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Some properties of a graph

associated to a lattice

Shahide Malekpour and Behnam Bazigaran

Abstract. Some properties of the graph ΓS(L), where L is a lattice and S is a ∧-closed subset

of L, are obtained. Moreover, the graph structure of ΓS(L) under graph operations union, join,

lexicographic product and tensor product are determined. The graph associated to quotient

lattice is also studied.

1. Introduction

Making connection between various algebraic structures and graph theory by as-
signing graphs to an algebraic structure and investigating the properties of one
from the another is an exciting research methods in the last decade. Barati et
al. [2] associated a simple graph ΓS(R) to a multiplicatively closed subset S of a
commutative ring R with all elements of R as vertices, and two distinct vertices
x, y are adjacent if and only if x+ y ∈ S. Afkhami et al. [1] introduced the same
graph structure on a lattice. They considered a lattice L and de�ned a graph
ΓS(L) with all elements of L as vertices and two distinct vertices x, y ∈ L are
adjacent if and only if x ∨ y ∈ S where S is a subset of L which is closed under ∧
operation.

Throughout this paper L means a �nite bounded lattice. Let x, y be two
distinct elements of L, whenever x < y and there is no element z in L such that
x < z < y, we say that y covers x. In bounded lattice L an element p ∈ L is said
to be an atom if it covers 0, also an element m ∈ L is a coatom of L if 1 covers
it. We denote the set of all coatoms of L by Coatom(L) and the set of atoms of L
by Atom(L). The set of all lower bounds of a subset A of L is denoted by A` and
the set of all upper bounds of A is denoted by Au i.e.,

A` = {x ∈ L : x 6 a for all a ∈ A},

Au = {x ∈ L : a 6 x for all a ∈ A},

{x}` and {x}u (or simply x` and xu) are also denoted by (x] and [x) respectively.
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Let L and L′ be lattices. A mapping θ : L −→ L′ is called a homomorphism if
for all a, b ∈ L, θ(a ∨ b) = θ(a) ∨ θ(b) and θ(a ∧ b) = θ(a) ∧ θ(b). If the map θ is
also bijective, we call θ to be an isomorphism.

A mapping θ : L −→ L′ is called an anti-homomorphism if θ(a∨b) = θ(a)∧θ(b)
and θ(a ∧ b) = θ(a) ∨ θ(b) for all a, b ∈ L. A bijective anti-homomorphism is
called an anti-isomorphism. An equivalence relation R on a lattice L is called a
congruence if a1Rb1 and a2Rb2 imply (a1 ∧ a2)R(b1 ∧ b2) and (a1 ∨ a2)R(b1 ∨ b2).
The set of all such relations is denoted by Con(L) or L/R. It is well-known that
the set of all congruence relations, under inclusion constitutes a complete lattice.
The (ordinal) sum P +Q of P and Q can be de�ned on the (disjoint) union P ∪Q
ordered as follows: for the elements x, y ∈ P ∪ Q, de�ne x 6 y if one of the
following conditions holds:

i) x, y ∈ P and x 6P y,

ii) x, y ∈ Q and x 6Q y,

iii) x ∈ P and y ∈ Q.

For an order set P with unit 1P , and an order set Q with zero, 0Q, the glued sum,
P uQ, is obtained from P +Q by identifying 1P and 0Q[5, p. 8]. We refer to [4, 5]
for a complete description of these notions.

Let G be an undirected graph with the vertex set V (G). The notation ab ∈ E
means that vertices a and b are adjacent in G. The degree of a vertex v is denoted
by deg(v) and the notations Pn, Cn, Sn and Kn are used for the path, cycle,
star and complete graphs with n vertices, respectively. Recall that a subgraph H
of a graph G is a graph whose the set of vertices and the set of edges are both
subsets of G. A vertex-induced subgraph of graph G is one that consists of some
of the vertices of G and all of the edges that connect them in G. An edge-induced
subgraph of graph G consists of some of the edges of G and the vertices that are
at their endpoints. The complement of G is a graph denoted by G with the same
vertex set as G and two vertices in G are adjacent if and only if they are not
adjacent in G. The complement of the complete graph Kn is called the null graph
on n vertices, see [3] for more details.

We now recall some graph operations [6]. Suppose G and H are graphs with
disjoint vertex sets. The disjoint union G + H is a graph with V (G + H) =

V (G)∪ V (H) and E(G+H) = E(G)∪E(H). The join G⊕H de�ned as Ḡ+ H̄.
The tensor product (or direct product) G × H of graphs G and H is the graph
whose vertex set is V (G)×V (H) in such a way that vertices (g, h) and (g′, h′) are
adjacent if and only if gg′ ∈ E(G) and hh′ ∈ E(H).

2. Main results

The aim of this section is to compute ΓS(L), for some special lattice L and a
subset S of L. We start by an example:
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Example 2.1. Let L be a chain with n elements and S be any nonempty subset
of L. Then degΓS(L)(x) = |xl| + |S ∩ xu| − 2, x ∈ S, and for any x ∈ Sc,
deg(x) = |xu ∩ S|. In some special cases, we have:

• If S = yu for some y ∈ L, then deg(x) = |L| − 1, for all x ∈ S and deg(x) =
|S|, for every x ∈ Sc.

• If S = yl for some y ∈ L, then deg(x) = |S|−1, for all x ∈ S and deg(x) = 0,
for every x ∈ Sc.

Proposition 2.2. We have:
(i) ΓS(L) is a cycle if and only if |L| = 3 and ΓS(L) is complete. On the other

word ΓS(L) 6= Cn for all subset S of L, unless n = 3.

(ii) ΓS(L) is a tree if and only if it is a star.

Proof. (i). Since the cycle is two regular, if ΓS(L) is a cycle, then deg(1) =
deg(0) = 2. Hence by [1, Lemma 2.2], 1 ∈ S and deg(1) = |L| − 1 = 2 i.e., |L| = 3.
On the other hand, if 0 ∈ S, then deg(0) = |S| − 1 = 2 and |S| = 3 i.e., S = L,
and if 0 /∈ S, then deg(0) = |S| = 2 i.e., S = L \ {0} [1, Lemma 2.2]. So, ΓS(L) is
a complete graph [1, Proposition 2.4].

(ii). If ΓS(L) is a tree, then it is connected, so, 1 ∈ S [1, Theorem 2.3]. Thus
deg(1) = |L| − 1 [1, Lemma 2.2]. Since ΓS(L) is a tree, it has no other edge, so,
|Coatom(L)| = 1 and by [1, Lemma 2.2], S = {1} or S = {0, 1}. The result follows
from [1, Theorem 2.5].

Lemma 2.3. Let L be a bounded lattice. Then

(1) ΓS(L) is null graph if and only if S = {0} or S = ∅.
(2) ΓS(L) = P2 +K |L|−2 if and only if S = {p} or S = {0, p} that p ∈ Atom(L),

in fact in this case, deg(p) = deg(0) = 1 and deg(x) = 0, for every x 6= 0, p.

(3) ΓS(L) = P3 +K |L|−3 if and only if S = {p1, p2} or S = {0, p1, p2} for some
p1, p2 ∈ Atom(L), in this case, deg(p1) = deg(p2) = 1, deg(0) = 2 and for
every x 6= 0, p1, p2, deg(x) = 0.

(4) ΓS(L) = C3 + K |L|−3 if and only if S = {0, p, x} such that x` = {0, p} and
p ∈ Atom(L).

(5) ΓS(L) = Sα + K |L|−α ( where α = |S| − 1 or α = |Sl|) if and only if
S ⊆ {0} ∪AtomL or S = {x}, for some nonzero element of lattice L.

Proof. The proof is straightforward and so it is omitted.

Remark 2.4. Suppose that S is a ∧-closed subset of a lattice L and a, b, x ∈ L,
we know that a ∨ (a ∨ b) = b ∨ (a ∨ b) = (a ∧ b) ∨ (a ∨ b) = (a ∧ x) ∨ (a ∨ b) =
(b ∧ x) ∨ (a ∨ b) = a ∨ b. So if in a graph ΓS(L) a, b are adjacent i.e., a ∨ b ∈ S,
then a∨ (a∨ b) ∈ S, b∨ (a∨ b) ∈ S, (a∧ b)∨ (a∨ b) ∈ S and (a∧ x)∨ (a∨ b) ∈ S.
Hence, summarizing, we have:

If n > 3, then ΓS(L) 6= Pn + K |L|−(n) for all ∧-closed subsets S of L; and if

n > 4, then ΓS(L) 6= Cn +K |L|−n for all subset S of L.
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Remark 2.5. If S is a sublattice of L, then the subgraph ΓS(L) on S is complete.
Since for all a, b ∈ S we have a ∨ b ∈ S, every two elements of subset S in ΓS(L)
are adjacent.

Remark 2.6. It is easy to show that ΓS′(L) is a subgraph of ΓS(L), when S, S′

are two ∧-closed subsets of L and S′ ⊆ S. But in general ΓS′(L) is neither
edge-induced nor vertex-induced subgraph of ΓS(L). For example, let L be the
modular lattice M3 containing 0, 1 and three incomparable elements a, b, c. De�ne
S = {0, b, c, 1} and S′ = {0, b}. Then it is clear to see that ΓS′(L) is not edge-
induced and vertex-induced subgraph of ΓS(L).

Theorem 2.7. A ∧-closed subset S of L is an ideal if and only if

ΓS(L) = K|S| +K |Sc|.

Proof. Suppose ΓS(L) = K|S| + K |Sc|. Then by de�nition of ΓS(L), we have
a ∨ b ∈ S if and only if a, b ∈ S which implies that S is an ideal.

Conversely, if S is an ideal of L. Then, S is closed under taking join of elements,
consequently all vertices of S are adjacent in graph ΓS(L). Moreover, since S is
a lower set, for all a, b ∈ Sc, a ∨ b /∈ S. In fact, if in contrary a ∨ b ∈ S then
a∧ (a∨ b) = a ∈ S which is a contraction. So, all vertices of Sc aren't adjacent in
ΓS(L). Moreover, since S is a lower set, it follows that all a ∈ S and b ∈ Sc aren't
adjacent in ΓS(L). Therefore, ΓS(L) = K|S| +K |Sc|.

Clearly we have:

Lemma 2.8. Let α : L −→ L′ be a lattice isomorphism and S be a ∧-closed subset
of L. Then

ΓS(L) ∼= Γα(S)(L
′).

Theorem 2.9. A ∧-closed subset S of L is a prime �lter if and only if

ΓS(L) = K|S| ⊕K |Sc|.

Proof. Assume that S is a prime �lter. Then for any x, y ∈ S, we have x ∨ y ∈ S,
i.e., xy ∈ E(ΓS(L)). Since S is an upper subset of L, x∨ y ∈ S for each x ∈ S and
y ∈ Sc. This means that x and y are adjacent. In addition, since S is a prime �lter,
Sc is an ideal. Hence for any x, y ∈ Sc, x ∨ y ∈ Sc and so x ∨ y /∈ S. This implies
that x, y aren't adjacent in ΓS(L). On the other hand, if ΓS(L) = K|S| ⊕K |Sc|,
then obviously for any x ∈ S and y ∈ L, x∨ y ∈ S and if x∨ y ∈ S, then x ∈ S or
y ∈ S. This completes the proof.

A semiregular graph is a graph in which the set of degree of vertices includes
only two elements. The following corollary immediately follows from Theorem 2.9.

Corollary 2.10. If S is a prime �lter of L, then ΓS(L) is a semiregular graph.
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Proof. Suppose S is a prime �lter of L. Then by Theorem 2.9, we conclude that
deg(x) = |L| − 1, for all x ∈ S and deg(y) = |S|, for all y ∈ Sc, and the proof is
completed.

Proposition 2.11. Assume that α : L −→ L′ is a lattice isomorphism and S is a
prime ideal or a �lter of L, then

ΓS(L) ∼= Γα(S)c(L′).

Proof. It is easy to show that if S is a prime ideal or a �lter of L, then α(S)c is a
∧-closed subset of L′. The details are left to the readers.

Corollary 2.12. If S is a �lter or a prime ideal of L, then ΓS(L) = ΓSc(L).

Proof. The proof by Proposition 2.11 and α = IdL (the identity map) is done.

The disjunction graph G∨H of graphs G and H is the graph whose vertex set
is V (G)× V (H) in such a way that vertices (g, h) and (g′, h′) are adjacent if and
only if gg′ ∈ E(G) or hh′ ∈ E(H).

Theorem 2.13. Let L,L′ be two lattices and L × L′ be its direct product. If S
and T are ∧-closed subset of L,L′, respectively, Then

(1) ΓS×T (L× L′) = ΓS(L)× ΓT (L′),

(2) ΓS(L) + ΓT (L′) = ΓS∪T (L+ L′),

(3) Let S0 = S × L′ and T0 = L × T . If S or T is a lower set, then we have
ΓS0∪T0

(L× L′) = ΓS(L) ∨ ΓT (L′).

Proof. (1). At �rst, we notice that S×T is a ∧-closed subset of L×L′. Two distinct
vertices (a, b) and (c, d) of ΓS×T (L×L′) are adjacent if and only if (a, b)∨ (c, d) =
(a ∨ c, b ∨ d) ∈ S × T , which is equivalent to a ∨ c ∈ S and b ∨ d ∈ T . This means
that a, c are adjacent in ΓS(L) and b, d are adjacent in ΓT (L′). Therefore, (a, b)
and (c, d) are adjacent in ΓS(L)× ΓT (L′).

(2). If a, b are adjacent in ΓS∪T (L + L′), then a ∨ b ∈ S ∪ T . So, a ∨ b ∈ S
or a ∨ b ∈ T , i.e., a, b are adjacent in ΓS(L) or a, b are adjacent in ΓT (L′) which
implies that a, b are adjacent in ΓS(L) + ΓT (L′). On the other hand, if a, b are
adjacent in ΓS(L) + ΓT (L′), then a, b are adjacent in ΓS(L) or a, b are adjacent in
ΓT (L′). So, a ∨ b ∈ S or a ∨ b ∈ T , i.e., a ∨ b ∈ S ∪ T . Hence a, b are adjacent in
ΓS∪T (L+ L′),

(3). Since S or T is a lower set, S0 ∪ T0 is a ∧-closed subset of L × L′. Two
distinct vertices (a, b) and (c, d) are adjacent in ΓS0∪T0

(L × L′) if and only if
(a ∨ c, b ∨ d) ∈ (S × L′) ∪ (L × T ) if and only if a ∨ c ∈ S or b ∨ d ∈ T and this
means that a, c are adjacent in ΓS(L) or b, d are adjacent in ΓT (L′). The later is
equivalent to (a, b) and (c, d) are adjacent in ΓS(L) ∨ ΓT (L′).
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Recall that the lexicographic product of two graph G and H, denoted by G[H],
is de�ned as V (G[H]) = V (G)× V (H) where two vertices (a, b), (c, d) of G[H] are
adjacent whenever ac ∈ E(G), or a = c and bd ∈ E(H) [6, p. 43].

If P and Q are two partially ordered sets, then P×Q, by ordering (a, b) 6 (c, d)
if a <P c, or a = c and b 6Q d will be a partially ordered set again. We use the
notation P �Q to denote (P ×Q,6). Notice that if P and Q are totally ordered
sets, then P �Q is a totally ordered set too. One can check at once that if L and
L′ are two lattices and L′ is bounded, then L�L′ is a lattice [5, p. 260] with join
and meet operations as follows:

(a, b) ∧ (c, d) =

 (a, b ∧ d) if a = c,
(a, b)(or (c, d)) if a < c (or c < a),

(a ∧ c, 1) if a ‖ c,

(a, b) ∨ (c, d) =

 (a, b ∨ d) if a = c,
(c, d)(or (a, b)) if a < c (or c < a),

(a ∨ c, 0) if a ‖ c.

Theorem 2.14. Let L,L′ be two totally ordered lattices and L′ be bounded. If S
and T are subsets of L,L′, respectively, then

ΓS×T (L� L′) = ΓS(L)[ΓT (L′)].

Proof. Since L,L′ are totally ordered, L � L′ is totally ordered and so S × T is
a ∧-closed subset of L � L′ and ΓS×T (L � L′) is well de�ned. We now assume
that (a, b) and (c, d) are two distinct vertices of ΓS×T (L�L′). These two vertices
are adjacent if and only if (a, b) ∨ (c, d) ∈ S � T if and only if (a, b) ∈ S × T or
(c, d) ∈ S × T if and only if (a > c or a = c, b > d) or (a < c or a = c, b < d),
equivalently a ∨ c ∈ S or (a = c, b ∨ d ∈ T ). This is equivalent to ac ∈ E(ΓS(L))
or a = c, bd ∈ E(ΓT (L′)). So, (a, b) and (c, d) are adjacent in ΓS(L)[ΓT (L′)].

Proposition 2.15. Let L and L′ be lattices and L′ be bounded. Suppose that T is
a ∧-closed subset of L′ and S is a lower set of L. We also assume that S0 = S×L′
and T0 = L× T , then ΓS(L)[ΓT (L′)] is a subgraph of ΓS0∪T0

(L� L′).

Proof. At �rst, since T is a ∧-closed subset of L′ and S is a lower set of L, S0 ∪T0

is a ∧-closed subset of L�L′, so ΓS0∪T0
(L�L′) can be de�ned. On the other hand,

V (ΓS(L)[ΓT (L′)]) = V (ΓS0∪T0
(L�L′)) = L×L′. Also, if two distinct vertices (a, b)

and (c, d) are adjacent in ΓS(L)[ΓT (L′)], by de�nition of lexicographic product of
graphs, one of the following two cases are occurred:

1. a and c are adjacent in graph ΓS(L),

2. a = c and b and d are adjacent in graph ΓT (L′).

Thus we have a∨c ∈ S or (a = c and b∨d ∈ T ). Hence, according to join operation
in a lattice L� L′, we conclude that (a, b) ∨ (c, d) ∈ S0 ∪ T0, so two vertices (a, b)
and (c, d) are adjacent in ΓS0∪T0

(L� L′). This completes the proof.
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Corollary 2.16. Let L,L′ be two totally ordered lattices and L′ be bounded. If S
and T are (∧-closed) subsets of L,L′, respectively, then ΓS×T (L�L′) is a subgraph
of ΓS0∪T0

(L� L′).

The Cartesian product of two graph G and H is a graph, denoted by G�H,
whose vertex set is V (G)× V (H) and two vertices (a, b) and (c, d) are adjacent if
a = c and bd ∈ E(G), or ac ∈ E(H) and b = d [6, p. 35].

Proposition 2.17. Let L and L′ be lattices and T, S are ∧-closed subsets of L,L′,
respectively. We also assume that S0 = S×L′ and T0 = L×T. Then ΓS(L)�ΓT (L′)
is a subgraph of ΓS0∪T0(L× L′).

Proof. Assume that (a, b) and (c, d) are two distinct vertices of ΓS(L)�ΓT (L′).
These two vertices are adjacent if and only if (a = c, bd ∈ E(ΓT (L′))) or (ac ∈
E(ΓS(L)), b = d), if and only if (a = c, b∨d ∈ T ) or (a∨ c ∈ S, b = d), equivalently
(a, b) ∨ (c, d) = (a ∨ c, b ∨ d) ∈ S0 ∪ T0. So, (a, b) and (c, d) are adjacent in
ΓS0∪T0(L× L′).

The strong product of two graph G and H is the graph denoted as G � H,
whose vertex set is V (G) × V (H) and E(G �H) = E(G�H) ∪ E(G ×H) [6, p.
36].

Corollary 2.18. Let L and L′ be lattices and T, S are ∧-closed subsets of L,L′

respectively. We also assume that S0 = S×L′ and T0 = L×T. Then ΓS(L)�ΓT (L′)
is a subgraph of ΓS×T (L× L′) ∪ ΓS0∪T0

(L× L′).

Proof. The result follows from de�nition of G�H, part (1) of Theorem 2.13 and
previous preposition.

Suppose Π is a partition of the vertices of a graph G. The quotient graph G/Π
is a graph with vertex set Π, and for which distinct classes C1, C2 ∈ Π are adjacent
if some vertex in C1 is adjacent to a vertex of C2 [6, p. 159]. In the following,
we let ϕ : L −→ K be an onto lattice homomorphism and α be the congruence
relation of L de�ned by x ≡α y if and only if ϕ(x) = ϕ(y). Therefore, L/α ∼= K.
In other words, a homomorphic image of L is isomorphic to some quotient lattice
of L. Obviously, if S is a ∧-closed subset of L, then S1, the set of all equivalence
classes of α on S, is a ∧-closed subset of L/α. So, we can de�ne graph ΓS1

(L/α).
We have the following description for the graph associated to L/α.

Theorem 2.19. Suppose that ϕ : L −→ K is an onto lattice homomorphism and
α is corresponding congruence relation with it. If S is an ideal of L and S1 is the
set of all equivalence classes of α on S, then

ΓS1(L/α) = ΓS(L)/α.

Proof. Consider α = {[x]α : x ∈ L} to be a partition for the vertex set of ΓS(L).
So, the vertices of ΓS(L)/α and ΓS1

(L/α) are equal. On the other hand, according
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to de�nition of a quotient graph, if two distinct vertices [x] and [y] are adjacent
in ΓS(L)/α, there exists a ∈ [x] and b ∈ [y] which are adjacent in ΓS(L) i.e.
a∨ b ∈ S. So, [a]∨ [b] = [a∨ b] ∈ S1. Thus [a], [b] are adjacent in ΓS1

(L/α), which
is equivalent to [x] and [y] are adjacent in ΓS1

(L/α).
Moreover, if [x] and [y] are adjacent in ΓS1

(L/α), then [x∨ y] = [x]∨ [y] ∈ S1.
So, there exists a s ∈ S such that x ∨ y ≡α s. According to the properties of
congruence relations we have:

x = x ∧ (x ∨ y) ≡α x ∧ s, y = y ∧ (x ∨ y) ≡α y ∧ s.

So, s∧x ∈ [x] and s∧y ∈ [y]. Since S is an ideal, s∧x, s∧y ∈ S and (s∧x)∨(s∧y) ∈
S. Thus s ∧ x and s ∧ y are adjacent in ΓS(L). This follows that [x] and [y] are
adjacent in ΓS(L)/α and the proof is complete.

Corollary 2.20. Suppose that ϕ : L −→ K is an onto lattice anti-homomorphism
and α is corresponding congruence relation with it. If S is a �lter of L and S1 is
the set of all equivalence classes of α on S and (L′,∨′,∧′) is dual of a lattice L,
then

ΓS1
(L/α) = ΓS(L′)/α.

Proof. At �rst the vertex set of ΓS(L′)/α and ΓS1
(L/α) are equal. On the other

hand, if two distinct vertices [x] and [y] are adjacent in ΓS(L′)/α, there exists
a ∈ [x] and b ∈ [y] which are adjacent in ΓS(L′) i.e. a ∨′ b ∈ S. So, by de�nition
of S1, [a ∨′ b] ∈ S1 i.e., [x] ∨ [y] = [a] ∨ [b] = [a ∧ b] = [a ∨′ b] ∈ S1, so [x] and [y]
are adjacent in ΓS1

(L/α). Moreover, if [x] and [y] are adjacent in ΓS1
(L/α), then

[x ∧ y] = [x] ∨ [y] ∈ S1. So, there exist some s ∈ S such that x ∧ y ≡α s. By the
properties of congruence relations, we have:

x = x ∨ (x ∧ y) ≡α x ∨ s, y = y ∨ (x ∧ y) ≡α y ∨ s.

So, s∨x ∈ [x] and s∨y ∈ [y]. Since S is a �lter, s∨x, s∨y ∈ S and (s∨x)∧(s∨y) ∈ S.
Thus (s∨x)∨′ (s∨y) ∈ S, i.e., s∨x and s∨y are adjacent in ΓS(L′). This follows
that [x] and [y] are adjacent in ΓS(L′)/α.

From now on L is a distributive lattice and S is a �lter of L. We state here an
important result of Stone [5, Theorem 115] as follows:

Theorem 2.21. Let L be a distributive lattice, let I be an ideal, let D be a �lter
of L, and let I ∩D = ∅. Then there exists a prime ideal P of L such that P ⊇ I
and P ∩D = ∅.

For a �lter S of L and arbitrary element x ∈ Sc, by Stone theorem, there exists
a prime ideal Px such that Px ∩ S = ∅ and (x] ⊆ Px. This means that Sc is a
union of some prime ideals. Hence Sc =

⋃
x∈Sc Px. Set I =

⋂
x∈Sc Px and de�ne

a congruence relation θ0 on L as follows;

θ0 =
∧
{θ ∈ Con(L) : I2 ⊆ θ}.

We consider S̃ = {[x]θ0 : x ∈ S}.
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Example 2.22. Suppose L = {0, x1, x2, x3, x4, x5, . . .}. De�ne an order 6 on L
as follows: for each i > 1, 0 6 xi. Moreover, x1, x2 6 x3 and for i, j ≥ 3 that
i 6 j, xi 6 xj . De�ne S = [x5). So, I = (x3] and by de�nition of θ0, we have
L/θ0 = {I} ∪ {{x} : x /∈ I}.

Lemma 2.23. S̃ = {[x]θ0 : x ∈ S} is a �lter of L/θ0.

Proof. S is a ∧-closed subset of L and in L/θ0, we have [a ∧ b] = [a] ∧ [b]. So, S̃
is a ∧-closed subset of L/θ0. It is now enough to show that if [a] ∧ [b] ∈ S̃ then
[a], [b] ∈ S̃. To do this, suppose that [a ∧ b] = [a] ∧ [b] ∈ S̃. Hence, there exist
some element s ∈ S such that a ∧ b ≡θ0 s. According to properties of congruence
relations, we have a = a ∨ (a ∧ b) ≡θ0 a ∨ s , b = b ∨ (a ∧ b) ≡θ0 b ∨ s. This means
that [a] = [a∨ s], [b] = [b∨ s]. Since S is a �lter of L, b∨ s, a∨ s ∈ S which implies
that [a], [b] ∈ S̃.

Theorem 2.24. ΓS̃(L/θ0) is connected.

Proof. By [1, Theorem 2.3] the graph ΓS(L) is connected if and only if 1 ∈ S.
Now the result follows from Lemma 2.23.

Theorem 2.25. If ΓS(L) is complete, then ΓS̃(L/θ0) is complete.

Proof. Suppose that ΓS(L) is complete. Thus S = L or S = L \ {0} [1, Theorem
4.2] and we have the following two cases:

• If S = L, then I = ∅, so θ0 =
∧
{θ : I2 ⊆ θ} = L×L.Thus S̃ = {[x]θ0 : x ∈ S}

= L/θ0 and therefore ΓS̃(L/θ0) is complete.

• If S = L \ {0} then I = {0}. So, θ0 =
∧
{θ : I2 ⊆ θ} = 4. Hence,

S̃ = (L/θ0) \ {[0]} and so ΓS̃(L/θ0) is complete.

Notice that the converse of previous theorem is not true in general. Suppose
L = {0, x1, x2, x3, x4, x5, x6, . . .}. De�ne an order 6 on L as follows: for each
i > 1, 0 6 xi. Moreover, x1 6 x2, x3 and x2, x3 6 x4 and for i, j > 4 that i 6 j,
xi 6 xj . De�ne S = [x5), so I = (x4] and θ0 = {I} ∪ {{x} : x /∈ I}. Therefore,

{I} is zero element of a lattice L/θ0 and so S̃ = (L/θ0) \ {[0]}. By [1, Proposition
2.4] the graph ΓS̃(L/θ0) is complete. But by Theorem 2.9, ΓS(L) is not complete.
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