(R) . There are many papers where these two concepts have been discussed.
See for examples [4], [8], [19], [20], [22] and [23].

The following facts are well known, see for examples Silverman (2006), [2] and
[16]. The set of all complex numbers a + ib, where a and b are integers, form an
Euclidean domain with the usual complex number operations and Euclidian norm
N(a+ib) = a®+b2. This domain will be denoted by Z[i] and will be called the ring
of Gaussian integers. Let n be a natural number and let (n) be the principal ideal
generated by n in Z[i], and let Z, = {0,1,2,...,n — 1} be the ring of integers
modulo n. Then the factor ring %i)] is isomorphic to Z,[i], which implies that
Zy 7] is a principal ideal ring. The ring Z,[7] is called the ring of Gaussian integers
modulo n. Let p be a prime integer. Then p = 1(mod 4) if and only if there are
integers a , b such that p = a? +b? if and only if there exists an integer c such that
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c? = —1(mod p). Moreover, if n is a natural number, then there exist integers a

and b, relatively prime to p such that p” = a® + bz,iand there exists an integer z
such that 22 = —1(mod p"). It was shown that @+ ib is a unit in Z,[4] if and only

. 72 . o . . . s
if @22+ b is a unit in Z,. If n = szl af’ is the prime power decomposition of

the positive integer n, then Z,i] is the direct product of the rings Z x; [i]. Also
if m = t* for some prime ¢ and positive integer k, then Z,,[i] is local ring if and
only if t = 2 or t = 3(mod 4).

In this article, some properties of the graphs G(Z,[i]) and Gz, [; are studied.
The diameter, the girth, chromatic number, clique number and independence num-
ber, in terms of n, are found. Moreover, we prove that for each n > 1, the graphs
G(Zy[i]) and Gz, are Hamiltonian. We also find a necessary and sufficient
condition for the unit and unitary Cayley graphs of Z,[i] to be Eulerian.

A local ring is a ring with exactly one maximal ideal. A local ring with
finitely many maximal ideals is called semi — local ring. For classical theorem and
notations in commutative algebra, the interested reader is referred to [9].

Throughout this paper all graphs are simple (with no loop and multiple edges).
For a graph G, V(G) and E(G) denote the vertex set and edge set of G respectively.
The set of vertices adjacent to a vertex v in the graph G is denoted by N(v). The
degree deg(v) of a vertex v in the graph G is the number of edges of G incident
with v. The graph G is called k —regular if all vertices of G have degree k, where k
is a fixed positive integer. A walk (of length k) in a graph G between two vertices
a, b is an alternating sequence a = vg, €1, v1, €a, .. ., €k, Vg = b of vertices and edges
in G, denoted by

a=v9g — v —> ... — Vg =D,

such that e; = {v;_1,v;} for all 1 < i < k. If the vertices in a walk are all distinct,
it defines a path in G. A trail between two vertices a, b is a walk between a and
b without repeated vertices. A cycle of a graph is a path such that the start and
end vertices are the same. A Hamiltonian path (cycle) in G is a path (cycle) in G
that visits every vertex exactly once. A graph is called Hamitonian if it contains
a Hamiltonian cycle. Also a graph G is called connected if for any vertices a and
b of a graph G there is a path between a and b. A connected graph G is called
Eulerian if there exists a closed trail containing every edge of G. For distinct
vertices a and b of a graph G, let d(a,b) be the length of a shortest path from a
to b; if no such paths exists, we set d(a,b) = co. The diameter of G is defined as

diam(G) = sup{d(a,b);a,b € V(GQ)}.

The girth of G, denoted by gr(G) is the length of a shortest cycle in G, (¢gr(G) =
if G contain no cycle ). For a positive integer r, a graph is called r — partite if
the vertex set admits a partition into r classes such that vertices in the same
partition class are not adjacent. A r—partite graph is called complete if every
two vertices in different parts are adjacent. The complete 2 — partite graph (also
called the complete bipartite graph) with exactly two partitions of size n and m,
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is denoted by K, .. A graph G is called a complete graph if every two distinct
vertices in G are adjacent. A complete graph with n vertices is denoted by K.
A clique of a graph is a complete subgraph. A maximum clique is a clique of the
largest possible size in a given graph. the cligue number, w(G) of a graph G is
the number of vertices in a maximum clique in G. An independent set in a graph
is a set of pairwise non-adjacent vertices. The independence number, «(G) of a
graph G is the size of a largest independet set of G. A subset M of the edge set
of G, is called a matching in G if no two of the edges in M are adjacent. In other
words, if for any two edges e and f in M, both the end vertices of e are different
from the end vertices of f. A perfect matching of a graph G is a matching of
G containing n edges, the largest possible, meaning perfect matchings are only

possible on graphs with an even number of vertices. A perfect matching sometimes
called a complete matching or 1 — factor. A coloring of a graph is a labeling of
the vertices with colors such that no two adjacent vertices have the same color.
The smallest number of colors need to color the vertices of a graph G is called its
chromatic number, and denoted by x(G). Let G; and G5 be two vertex-disjoint
graphs. The tensor product or Kronecker product of G; and Gs is denoted by
G1 ® Gy. That is, V(G; ® G3) = V(G1) x V(G>); two distinct vertices (a,b) and
(c,d) are adjacent if and only if a is adjacent to ¢ in Gy and b adjacent to d in Gs.
We refer the reader to [13] and [15] for general references on graph theory.

2. The unit and unitary Cayley graphs for Z;.|i

In this section we find the diameter and girth of the unit and unitary Cayley
graphs of Z[i] where ¢ is a prime integer. Three cases are considered: When
t=2,t=3(mod 4) or t = 1(mod 4). In this article p and ¢ will denote prime
integers such that p = 1(mod 4) and ¢ = 3(mod 4).

2.1. The unit and unitary Cayley graphs for Z.|i]
Proposition 2.1. [4, Proposition 2.2]
(a) Let R be a ring. Then G is a regular graph of degree |U(R)]|.

(b) Let S be a local ring with mamazimal ideal m. Then Gg is a complete muti-
partite graph whose partite sets are the cosets of m in S. In paticular, Gg is
a compelete graph if and only if S is a field.

Lemma 2.2. For each positive integer n, Gz,,[; is a complete bipartite graph
K22n71’22n—1.

Proof. For each positive integer n, Zon [i] is a local ring with its only maximal ideal
m = (I +1i) and the number of units in Zonp;) is 22771, see [2] and [14]. Since

Zoyn [4]
|(T2+Ti)
graph Koan—1 g2n-1. O

| = 2, by Proposition 2.1, we conclude that Gz,,[; is a complete bipartite
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Lemma 2.3. [20, Lemma 4.1] Let R be a finite ring. For j € R, the following
statements are equivalent:

(a) j € Jr
(b) j+ueU(R) for any u € U(R).

Theorem 2.4. [19, Theorem 2.6] Let R be a finite ring. Then the following
statements hold.

(a) If (R,m) is a local ring of even order, then G(R) = Gp.
(b) If R is a ring of odd order, then G(R) 2 Ggr

Proposition 2.5. [19, Corollary 2.3] Let R be a finite ring. Then 2 € U(R) if
and only if |R| is odd.

Theorem 2.6. Let R be a finite ring and R =2 Ry X Ry X -+ X R,. Then the
following statements are equivalent:

(1) 2 € J(R).
(i1) Gr = G(R).
(#i7) For every i with 1 <i < n, |R;| is even.
Proof. Let 2 € J(R) and a, b be two distict elements of R. Since
(a—b)+ (a+b) =2a.
By Lemma 2.3,
a—beU(R) ifand onlyif a+becU(R).

This means that Gr = G(R).

Now supoose that Gg = G(R) and R = Ry X Ry X -+ x R,,. If n = 1 then
by Proposition 2.5, we deduce that |R| is even. Now assume that n > 1. Since
Gr = G(R), we have for every i with 1 <7 < n, Gr, = G(R;). Hence by the first
case, for every i with 1 < i < n, |R;| is even.

Finally, if for every ¢ with 1 < i < n, |R;| be even. Then by Proposition 2.5, we
have 2 ¢ U(R;); 1 <4 < n. This implies that 2 € J(R;), and therefore 2 € J(R).
This completes the proof. O

Corollary 2.7. For each positive integer n, Gz,,.[;] = G(Zan[i]).

Proof. Since |Zan[i]] is even, by Proposition 2.5, we have 2 ¢ U(Zx[i]). Therefore
2 € J(Zan[i]). By using Theorem 2.6 we conclude that Gz,,.[; = G(Zz»[i]). O

Corollary 2.8. Let n be a positive integer. Then the following statements hold:
(i) diam(Gz,,p)) = diam(G(Zan[i])) = 2



Unit and unitary Cayley graphs 193

(i) gr(Gzonpiy) = g7(G(Zan[i])) = 4.

Proof. For each positive integer n, Gz,, = G(Zax[i]) is a complete bipartite graph
with |Zan [i]| > 4, Hence

diam(Gz,,.1;)) = diam(G(Zan|i])) = 2
and

97(Gzyntiy) = gr(G(Zan i) = 4. -

2.2. The unit and unitary Cayley graphs for Z.[i], ¢ = 3(mod4)
Theorem 2.9. Let n be a positive integer. Then the following statements hold:
(i) Gz,.19 s a complete > partite graph.
(1) Gznpi) 2 G(Zgnli])

Proof. 1If ¢ = 3(mod 4), then Z,[i] is a field with ¢? elements see [2]. By Proposition
2.1, Gz, is a complete graph with q? vertices. If n > 1, then Lgnii) = é[nl]) is a
local ring with maximal ideal m = (g) see [2]. Also, the number of units in Zg»[4]

is ¢®" — ¢®" 2, see [14]. Clearly, |Z%lm\ = ¢. Hence by proposition 2.1, Gz, nli 18

a complete ¢?— partite graph.
Since |Zgn[i]| is odd, by Theorem 2.4, Gz, ,, 15y Z G(Zqgn[i]) O

Corollary 2.10. For each positive integer n, the following statements hold:

1 for n=1

() diam(Gz,n, _{ 2 for n>1"

(’LZ) dzam(G(an[l])) =2.

(i11) gr(Gzny) = gr(G(Zgnli])) = 3.
Proof. Let n = 1, then G(Gz, ;) is a complete graph with q? vertices. This implies
that diam(Gz,[;)) = 1 and gr(Gz, ;) = 3. Also in this case G(Z,[i]) is a complete

#— partite graph. Thus
diam(G(Z4[i])) = 2 and gr(G(Z4[i])) = 3.

Now suppose that n > 1. In this case, Gz, [; is a complete ¢*>— partite graph.
Therefore,

diam(Gy,,.15) = 2 and gr(Gz,.[) = 3.
Zgn i)
q)

Since, G( ) is a complete #— partite graph, we obtain that

diam (G (Zgnp)) = 2 and gr(G(Zgnpy)) = 3. O
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2.3. The unit and unitary Cayley graphs for Z,.[i],p = 1(mod4)
Theorem 2.11. Let n be a positive integer. Then the following statements hold:
(1) diam(Gan i) = diam(G(Zyn[i])) = 2.
(#) gr(Gz,npi) = gr(G(Zpn[i])) = 3.

Proof. Let p be a prime integer that is congruent to 1 modulo 4. Then there exist
integer numbers a, b such that

p=a’+b®>=(a+ib)(a—ib)

and
0~ Ll
Zpli] = B =

Z[i)
(a +1ib)

Z]i]
(a —ib)

) < ( )-

Also the ideals (a + ib) and (a — ib) are the only maximal ideals in Z,[i] see [2].
The number of units in Z,[i] is (p — 1)?, see [14]. By [19, Theorem 3.5], we have

diam(Gz,. ;) = diam(G(Zyni])) = 2.

On the other hand, in view of the proof of [8, Proposition 5.10] and [4, Theorem3.2],
we obtain

97(Gzynp)) = gr(G(Zp-[1])) = 3.

To investigate the more general case, let p = 1(mod 4), n > 1. By an argoment
similar to that above, we conclude that

Z[i) Z[i] Z[i)
@) (a+ib)*)” “((a—ib)")
The number of units in Z,n[i] is (p" —p"~')?, see [14]. Note that, Z,~ is a local ring

an [’L] = =~ ( ) X ( ) = an X an.

Zoyn
with only maximal ideal, m = (p), and hence |%| = p. Hence by [19, Theorem
3.5], we have that

diam(Gz,,. ;) = diam(G(Zyni])) = 2.

On the other hand, in view of the proof of [8, Proposition 5.10] and [4, Theorem3.2],
we obtain gr(Gz, . (i) = gr(G(Zp[i])) = 3. O

3. The unit and unitary Cayley graphs for Z,]i]
In this section, the integers ¢; and p, are used implicitly to denote primes congruent

to 3 modulo 4 and primes congruent to 1 modulo 4 respectively. The general case
is now investigated.
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3.1. Diameter and girth for the graphs Gz, ; and G(Z,]i])

Now we find the diameter and girth of the unit and unitary Cayley graphs of
G(Zy[i]) where n > 1 is an integer.

Remark 3.1. If R is a finite commutative ring, then R & Ry X Ry X -+ X Ry,
where each R; is a finite commutative local ring with maximal ideal m; by [9,
Theorem 8.7]. This decomposition is unique up to permutation of factors. Since
(uq,...,ut) is a unit of R if and only if each w; is a unit in R;, we see immediately
that

Gr =GR, ®Gp, - ®Gg, and G(R) =2 G(R1)®G(R2) - ® G(Ry)

R
We denote by K; the (finite) residue field — and f; = |K;|. We also assume
m;
(after appropriate permutation of factors) that f1 < fo <... < fi.

Remark 3.2. If n = 2% x I, q?j X HIS:1 p?s is the prime power decomposition

of the positive integer n, then Z,|i] is the direct product of the rings
L [i] =2 Zor[i] x Hj:1 Zq;"j [i] x [Ty L. [4].
Also the number of units in Z,[i] is

_ 20 202 1 _
2R Ty (g™ = ¢ 7)) X Tamy (08 — pfo1)? see [2] and [14].
Theorem 3.3. Let n > 1 be an integer with at least two distinct prime factors.

Then diam(Gz, 1)) = diam(G(Zyi])) = { § }CZ:: ;\T;L%

Proof. Let n = 2% x [T, ¢ x T'_, p%. By Remark 3.2,
Lni] & Zor i) x [}, Zq;‘j [i] x T,y Z,5s [2].

This shows that, Z,[i] is isomorphic to a direct product of finite local rings, R;
R

such that for every i, |—| = 2 or qj2- or ps. Since n > 1 is an integer with at least
ms

two distinct prime factorls, we have J(Z,[i]) # {0}.
By [4, Theorem 3.1], we conclude that

‘ 2 for 21{n,
dwm(GZn[ﬂ){ 3 for 2|n.

On the other hand, by [8, Theorem 5.7] we have

diam(G(Z,[1])) _{ 3 igi gﬁ:’ -

Theorem 3.4. Let n > 1 be an integer with at least two distinct prime factors.
Then
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4 for 21n
gT(GZnM):{ 3 fOT‘ 2‘1/7’7,

and
gr(G(Zali])) € {3,4}.
Proof. By an argoment similar to that above, we conclude that

Znli) 22 Zoe[i] x T2, Z, i) [Tey Z,p.[d).

Thus, by [4, Theorem 3.2], we obtain

4 for 2+1n,
gr(Gan){ 3 for 2|n.

Ou the other hand, J(Z,[i]) # {0}. Thus, in view of the proof of [8, Theorem
5.10], we have gr(G(Z,[i])) € {3,4}. O
3.2. When are Gy,;) and G(Z,[i]) Hamiltonian or Eulerian?

In the following, we prove that for each integer n > 1, the graphs G(Z,[i]) and
Gz, q) are Hamiltonian

Theorem 3.5. For each integer n > 1, the graphs G(Z,[i]) and Gy, };) are Hami-
tonian.

Proof. Let n > 1 be an integer. By Corollary 2.10, Corollary 2.8, Theorem 2.11
and Theorem 3.3, the graphs ,G(Z,[i]) and Gy, [; are connected. Thus by [23,
Theorem 2.1], G(Z,[i]) is Hamiltonian graph. On the other hand, by [21, Lemma
4], we conclude that Gz, [; is Hamiltonian graph. O

Now, we are going to find a necessary and sufficient condition for G(Z,[¢]) and
Gz,.[q) to be Eulerian. we recall the following well-known propossition.

Proposition 3.6. A connected graph G is Eulerian if and only if the degree of
each vertex of G is even.

Theorem 3.7. Let n > 1 be an integer. Then the following statements hold:
(i) The graph G(Zyli]) is Eulerian if and only if 2| n.
(ii) The graph Gz, 1 is Eulerian if and only if 2|n.

Proof. First Suppose that G(Zy[i]) and Gz, [;) are Eulerian. Since these graphs
are connected, by Propossition 3.6 we deduce that the degree of each vertex of
G(Zyi]) and Gz, };) are even. On the other hand

Znli) 2= Zop [i) < [Ty 22 [ % Tl 2. ]
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and so
) _ m , 2a; 20, —2 ! _
U@ali)] = 27 5 T (6™ = ™) x Tlama (08" — 9512

Since Gy, ;) and G(Zy[i]) are |U(Zyi])|—regular graph by Proposition 2.1, and [8,
Proposition 2.4], we deduce that Z,[i] has a direct factor of the form Z,x[i], and
so 2| n. Conversely, suppose that 2| n. Thus |Z,[i)| is even. Hence by Proposition
2.5, 2 ¢ U(Zy[i]). On the other hand, Gz, ;) and G(Zy,[i]) are connected and
|U(Zy,[i])|—regular graphs by Proposition 2.1 and [8, Proposition 2.4]. This means
that

. — m 20 205 —2 l —
\U(Zn[i])| = 2%k % Hj:1(Qj —4; ) X Hs:1 (pgs _pgs 1)2

is even and so the degree of each vertex of Gz, ;) and G(Z,[i]) are even, and
therefore these graphs are Eulirian. O

3.3. Some graph invariants of Gz, and G(Z,[i])
In the following, we study chromatic, clique and independence numbers of the
Graphs Gz, [ and G(Zy[i]).
Theorem 3.8. Let n > 1 be an integer and n = 2% x H;"Zl q;-lj X Hl521 ps.
n2
(i) If 2|n, then x(Gz, ;) = w(Gz,) = 2 and a(Gz,[)) = -
(i¢) If 21 n, then
X(Gz,11) = w(Gz, 1) = min{ps,q7 | 1 <s <1, 1<j<m, psln,q|n}

and
2

a(Gg ) = — - ;
(Cz,10) min{p,,q; | 1 <s <1, 1<j<m, ps|n, gjln}

Proof. Let 2|n, and k, be the biggest positive integer such that 2% |n. Since

l

L i) & Lok [i] x ]‘[;”:1 Zq;j [i] x TTs=1 Z,. [3],
. . T Lo [4]
thus Z,[i] has a direct factor of the form Zyx[i]. Since |——| = 2, by [4, Propo-
m

n2

sition 6.1], we conclude that x(Gz, ;) = w(Gz, ;) = 2 and a(Gz,[;)) = OR
Now suppose that 2 ¢ n. This yields that Z,[i] is isomorphic to a direct product of
finite local rings, R; such that for every 1, |—Z| = qj2 or ps. Thus by [4, Proposition
m;
6.1], we have
X(Gz,1i) = w(Gz, ) = min{p,,q7 | 1 < s <1,1<j<m,ps|n,q;|n}

and
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n2

a(G i) — N =
(Gz.) min{p,,q; | 1 <s <11 <j<m,ps|n,q|n}

Proposition 3.9. [13, Corollary 16.6] Every nonempty regular bipartite graph has
a perfect matching

Lemma 3.10. [18, Lemma 2.3] If G is a bipartite graph with a perfect matching

H
and H is a Hamiltonian graph, then o(G ® H) = V(G)] ; Vi )l
Theorem 3.11. Let n > 1 be an integer and n = 2F x HJ 1qj7 X HS (Pl
2
(@) If 2|n, then x(G(Znli])) = w(G(Znli])) = 2 and o(G(Z,]i])) = %
(i¢) If 21 n, then
m l
. . ]- Qcj Qj— —
X(G(Zuli) = w(G(Znli) = g X[ [(a; "= 7)< [l )2 mt-21
7j=1 s=1
n2
and o(G(Zyli])) < ER

Proof. Let n = 2" x [, ¢}’ XHS P2, Then
q . m : J )
Lo [i] &2 Zor[i] x Hj:1 Zq;"j [i] x [Ty L. [4].

Assume that 2|n. Then by Proposition 2.5, 2 ¢ U(Z,[i]). Hence, in view of the
proof of [22, Theorem 2.2|, we have

X(G(Znli]) = w(G(Znld])) = 2.

Since 2|n, Z,[i] has a direct factor of the form Z,x[i]. Moreover, G(Zyx[i]) is
a nonempty regular graph. Thus, by Proposition 3.9 G(Z,x[i]) has a perfect
matching. On the otherhand, by Theorem 3.5, G(]_[;n:1 L5 [i] % Hi:1 Z, [i])
is Hamiltonian graph. Therefore, by Lemma 3.10, ’

Now suppose that 2 4 n. Thus 2 € U(Z,[i]). By an argoment similar to that
above, we conclude that

m l
2 2 -—2
o) (R | (Ve

s=1

and so we have
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Zoli) X Zinli) 2 Zfi] x TT5y Zigges i) % [Taey Z, - [i]-

Thus,

UG(Zali] X Zy[1])) = AG(Z2li] X TTGZ1 2,5 [i] [Toe1 Z,s. [1))-

Now by part (i), we coclude that

a(G(Zz[i] x Zyli])) = 2n2.

On the other hand,

a(G(Zeli] X Zpli))) = a(G(Z2i])) x |Znli]] = 4 x a(G(Znld]))-

(
n2

This implies that o(G(Z,[i])) < — O

5
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