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Enumeration of exponent three IP loops
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Abstract. Inverse Property Loops (IP Loops) are important algebraic structures that fall

between loops and groups. Enumerating isomorphism classes of higher order IP loops is an ar-

duous task due to enormous number of isomorphism copies. This paper describes a systematic

approach to e�ciently eliminate isomorphic copies, which reduces the time to enumerate isomor-

phism classes. Using the proposed approach, we count and enumerate exponent 3 IP loops of

order 15. To the best of our knowledge, this count is reported for the �rst time in the litera-

ture. Further, we also computationally verify and enumerate the existing results for exponent

3 IP loops of order up to 13. The results show that even after applying stringent condition of

exponent 3, a good number of isomorphism classes exist. However, when associativity property

is applied, the total number of isomorphism classes reduces drastically. This provides an insight

that instead of exponent 3 property, associativity is mainly responsible for the low population of

isomorphism classes in groups.

1. Introduction

A quasigroup is a groupoid G with a binary operation ∗ such that x ∗ a = y and
b ∗ x = y have unique solutions for each x, y ∈ G. A quasigroup is a loop if and
only if it contains an identity element e such that x ∗ e = x = e ∗x for each x ∈ G.
A loop L is called an inverse property (IP) loop if it has a two sided inverse x−1

such that x−1 ∗ (x ∗ y) = y = (y ∗ x) ∗ x−1 for each x, y ∈ L. A Steiner loop is
an IP loop of exponent 2 (x ∗ x = e or x2 = e for all x ∈ L). Also, extensively
studied Moufang loops are IP loops satisfying x ∗ (z ∗ (y ∗ z)) = ((x ∗ z) ∗ y) ∗ z.

IP loops form an important class since they represent a generalization of Steiner
loops, Moufang loops, and groups. Further, IP loops represent those groupoids
whose power sets are exactly the semi-associative relation algebras [19].

The smallest IP loop which is not a group is of order 7. But the number of
IP loops increases quickly with the increase in the order of the loop as there are
10,341 IP loops available for n = 13. The IP loops having order greater than 13
are not reported in the literature because of the huge search space. On the other
hand, the number of groups does not necessarily increase with the increase in their
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order. For example, the number of groups for any given prime order is always one.
Enumeration of very highly structured loops like Moufang loops is possible up to
comparatively high orders [30], where as less structured loops such as nilpotent
loops have not been enumerated so far for higher orders [8].

The IP loops of exponent 3 satisfy the following property: (x∗x)∗x = x∗(x∗x)
= e for all x ∈ L (i.e., x2 = x−1 ). For any order n, the IP loops of exponent
3 exists when either n ≡ 1 (mod 6) or n ≡ 3 (mod 6) [31]. Figure 1 shows an
example exponent 3 IP loop of order 15.

* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 x x2 x-1

e=0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0 0
1 1 2 0 5 7 4 9 3 11 8 14 13 6 10 12 1 2 2
2 2 0 1 7 5 3 12 4 9 6 13 8 14 11 10 2 1 1
3 3 6 8 4 0 10 2 13 1 12 11 14 7 5 9 3 4 4
4 4 8 6 0 3 13 1 12 2 14 5 10 9 7 11 4 3 3
5 5 11 10 2 1 6 0 9 14 4 12 7 13 8 3 5 6 6
6 6 4 3 14 9 0 5 11 13 7 2 1 10 12 8 6 5 5
7 7 10 12 1 2 14 13 8 0 11 6 3 5 9 4 7 8 8
8 8 3 4 11 14 12 10 0 7 13 1 9 2 6 5 8 7 7
9 9 14 13 6 12 1 11 2 5 10 0 4 8 3 7 9 10 10

10 10 5 7 13 11 8 3 14 12 0 9 6 4 2 1 10 9 9
11 11 13 5 10 8 9 14 1 6 3 7 12 0 4 2 11 12 12
12 12 7 14 9 13 2 8 10 4 5 3 0 11 1 6 12 11 11
13 13 9 11 12 10 7 4 6 3 2 8 5 1 14 0 13 14 14
14 14 12 9 8 6 11 7 5 10 1 4 2 3 0 13 14 13 13

Figure 1: IP loop of exponent 3 with order 15

The class of elementary abelian p-groups is very small; for example, the total
number of abelian 3-groups having order up to 1000 is only seven. It is generally
believed that the exponent property (xp = e) is responsible for such a low popula-
tion of abelian 3-groups. However, we have observed that the number of IP loops
of exponent 3 exists in a large quantity; there are 27,765 such IP loops of order
less than or equal to 15. This provides us the notion that the exponent property
is not keeping the population of groups so small. Rather, we demonstrate that it
is the associative property that is reducing the number of groups.

This paper advances counting the history of loops and presents for the �rst
time the count of IP loops of exponent 3 having order 15. The presented results
are obtained through enumeration and hence are available for inspection. In this
paper, our contributions are as follows:

• We have enumerated, for the �rst time, the IP loops of exponent 3 having
order 15.

• We have compared the associativity and exponent properties in IP loops and
concluded that associativity is more stringent than exponent property.
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• We have computationally veri�ed and enumerated existing IP loops of expo-
nent 3 having order up to 13.

The rest of the paper is organized as follows. Section 2 describes the history
of counting Latin squares and loops. The proposed systematic approach to count
isomorphism classes of IP Loops is discussed in Section 3. Results and the related
discussions are presented in Section 4.

Key milestones in Latin Square
(LS) counting

Historical study details

Reduced LS up to N=5
Euler (1782) [10]
Cayley (1890) [7]
MacMahon (1915) [18] used a di�erent
method to count, but obtained a wrong an-
swer

Reduced LS up to N=6
Frolov (1890) [12]
Tarry (1900) [32]
Jacob(1930) [15]-incorrectly

Main classes, isotopy classes,
and reduced LS up to N=6

Schonhardt (1930) [29]

Isotopy classes up to N=6 Fisher and Yates (1934) [11]
Main classes and Norton (1939)[24] -incorrectly
isotopy classes for N=7 Sade (1951) [26]

Saxena (1951) [28] using MacMahon's ap-
proach

Main classes for N=8
Arlazarov et al (1978) [3]-incorrectly
Kolesova et al (1990) [17]

Isotopy classes Brown (1968) [6]-incorrectly
up to N=8 Kolesova et al (1990) [17]
Reduced LS for N=8 Wells (1967) [33]
Reduced LS for N=9 Bammel and Rothstein (1975)
Reduced LS for N=10 McKay and Rogoyski (1995) [21]
Reduced LS for N=11 McKay and Wanless (2005) [22]
Main classes and isotopy classes
for N=9, 10

McKay, Meynert and Myrvold (2007) [20]

Main classes and isotopy classes
for N=11

Hulpke, Kaski and Östergård (2011) [14]

Table 1: History of counting Latin Squares
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2. Related work

Earliest history of counting Latin Squares (LS) goes back to at least 1782 as
the number of reduced LS of order 5 was known to Euler [10] and Cayley [7].
However, as noted by McKay et al [20], the counting has been constantly troubled
by published errors. The history of counting reduced Latin squares and Loops is
summarized in Tables 1 and 2. These tables show the main achievements and the
related studies.

Key milestones in Isomor-
phism classes of Loops and
Quasigroups counting

Historical study details

Loops up to N = 6 Schonhardt (1930) [29], Albert (1944) [1] and
Sade (1970) [27]

Loops up to N = 7 Brant and Mullen (1985) [5]
Loops for N=8 QSCGZ (2001) [25], Guerin (2001) [20]
Loops up to N= 10 McKay, Meynert and Myrvold (2007) [20]
Quasigroups up to N= 6 Bower (2000) [20]
Quasigroups up to N= 10 McKay, Meynert and Myrvold (2007) [20]
Quasigroups and Loops of
N= 11

Hulpke, Kaski and Östergård (2011) [14]

Inverse Property Loops up
to N=13

Slaney and Ali (2008) [2]

Table 2: History of counting loops and quasigroups

Although researchers had interest in Latin squares, there has been considerable
delay in achieving consecutive milestones. This was because of sheer computational
complexity of the problem. These historical results were obtained through deduced
mathematical formulas [23, 13], applying algorithmic approaches [27, 33, 4] or
formulating them as constraint programming problems [2, 9]. In this paper we used
constraint programming approach to further explore IP loops. We obtained for the
�rst time the IP loops of exponent 3 of order up to 15. The algorithmic strategies
applied to overcome the computational complexity to obtain these results are
discussed in the following sections.

3. Enumerating isomorphism classes of IP loops

In order to count the number of IP loops of any order, we model the system as �-
nite domain constraint satisfaction problem (CSPs), where the range of the binary
operation ∗ is a CSP variable whose domain consists of elements of the algebra.
Then the constraints related to Latin square, loop, and IP loop properties are ap-
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plied on CSP variables. Constraint solver explores the state space in order to �nd
all possible solutions that satisfy the speci�ed constraints. For higher orders (even
for order greater than 10) the state space becomes too large to perform exhaustive
search for all IP loops. Therefore, we added more constraints for symmetry break-
ing which resulted into reduced state space. The constraints used for symmetry
breaking along with other constraints are given in Table 3.

The solutions generated by constraint solver have enormous number of isomor-
phic copies. These redundant isomorphic copies need to be eliminated in order
to get the count of isomorphism classes. The following subsection describes the
techniques used to eliminate isomorphic copies from these solutions.

No. Name Constraint

1 Latin square ∀row : ∀i, j ∈ row, xi = xj ⇒ i = j
∀col : ∀i, j ∈ col, yi = yj ⇒ i = j

2 Loop ∀x : e ∗ x = x = x ∗ e
3 IP loop ∀x, y ∈ L : x−1∗(x∗y) = (y∗x)∗x−1 = y
4 Basic symmetry

breaking in IP loop
|x− x−1| ≤ 1

5 Odd and even sym-
metry breaking

Odd/Even symmetry breaking con-
straints of [2]

6 Isomorphism ∗1 Isom.∗2 ⇔ ∀i, j ∈ ∗1, f(i ∗1 j) =
f(i) ∗2 f(j)

7 Exponent 3 ∀x : (x ∗ x) ∗ x = e = x ∗ (x ∗ x)
8 Group ∀x, y, z : (x ∗ y) ∗ z = x ∗ (y ∗ z)

Table 3: Constraints for exponent 3 IP loops and symmetry breaking

3.1. Valid mapping generation

Given two IP Loops (L1, ∗) and (L2, .), �nding whether these loops are isomorphic
to each other boils down to checking if there exists a bijective function f : L1 → L2

such that for all u and v in L1: f(u ∗ v) = f(u).f(v). In our case, L1 (n × n) is
isomorphic to L2 (n × n) if ∀i, j ≤ n, f(L1[i][j]) = L2[f(i)][f(j)]. Here f is any
permutation of 1...n elements. Finding isomorphism in this way, by applying the
above formula for all permutations of f is extremely time consuming and involves
huge number of possibilities for even slightly large n. However, we observed that
there are many permutations (mappings) of f which do not satisfy the isomorphic
relation f(m1[i][j]) = m2[f(i)][f(j)] for all values of i, j ≤ n because of constraints
shown in Table 3. We consider these mappings as invalid and discard them. We use
constraint solver to �nd all valid mappings which satisfy isomorphic relationship
between two IP Loops. Figure 2 represents valid mapping generation process.

The constraint solver models the system by specifying the relevant constraints
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Figure 2: Schematic diagram of valid mappings generator

from Table 3. After the constraints are embedded in the model, the constraint
solver searches the state space to �nd those permutations that satisfy these con-
straints. All such permutations are called �valid mappings�. If the set S represents
all the permutations of f and the set Sv represents all the valid maps then Sv ⊆ S.
The obtained valid mappings are then used to �nd isomorphism classes.

Figure 3 shows an example of invalid mapping f(4 5). This mapping, if applied
to a valid IP loop structure (shown on left) will produce an algebraic structure
(shown on right) which does not satisfy the basic symmetry breaking constraint
(i.e., |x− x−1| ≤ 1). For example, in the algebraic structure on the right side, for
x = 3; x−1 = 5 and thus |x− x−1| > 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 0 5 7 4 9 3 11 8 14 13 6 10 12 1 2 0 4 5 7 9 3 11 8 14 13 6 10 12
2 0 1 7 5 3 12 4 9 6 13 8 14 11 10 2 0 1 7 3 4 12 5 9 6 13 8 14 11 10
3 6 8 4 0 10 2 13 1 12 11 14 7 5 9 3 6 8 5 10 0 2 13 1 12 11 14 7 4 9
4 8 6 0 3 13 1 12 2 14 5 10 9 7 11 4 11 10 2 6 1 0 9 14 5 12 7 13 8 3
5 11 10 2 1 6 0 9 14 4 12 7 13 8 3 5 8 6 0 13 3 1 12 2 14 4 10 9 7 11
6 4 3 14 9 0 5 11 13 7 2 1 10 12 8 : f (4   5) 6 5 3 14 0 9 4 11 13 7 2 1 10 12 8
7 10 12 1 2 14 13 8 0 11 6 3 5 9 4 ≈ 7 10 12 1 14 2 13 8 0 11 6 3 4 9 5
8 3 4 11 14 12 10 0 7 13 1 9 2 6 5 8 3 5 11 12 14 10 0 7 13 1 9 2 6 4
9 14 13 6 12 1 11 2 5 10 0 4 8 3 7 9 14 13 6 1 12 11 2 4 10 0 5 8 3 7

10 5 7 13 11 8 3 14 12 0 9 6 4 2 1 10 4 7 13 8 11 3 14 12 0 9 6 5 2 1
11 13 5 10 8 9 14 1 6 3 7 12 0 4 2 11 13 4 10 9 8 14 1 6 3 7 12 0 5 2
12 7 14 9 13 2 8 10 4 5 3 0 11 1 6 12 7 14 9 2 13 8 10 5 4 3 0 11 1 6
13 9 11 12 10 7 4 6 3 2 8 5 1 14 0 13 9 11 12 7 10 5 6 3 2 8 4 1 14 0
14 12 9 8 6 11 7 5 10 1 4 2 3 0 13 14 12 9 8 11 6 7 4 10 1 5 2 3 0 13

Figure 3: Example of an invalid mapping which produces an algebraic structure (on the
right) that does not satisfy the basic symmetry breaking constraint (|x− x−1| ≤ 1)

Detecting isomorphism classes using valid mappings drastically increases the
e�ciency because Sv is usually much smaller than S. For example, for IP loop of
order 15, the possible number of mappings (|S|) is approximately 87 billion but
there are only 509,086 valid mappings (i.e., |Sv| is 0.0005% of |S|). This results in
much faster isomorphic detection.

Table 4 shows the reduced number of valid mappings and their impact on
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the time taken to identify isomorphism classes for three di�erent problems. In
all the three cases, we observed considerable improvement in time when detecting
isomorphism. This improvement is even more signi�cant for higher order IP loops.
For example, for IP loop of order 11, the time taken to identify isomorphism classes
is reduced by a factor of 500 when valid mappings were used.
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Latin Square 161280 1411 120 120 138 138 2
(Order 5)

IP Loop 6464 49 3628800 3654 5085 10 5
(Order 11)

IP Loop of
exponent 3

22000 64
≈ 479×

106
34804

≈
864000

571 185

(Order 13)

Table 4: Time reductions obtained using valid mappings and tree-based approaches

3.2. Tree representation of isomorphism classes

In order to identify a new isomorphism class, we need to check a newly found solu-
tion against all the previously found isomorphism classes using all valid mappings.
This results in a large number of computations, and even with the reduced set
of mappings the computational time was too high. After careful examination of
isomorphism classes we discovered that these classes have similar structure (ele-
ments), and with proper organization of isomorphism classes several computations
can be eliminated. So we devised a scheme that represents isomorphism classes
using a tree-based structure to reduce redundant computations.

The tree structure is built such that each branch of the tree represents one
isomorphism class. All new isomorphism classes are added to the existing tree. As
long as two isomorphism classes have the same element values, they are represented
by a single branch in the tree. If element values di�er at any depth in a branch, a
new o�shoot is created to represent all the subsequent values.
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This representation reduces the memory needed to maintain isomorphism classes,
especially when the number of isomorphism classes are high. In addition to mem-
ory saving, the tree-based approach drastically improves the speed in detecting
isomorphism classes in two ways. First, by eliminating redundant computations
since one node in the tree represents elements of many isomorphism classes. Sec-
ond, by discarding all the siblings of a node whenever it satis�es the isomorphism
constraint.

The last column in Table 4 (i.e., Time with |Sv| and Tree) shows the results
obtained by using tree representation on di�erent problems. As anticipated, the
reduction in time depends on the number of isomorphism classes. For example the
time taken to detect isomorphism classes with tree representation was reduced by
a factor of 2 when the number of isomorphism classes was 45, whereas the time
taken was reduced by a factor of 45 when the number of isomorphism classes was
6808.

Figure 4: Proposed distributed system to identify isomorphism classes

3.3. Distributed system

With the help of reduced mappings and tree representation, isomorphism classes of
IP loops up to order 13 can be enumerated in reasonable time using a single desktop
machine. However for higher orders, even after reducing the set of mappings and
the number of comparisons, the number of isomorphic copies are still too high to
be managed by a standalone system. To cope up with this problem, we developed
a distributed system for identifying isomorphism classes as shown in Figure 4. The
distributed system takes a single input �le containing solutions provided by the
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constraint solver and breaks it up into several �les each containing a manageable
subset of the solutions. Each node (i.e., a processor) in the distributed system
selects one of the input �les for exclusive use and produces the isomorphism classes
using valid mappings and tree representation as described in previous sections. The
output is written into an intermediate �le for further processing. These output �les
can still contains isomorphic copies as the nodes are unaware of the isomorphism
classes found by each other. Therefore, another node exhaustively searches all the
intermediate �les to produce the �nal set of isomorphism classes.

Order
Total

solutions
Isomorphism classes |Sv| (|S|)

Time
(sec)

non-
associative

associative
(groups)

5 0 0 0 0 (24) < 1

7 2 1 0 48 (720) < 1

9 10 1 1
276

(40,320)
< 1

11 0 0 0
2402

(3,628,800)
< 1

13 22, 000 64 0
43804
(≈ 479
million)

210

15 71, 149, 968 27, 698 0
509086
(≈ 87
billion)

334, 725
≈ 93 hours
(for total
solutions)

Table 5: IP loops of exponent 3

4. Results and discussions

We modeled the system as �nite domain CSPs and used a generic constraint solver
JaCoP to generate IP loops. We were able to verify the results up to IP loops of
order 11 using JaCoP. However, we encountered severe memory and latency issues
for higher orders. Therefore, we tried another leading constraint solver Google's
or-tools and were able to resolve the memory and latency issues. We modeled all
IP loop constraints in or-tools and enumerated IP loops of higher order. The valid
mappings and tree representation were used to speed up the process of �nding
isomorphism classes.

The results for IP loops of exponent 3 are shown in Table 5. We have veri�ed
the known results till order 13 and produced new results for order 15. For IP
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loops of exponent 3 having order 13, or-tools constraint solver produced 22, 000
solutions. It took 210 seconds on a general desktop to �nd all the 64 isomorphism
classes.

For IP loops of exponent 3 having order 15, constraint solver produced roughly
71 million solutions. It took about 28 hours to get these results. 27, 698 isomor-
phism classes were found by using the distributed system described in Section 3.3.
It was executed on 71 di�erent processors on 20 general desktop computers. It
took about 4 days to �nd the complete set of isomorphism classes.

Generating IP loops of higher orders gave us new perspective about the alge-
braic structures and their properties. As shown in the Table 5, the number of
non-associative isomorphism classes has a reasonable size for higher orders. How-
ever, their size plummets to very small number as soon as associativity property is
added to the structure. This clearly indicates that it is the associativity property
that is seldom present in algebraic structures thus drastically reducing the number
of isomorphism classes.

Size of automorphism
group

Number of exponent 3
IP loops

1 25899
2 1385
3 171
4 140
6 50
8 22
12 10
16 2
21 3
24 13
168 1
192 1
1344 1

Table 6: Size of automorphism group of exponent 3 IP loops of order 15

We have also computed the size of automorphism groups of exponent 3 IP loops
of order 15 which is shown in Table 6. The IP loop with largest automorphism
group is shown in Figure 5.

Another interesting thing to note is the count of 3 × 3 Latin subsquares in
exponent 3 IP loops due to their role in a conjecture by van Rees [16]. Table 7
shows the count of 3 × 3 Latin subsquares in exponent 3 IP loops and Figure 6
shows two exponent 3 IP loops of order 15 which have the highest count of 3× 3
Latin subsquares. Both these loops have 91 such Latin subsquares.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 0 5 6 4 3 9 10 8 7 13 14 12 11
2 0 1 6 5 3 4 10 9 7 8 14 13 11 12
3 6 5 4 0 1 2 11 12 14 13 8 7 9 10
4 5 6 0 3 2 1 12 11 13 14 7 8 10 9
5 3 4 2 1 6 0 14 13 12 11 9 10 7 8
6 4 3 1 2 0 5 13 14 11 12 10 9 8 7
7 10 9 12 11 13 14 8 0 1 2 3 4 6 5
8 9 10 11 12 14 13 0 7 2 1 4 3 5 6
9 7 8 13 14 11 12 2 1 10 0 6 5 4 3

10 8 7 14 13 12 11 1 2 0 9 5 6 3 4
11 14 13 7 8 10 9 4 3 5 6 12 0 1 2
12 13 14 8 7 9 10 3 4 6 5 0 11 2 1
13 11 12 10 9 8 7 5 6 3 4 2 1 14 0
14 12 11 9 10 7 8 6 5 4 3 1 2 0 13

Figure 5: IP loop of exponent 3 with order 15 having the largest automorphism group
(size=1344)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 0 5 7 9 11 12 10 3 13 14 4 8 6
2 0 1 9 12 3 14 4 13 5 8 6 7 10 11
3 11 8 4 0 14 2 9 6 13 1 10 5 7 12
4 10 6 0 3 12 8 13 2 7 11 1 14 9 5
5 13 12 7 1 6 0 11 14 8 2 3 10 4 9
6 4 10 11 13 0 5 3 9 14 12 7 2 1 8
7 14 9 1 5 10 13 8 0 11 4 2 6 12 3
8 3 11 14 10 4 12 0 7 2 5 9 13 6 1
9 7 14 12 2 11 1 6 3 10 0 13 8 5 4

10 6 4 8 14 13 7 1 12 0 9 5 3 11 2
11 8 3 13 6 1 9 14 5 4 7 12 0 2 10
12 5 13 2 9 8 4 10 1 6 14 0 11 3 7
13 12 5 6 11 7 10 2 4 1 3 8 9 14 0
14 9 7 10 8 2 3 5 11 12 6 4 1 0 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 0 5 7 9 11 12 10 4 13 14 3 6 8
2 0 1 12 9 3 13 4 14 5 8 6 7 10 11
3 10 8 4 0 13 2 5 11 12 6 1 14 9 7
4 11 6 0 3 7 10 14 2 13 1 8 9 5 12
5 14 12 9 1 6 0 11 3 8 2 13 10 7 4
6 4 10 8 14 0 5 13 9 3 12 7 2 11 1
7 13 9 1 12 10 4 8 0 11 14 2 6 3 5
8 3 11 13 6 14 12 0 7 2 5 9 4 1 10
9 7 14 2 5 11 1 6 13 10 0 4 8 12 3

10 6 3 14 11 4 7 1 12 0 9 5 13 8 2
11 8 4 10 13 1 9 3 5 14 7 12 0 2 6
12 5 13 7 2 8 14 10 1 6 3 0 11 4 9
13 12 7 11 8 2 3 9 6 1 4 10 5 14 0
14 9 5 6 10 12 8 2 4 7 11 3 1 0 13

Figure 6: IP loops of exponent 3 with order 15 having the highest count of 3× 3 Latin
subsquares
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Count of 3× 3
Latin

subsquares

Number of
exponent 3 IP

loops

Count of 3× 3
Latin

subsquares

Number of
exponent 3 IP

loops

7 992 34 44
9 856 35 34
10 2083 36 25
11 457 37 59
12 1996 38 20
13 2676 39 10
14 1046 40 19
15 2430 41 14
16 2440 42 4
17 1279 43 32
18 2022 45 5
19 1977 46 5
20 988 47 2
21 1397 48 3
22 1090 49 14
23 619 50 2
24 705 51 4
25 626 52 3
26 332 53 1
27 422 55 13
28 293 58 1
29 175 61 1
30 159 67 1
31 177 73 1
32 62 91 2
33 80

Table 7: Number of exponent 3 IP loops of order 15 grouped by count of 3 × 3 Latin
subsquares
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