On generalized bi-Γ-ideals in Γ-semigroups

Abul Basar and Mohammad Yaqya Abbasi

Abstract. We study generalized bi-Γ-ideals, prime, semiprime and irreducible generalized bi-Γ-ideals in Γ-semigroups.

1. Introduction

Let S and Γ be two nonempty sets. Then a triple of the form (S, Γ, \cdot) is called a Γ-semigroup, where \cdot is a ternary operation $S \times \Gamma \times S \to S$ such that $(x \cdot y \cdot \beta \cdot z)$ for all $x, y, z \in S$ and all $\alpha, \beta \in \Gamma$.

We will denote (S, Γ, \cdot) by S and $a \cdot \gamma \cdot b$ by $a\gamma b$.

Definition 1.1. A nonempty subset B of S is called
- a sub-Γ-semigroup of S if $a\gamma b \in B$, for all $a, b \in B$ and $\gamma \in \Gamma$,
- a generalized bi-Γ-ideal of S if $B \Gamma S \Gamma B \subseteq B$,
- a bi-Γ-ideal of S if $B \Gamma S \Gamma B \subseteq B$ and $B \Gamma B \subset B$.

A Γ-semigroup S is called a gb-simple if it does not contain the proper generalized bi-Γ-ideal.

Definition 1.2. A generalized bi-Γ-ideal B of a Γ-semigroup S is
- prime if $B_1 \Gamma B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$,
- strongly prime if $B_1 \Gamma B_2 \cap B \Gamma B_1 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$,
- irreducible if $B_1 \cap B_2 = B$ implies $B_1 = B$ or $B_2 = B$,
- strongly irreducible if $B_1 \cap B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$ for any generalized bi-Γ-ideals B_1 and B_2 of S.

A quasi Γ-ideal is prime if it is prime as a bi-Γ-ideal.

Definition 1.3. A generalized bi-Γ-ideal B of S is
- semiprime if $B_1 \Gamma B_1 \subseteq B$ implies that $B_1 \subseteq B$ for any bi-Γ-ideal B_1 of S.

Other definition one can find in [1] and [2].

2010 Mathematics Subject Classification: 16D25, 20M12

Keywords: Γ-semigroup, prime and irreducible generalized bi-Γ-ideal.
2. Properties of generalized bi-Γ-ideals

Lemma 2.1. The smallest generalized bi-Γ-ideal of a Γ-semigroup S containing a nonempty subset T of S has the form $T \cup TTSTT$.

Proof. Let $B = T \cup TTSTT$. Then $T \subseteq B$. So,

$$B \Gamma S \Gamma B = (T \cup TTSTT) \Gamma S \Gamma (T \cup TTSTT)$$

$$\subseteq [T(T \Gamma ST)(T \cup TTSTT)] \cup [TTSSTT(T \Gamma ST)(T \cup TTSTT)]$$

$$\subseteq [T(T \Gamma ST)T \cup T(T \Gamma ST)TTSTT] \cup [TTSTT(T \Gamma ST)T \cup TTSTT(T \Gamma ST)TTSTT]$$

$$\subseteq [TTSTT \cup TTSTT] \cup [TTSTT \cup TTSTT]$$

$$= TTSTT \subseteq T \cup TTSTT = B.$$

Hence $B = T \cup TTSTT$ is a generalized bi-Γ-ideal of S.

To prove that B is the smallest generalized bi-Γ-ideal of S containing T suppose that G is a generalized bi-Γ-ideal of S containing T. Then $TTSTT \subseteq G \Gamma STG \subseteq G$. Therefore, $B = T \cup TTSTT \subseteq G$. Hence B is the smallest generalized bi-Γ-ideal of S containing T. \qed

The smallest generalized bi-Γ-ideal of S containing T will be denoted by (T).

Lemma 2.2. Suppose that A is a sub-Γ-semigroup of a Γ-semigroup S, $s \in S$ and $(s \Gamma A \Gamma s) \cap A \neq \emptyset$. Then $(s \Gamma A \Gamma s) \cap A$ is a generalized bi-Γ-ideal of A.

Proof. Indeed,

$$(s \Gamma A \Gamma s \cap A) \Gamma A \Gamma (s \Gamma A \Gamma s \cap A) \subseteq [(s \Gamma A \Gamma s) \Gamma A \cap A \Gamma A] \Gamma (s \Gamma A \Gamma s \cap A)$$

$$\subseteq [(s \Gamma A \Gamma s) \Gamma A \cap A] \Gamma (s \Gamma A \Gamma s \cap A)$$

$$\subseteq [[(s \Gamma A \Gamma s) \Gamma A] \Gamma (s \Gamma A \Gamma s)] \cap [A \Gamma (s \Gamma A \Gamma s \cap A)]$$

$$\subseteq [(s \Gamma A \Gamma s) \cap (A \Gamma s \Gamma A \Gamma s)] \cap A$$

$$\subseteq (s \Gamma A \Gamma s) \cap A.$$

Hence $(s \Gamma A \Gamma s) \cap A$ is a generalized bi-Γ-ideal of A. \qed

Theorem 2.3. For a Γ-semigroup S the following assertions are equivalent:

(i) S is a gb-simple Γ-semigroup,

(ii) $s \Gamma STs = S$ for all $s \in S$,

(iii) $s = S$ for all $s \in S$.

Proof. (i) \Rightarrow (ii). Let S be a gb-simple Γ-semigroup and $s \in S$. Then $s \Gamma STs$ is a generalized bi-Γ-ideal of S. As S is a gb-simple Γ-semigroup, $s \Gamma STs = S$.

(ii) \Rightarrow (iii). If $s \Gamma STs = S$ for all $s \in S$, then, $(s) = \{s\} \cup s \Gamma STs = \{s\} \cup S = S$.

(iii) \Rightarrow (i). Let $(s) = S$, for all $s \in S$, and assume B is a generalized bi-Γ-ideal of S and $s \in B$. Then $(s) \subseteq B$. By our hypothesis, we obtain $S = (s) \subseteq B \subseteq S$. So, $S = B$. Hence S is a gb-simple Γ-semigroup. \qed
Theorem 2.4. A bi-Γ-ideal B of a Γ-semigroup S is a minimal generalized bi-Γ-ideal of S if and only if B is a gb-simple Γ-semigroup.

Proof. Let B be a minimal generalized bi-Γ-ideal of S. By our hypothesis, B is a Γ-semigroup. Suppose D is a generalized bi-Γ-ideal of B. Then $D \Gamma B \Gamma D \subseteq D \subseteq B$. As B is a generalized bi-Γ-ideal of S, we obtain $D \Gamma B \Gamma D$ is a generalized bi-Γ-ideal of S. As B is a minimal generalized bi-Γ-ideal of S, we obtain $D \Gamma B \Gamma D = B$. So, we have $B = D$. Therefore, B is a gb-simple Γ-semigroup.

Conversely, let B be a gb-simple Γ-semigroup. Suppose D is a generalized bi-Γ-ideal of B so that $D \subseteq B$. Then $D \Gamma B \Gamma D \subseteq D \Gamma S \Gamma D \subseteq D$. So D is a generalized bi-Γ-ideal of B. As B is a gb-simple Γ-semigroup, we obtain $B = D$. Hence B is a minimal generalized bi-Γ-ideal of S. □

Theorem 2.5. Every generalized bi-Γ-ideal of a Γ-semigroup S is a bi-Γ-ideal of S if and only if $xoy \in \{x, y\} \Gamma S \Gamma \{x, y\}$, for every $x, y \in S$ and $\alpha \in \Gamma$.

Proof. Suppose S is a Γ-semigroup in which every generalized bi-Γ-ideal is a bi-Γ-ideal. Then, for every $x, y \in S$, the generalized bi-Γ-ideal generated by subset $\{x, y\}$ is given by $\{x, y\} \cup \{x, y\} \Gamma S \Gamma \{x, y\}$ which is a bi-Γ-ideal of S, so we have $xoy \in \{x, y\} \Gamma S \Gamma \{x, y\}$.

Conversely, if x, y are elements of a generalized bi-Γ-ideal B of S, then we have $xoy \in B \Gamma S \Gamma B \subseteq B$. Hence B is a bi-Γ-ideal of S. □

3. Prime and irreducible generalized bi-Γ-ideals

Proposition 3.1. A semiprime generalized bi-Γ-ideal of S is a quasi-Γ-ideal of S.

Proof. Suppose that B is semiprime and let $x \in (ST \cap B)S$. Then $x \Gamma ST x \subseteq (B \Gamma S) \Gamma ST (ST \Gamma B) = B \Gamma ST B \subseteq B$ and since B is semiprime, we obtain $x \in B$. Hence $B = ST \cap B \Gamma S$. □

Proposition 3.2. A Γ-semigroup S is regular if and only if every generalized bi-Γ-ideal of S is semiprime.

Proof. Let S be regular and suppose that B is any generalized bi-Γ-ideal of S. If $b \notin B$, then $b \in s \Gamma ST s$, so we obtain $s \Gamma ST s \notin B$ and hence B is semiprime. Conversely, if every generalized bi-Γ-ideal of S is semiprime, then so is $B = s \Gamma ST s$ for any $s \in S$. As $s \Gamma ST s \subseteq B$, we obtain $b \in B$ and hence S is regular. □

Proposition 3.3. The intersection of any nonempty family of prime generalized bi-Γ-ideals of a Γ-semigroup is a semiprime bi-Γ-ideal.

Proof. Suppose that S is a Γ-semigroup and $\mathcal{P} = \{P \mid P$ is a prime generalized bi-Γ-ideal of $S\}$. As $0 \in P$, for all $P \in \mathcal{P}$, we obtain $0 \in \bigcap \mathcal{P}$. Thus $\bigcap \mathcal{P} \neq \emptyset$. Suppose $q \in (\bigcap \mathcal{P}) \Gamma ST (\bigcap \mathcal{P})$. Then $q = q_1 \alpha s \beta q_2$, for some $q_1, q_2 \in \bigcap \mathcal{P}, s \in S$.
and $\alpha, \beta, \gamma \in \Gamma$. Thus $q = q_1\alpha^s\beta^q_2 \in P\Gamma \Sigma P \subseteq P$, for all $P \in \mathcal{P}$. Therefore, $q \in \bigcap \mathcal{P}$. So $(\bigcap \mathcal{P})\Gamma \Sigma (\bigcap \mathcal{P}) \subseteq \bigcap \mathcal{P}$. Therefore, $\bigcap \mathcal{P}$ is a generalized bi-Γ-ideal of S. Suppose B be a generalized bi-Γ-ideal of S such that $B^2 \subseteq \bigcap \mathcal{P}$. We have $B^2 \subseteq P$, for all $P \in \mathcal{P}$. As P is a prime generalized bi-Γ-ideal of S, we obtain $B \subseteq P$, for all $P \in \mathcal{P}$. Thus $B \subseteq \bigcap \mathcal{P}$. Hence $\bigcap \mathcal{P}$ is a semiprime generalized bi-Γ-ideal of S. \hfill \square

Proposition 3.4. A prime generalized bi-Γ-ideal is a prime one-sided Γ-ideal.

Proof. Let $\Sigma B \not\subseteq B$ and $B\Sigma S \not\subseteq B$. Since B is prime, it follows that $B\Gamma \Sigma B = (B\Sigma)\Gamma \Sigma (B\Sigma) \not\subseteq B$, which is a contradiction. Hence B is a prime one-sided Γ-ideal. \hfill \square

Corollary 3.5. A quasi-Γ-ideal of S is a prime one-sided Γ-ideal of S. \hfill \square

Proposition 3.6. A generalized bi-Γ-ideal B of a Γ-semigroup S is prime if and only if $RTL \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$, where R and L are right and left Γ-ideal of S.

Proof. If B is prime and $RTL \subseteq B$ with $R \not\subseteq B$, then for every $r \in R \setminus B$, $r\Gamma \Sigma I \subseteq B$, for all $I \in L$, therefore $L \subseteq B$. Conversely, if B is not prime, there exists $a, b \not\in B$ such that $a\Gamma \Sigma b \subseteq B$. But then $(a\Gamma)\Gamma (\Sigma b) \subseteq B$ and $a\Gamma S, S\Gamma b \not\subseteq B$. \hfill \square

Proposition 3.7. If a bi-Γ-ideal B of S is prime, then

$$I(B) = \{s \in B \mid S\Gamma s \Sigma S \subseteq B\}$$

is a prime Γ-ideal of S.

Proof. Suppose B is prime and let $J_1 \Gamma J_2 \subseteq I(B)$, for two-sided ideals J_1 and J_2. Then, since $J_1 \Gamma J_2 \subseteq B$, by Proposition 3.6, $J_1 \subseteq B$ or $J_2 \subseteq B$. Now $I(B)$ is the largest Γ-ideal in B, it follows that $J_1 \subseteq I(B)$ or $J_2 \subseteq I(B)$. \hfill \square

Theorem 3.8. Every strongly irreducible, semiprime generalized bi-Γ-ideal of a Γ-semigroup S is a strongly prime generalized bi-Γ-ideal.

Proof. Let B be a strongly irreducible semiprime generalized bi-Γ-ideal of S. Suppose that B_1, B_2 are generalized bi-Γ-ideals of S such that $B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$. As $(B_1 \cap B_2)^2 \subseteq B_1 \Gamma B_2$ and $(B_1 \cap B_2)^2 \subseteq B_2 \Gamma B_1$, it follows that $(B_1 \cap B_2)^2 \subseteq B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$. As B is semiprime, we obtain $B_1 \cap B_2 \subseteq B$ and since B is strongly irreducible, we obtain $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence B is a strongly prime generalized bi-Γ-ideal of S. \hfill \square

Theorem 3.9. For any generalized bi-Γ-ideal B of a Γ-semigroup S and any $s \in S \setminus B$ there exists an irreducible generalized bi-Γ-ideal J of S such that $B \subseteq J$ and $s \not\in J$.

Generalized bi-Γ-ideals

Proof. Suppose $GB_B = \{B_1 \mid B_1$ is a generalized bi-Γ-ideal of S and $B \subseteq B_1$ and $s \notin B_1\}$. Obviously, $B \in GB_B$ and so $GB_B \neq \emptyset$. We have GB_B is a partially ordered set under inclusion. Suppose C is a chain of GB_B. Suppose $c \in (\bigcup C)\Gamma ST(\bigcup C)$. Then $c = c\alpha s\beta c''$ for some $c', c'' \in \bigcup C$, $s \in S$ and $\alpha, \beta \in \Gamma$. Therefore, $c' \in B_1$ and $c'' \in B_2$, for some $B_1, B_2 \in C$. As C is a chain of GB_B, we obtain B_1 and B_2 are comparable. Thus $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$; so $c', c'' \in B_1$ or $c', c'' \in B_2$. As B_1 and B_2 are generalized bi-Γ-ideals of S, it follows that $c = c\alpha s\beta c'' \in B_1\Gamma STB_1 \subseteq B_1 \subseteq \bigcup C$ or $c = c\alpha s\beta c'' \in B_2\Gamma STB_2 \subseteq B_2 \subseteq \bigcup C$. Therefore, $c \in \bigcup C$, so $\bigcup C$ is a generalized bi-Γ-ideal of S. As $s \notin C$, for all $c \in C$, we obtain $s \notin \bigcup C$. Obviously, $B \subseteq \bigcup C$. Therefore, $\bigcup C \subseteq GB_B$. We have $C \subseteq \bigcup C$, for any $c \in C$. Therefore $\bigcup C$ is an upper bound C in GB_B. By Zorn’s Lemma, there exists a maximal element $J \in GB_B$. Therefore, J is a generalized bi-Γ-ideal of S such that $B \subseteq J$ and $b \notin J$. Suppose P and Q are generalized bi-Γ-ideals of S such that $P \cap Q = J$. Let $P \neq J$ and $Q \neq J$. Then $J = P \cap Q \subseteq P$ and $J = P \cap Q \subseteq Q$. So $B \subseteq J \subseteq P$ and $B \subseteq J \subseteq Q$. If $s \notin P$, then $C \in GB_B$. This is a contradiction since J is a maximal element of GB_B, therefore $s \notin P$. In a similar fashion, we obtain $s \in Q$. Thus $s \in P \cap Q = J$ which is not possible. Therefore, $P = J$ or $Q = J$. Hence J is an irreducible generalized bi-Γ-ideal. □

Theorem 3.10. For a Γ-semigroup S the following statements are equivalent:

(i) S is regular and intra-regular Γ-semigroup.

(ii) $B^*B = B$ for every generalized bi-Γ-ideal B of S.

(iii) $B_1 \cap B_2 = B_1\Gamma B_2 \cap B_2\Gamma B_1$ for all generalized bi-Γ-ideals B_1 and B_2 of S.

(iv) Every generalized bi-Γ-ideal of S is semiprime.

(v) Every proper generalized bi-Γ-ideal B of S is the intersection of irreducible semiprime generalized bi-Γ-ideals of S containing B.

Proof. It follows by Theorem 3.9 [3]. □

Theorem 3.11. A generalized bi-Γ-ideal of a regular and intra-regular Γ-semigroup is strongly irreducible if and only if it is strongly prime.

Proof. Follows by Proposition 3.10 [3]. □

Theorem 3.12. In a Γ-semigroup S each generalized bi-Γ-ideal is strongly prime if and only if S is regular, intra-regular and the set of generalized bi-Γ-ideals of S is a totally ordered under inclusion.

Proof. If each generalized bi-Γ-ideal of S is strongly prime, then each generalized bi-Γ-ideal of S is semiprime. Hence, by Theorem 3.10, S is a regular and intra-regular Γ-semigroup. Thus the set of all its generalized bi-Γ-ideals is partially ordered by inclusion. If B_1 and B_2 are generalized bi-Γ-ideals of S, then $B_1 \cap B_2 = B_1\Gamma B_2 \cap B_2\Gamma B_1$, by Theorem 3.10. As $B_1 \cap B_2$ is a strongly prime generalized bi-Γ-ideal, we obtain $B_1 \subseteq B_1\cap B_2$ or $B_2 \subseteq B_1\cap B_2$. If $B_1 \subseteq B_1\cap B_2$, then $B_1 \subseteq B_2$. If $B_2 \subseteq B_1\cap B_2$, then $B_2 \subseteq B_1$. □
If $B_2 \subseteq B_1 \cap B_2$, then $B_2 \subseteq B_1$. Thus the set of all generalized bi-Γ-ideals of S is totally ordered by inclusion.

The converse statement is a consequence of Theorem 3.12 in [3].

Theorem 3.13. If the set of all generalized bi-Γ-ideals of a Γ-semigroup S is a totally ordered by inclusion, then S is both regular and intra-regular if and only if each generalized bi-Γ-ideal of S is prime.

Proof. By Theorem 3.13 in [3], each generalized bi-Γ-ideal of S is prime.

Conversely, if each generalized bi-Γ-ideal of S is prime, then it is semiprime. Theorem 3.10 completes the proof.

Theorem 3.14. For a Γ-semigroup S the following statements are equivalent:

(i) The set of all generalized bi-Γ-ideals of S is totally ordered by inclusion.

(ii) Every generalized bi-Γ-ideal of S is strongly irreducible.

(iii) Every generalized bi-Γ-ideal of S is irreducible.

Proof. (i) \Rightarrow (ii). Let B, B_1, B_2 be generalized bi-Γ-ideals of S such that $B_1 \cap B_2 \subseteq B$. Then by (i) we obtain $B_1 \subseteq B$ or $B_2 \subseteq B_1$. Therefore $B_1 = B_1 \cap B_2 \subseteq B$ or $B_2 = B_1 \cap B_2 \subseteq B$. Hence S is strongly irreducible.

(ii) \Rightarrow (iii). Let B, B_1, B_2 be generalized bi-Γ-ideals of S such that $B_1 \cap B_2 = B$ for some strongly irreducible generalized bi-Γ-ideal B. Then $B \subseteq B_1$ and $B \subseteq B_2$. By the hypothesis, we obtain $B_1 \subseteq B$ or $B_2 \subseteq B$. So $B_1 = B$ or $B_2 = B$. Hence B is irreducible.

(iii) \Rightarrow (i). Suppose that B_1, B_2 are generalized bi-Γ-ideals of S. Then $B_1 \cap B_2$ is also a generalized bi-Γ-ideal of S and by the assumption, $B_1 = B_1 \cap B_2 \subseteq B_2$ or $B_2 = B_1 \cap B_2 \subseteq B_1$. Therefore $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. This proves (i).

References

Received October 20, 2014
Revised March 8, 2015