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Applications of complete mappings

and orthomorphisms of finite groups

Anthony B. Evans

Abstract. For a finite group G a permutation of G is a complete mapping of G if the mapping
g — g0(g) is a permutation, and an orthomorphism of G if the mapping g — g~ 10(g) is a
permutation. Complete mappings of a finite group G correspond to transversals of the Cayley
table M of G, and orthomorphisms of G correspond to permutations of the columns of M that
yield latin squares orthogonal to M.

Complete mappings and orthomorphisms have been used in constructions of mutually orthog-
onal sets of latin squares and in constructions of latin squares with particular properties. They
and related mappings have also been used in many other algebraic and combinatorial construc-
tions. In this paper we will survey the applications of complete mappings, orthomorphisms, near
complete mappings, and near orthomorphisms in the construction of orthogonal latin squares,
group sequencings, and neofields.

1. Introduction

Let G be a finite group and let 8: G — G be a permutation. We call 8 a complete
mapping of G if the mapping o: g — ¢f(g) is a permutation, an orthomorphism of
G if the mapping §: g — g~ 10(g) is a permutation, and a strong complete mapping
of G if it is both a complete mapping and an orthomorphism of G. Complete map-
pings and orthomorphisms are very closely related as a permutation 6 is a complete
mapping of G if and only if the mapping g — ¢f(g) is an orthomorphism of G
and an orthomorphism of G if and only if the mapping g — ¢g~16(g) is a complete
mapping of G. While either complete mappings or orthomorphisms can be used
in applications, we will see that in some applications one is more natural than the
other. For example, in describing transversals of latin squares complete mappings
are more natural, whereas in constructing mutually orthogonal latin squares by
permuting the columns of the Cayley table of a finite group orthomorphisms are
more natural. In the special case in which G is the additive group of the finite field
GF(q), any permutation of G can be represented by a permutation polynomial of
GF(q). Those permutation polynomials that represent orthomorphisms are called
orthomorphism polynomials, and those permutation polynomials that represent
complete mappings are called complete mapping polynomials or complete permu-
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tation polynomials. A complete mapping or orthomorphism 6 of G is said to be
normalized or in canonical form if §(1) = 1. If 6 is a complete mapping (ortho-
morphism) of G, then the mapping 6y: g — 6(g)0(1)~! is a normalized complete
mapping (orthomorphism) of G: g is the normalization of 6.

Closely related to complete mappings and orthomorphisms are near complete
mappings and near orthomorphisms, mappings that just fail to be complete map-
pings or orthomorphisms. By a near complete mapping of G we mean a bijection
0:G\{h} = G\ {1}, h # 1, for which the mapping o : g — g6(g) is a bijection
0: G\ {h} — G\ {k}, for some k € G, k # h. A near orthomorphism of G is a
bijection 6 : G\ {h} — G\ {1}, h # 1, for which the mapping &: g — g~ 10(g)
is a bijection 6 : G\ {h} — G \ {k}, for some k € G, k # h™!. A near complete
mapping (near orthomorphism) 6 is normalized or in canonical form if k =1, in
which case h is the exdomain element of §. Near complete mappings and near
orthomorphisms are closely related as, if 6 is a normalized near complete mapping
with exdomain element h, then the mapping g — ¢6(g) is a normalized near ortho-
morphism with exdomain element h; and, if 6 is a normalized near orthomorphism
with exdomain element h, then the mapping g — ¢~16(g) is a normalized near
complete mapping with exdomain element h.

In Section 2 we will discuss the relationship between complete mappings of
groups and transversals of the Cayley tables of groups; and we will also discuss the
use of orthomorphisms in constructing sets of mutually orthogonal latin squares.
In Section 3 we will discuss group sequencings and its variations that can be
constructed using (near) complete mappings or (near) orthomorphisms; and in
Section 4 we wlll discuss the use of orthomorphisms and near orthomorphisms in
the construction of neofields.

2. Latin squares and orthogonality

Complete mappings and orthomorphisms were first introduced in constructions of
sets of mutually orthogonal latin squares (MOLS). Complete mappings were in-
troduced by Mann [44] in 1944; and orthomorphisms were introduced by Johnson,
Dulmage and Mendelsohn [36] in 1961, and under the name orthogonal mappings
by Bose, Chakravarti, and Knuth [6] in 1960. A latin square of order n is an
n X n matrix with entries chosen from a set of n symbols, such that each symbol
appears exactly once in each row and exactly once in each column. Latin squares
in general are covered in the books by Dénes and Keedwell ([12] and [13]) and
the forthcoming book by Keedwell [42]. Two latin squares of the same order are
orthogonal if each ordered pair of symbols appears exactly once when the squares
are superimposed: each square is then an orthogonal mate of the other. A set of
k mutually orthogonal latin squares (MOLS) of order n is a set of k latin squares
of order n, each pair of which is orthogonal. We use N(n) to denote the largest &
for which a set of kK MOLS of order n exists.
The following is well-known.
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Theorem 1. If n > 1, then the following hold.
() 1< N(n)<n-—1
(2) N(n) =1 if and only if n =2 orn = 6.
(3) If n is a prime power, then N(n) =n — 1.

Proof. See [12] for instance. O

For n > 1, a set of n —1 MOLS of order n is a complete sets of MOLS of order
n. A set of kK MOLS of order n is mazimal if it cannot be extended to a larger set
of MOLS of order n. A table of lower bounds for N(n) up to n = 10,000 can be
found in [11].

Cayley ([9] and [10]) pointed out that the multiplication/addition table of a
group is a latin square. Let G = {g1,...,9n} be a group of order n. The Cayley
table M of G is the n x n matrix with ¢jth entry g;g;, and for 6 a permutation of
G, My denotes the n x n matrix with ¢jth entry equal to ¢;0(g;). It is easy to see
that M is a latin square, and that My is obtained from M by permuting columns.

2.1. Complete mappings and transversals. A set of cells in a latin square,
exactly one in each row and exactly one in each column, whose entries are distinct
is called a tramsversal of the latin square. The transversals of a latin square
determine whether the square has an orthogonal mate or not. To see this, let L
and Lo be an orthogonal pair of latin squares and let a be a symbol in Lo: the
cells in Ly corresponding to cells in Lo with entry a form a transversal in L;. The
set, of transversals of L, corresponding to the symbols of Lo partitions the cells of
Ly. We obtain the following.

Theorem 2. A latin square possesses an orthogonal mate if and only if its cells
can be partitioned by transversals.

For the Cayley table M of a finite group G, a single transversal suffices.

Theorem 3. The Cayley table M of a finite group G possesses an orthogonal
mate if and only if it possesses a transversal.

Proof. Let G = {¢1,...,9n} and let M be the Cayley table of G. If M does not
possess a transversal, then it does not possess an orthogonal mate by Theorem 2.

Let us assume that M does possess a transversal. Let ¢x: {1,...,n} —
{1,...,n} be defined by ¢r(j) = t if g;gr = g+, and let the ij;th cells of M,
i=1,...,n form a transversal T. For k = 1,...,n, let T} consist of the i¢y(j;)th
cellsof M,i=1,...,n. Then T1,...,T, are transversals of M that partition the
cells of M. It follows that M possesses an orthogonal mate by Theorem 2. O

There is a natural correspondence between complete mappings of a group and
transversals of its Cayley table.

Theorem 4. There is a on-one correspondence between the complete mappings of
a finite group G and the transversals of the Cayley table M of G.
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Proof. Let G = {g1,...,9»} and let M be the Cayley table of G. Let T be a
transversal of M consisting of the ij;th cells of M, i =1,...,n, n the order of G,
and define 8: G — G by 0(g;) = g;,- Then 6 is a complete mapping of G and this
correspondence establishes a bijection between the set of complete mappings of G
and the set of transversals of M. O

To illustrate the proof of Theorem 4, Figure 1 shows a pair of orthogonal latin
squares of order 7. The square M is the Cayley table of Z; = {0,1,2,...,6}, the
operation being addition modulo 7. The entries of the cells in M corresponding to
the cells in L with entry 3 are shown in italics: these cells clearly form a transversal
of M. Let us define 0: Z7; — Z7 by 0(i) = j if the ijth entry of M is italicized:
this mapping, depicted in Figure 2, is a complete mapping of Z.

01 2 3 4 5 6 0 3 6 1 5 4 2
1 2 3 4 5 6 0 140 2 6 5 3
2 3 4 5 6 0 1 251 3 06 4
M=]3%3 4 5 6 0 1 2|, L=]13 6 2 4 1 0 5
4 5 6 0 1 2 3 4 0 3 5216
5 6 0 1 2 3 4 51 4 6 3 2 0
6 0 1 2 3 4 5 6 2 5 0 4 3 1

Figure 1: A pair of orthogonal latin squares of order 4.

0 1
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Figure 2: A complete mapping of Z7.

Finite groups that admit complete mappings have been characterized.

Theorem 5. The Cayley table of a finite group G possesses a transversal, equiv-
alently a finite group G admits complete mappings, if and only if the Sylow 2-
subgroup of G is either trivial or noncyclic.

Proof. See [7], [20], [26], and [60]. O

As an immediate corollary to Theorems 3 and 5 we obtain the following.

Corollary 1. The Cayley table of a finite group G possesses an orthogonal mate
if and only if the Sylow 2-subgroup of G is either trivial or noncyclic.
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The literature contains many results on the number of complete mappings of
small groups. Computer searches have confirmed and extended earlier results. In
particular in 2004 Hsiang, Hsu, and Shieh [30] computed the number of complete
mappings of Z, for n < 23; and in 2006 McKay, McLeod, and Wanless [45]
computed the number of complete mappings for all groups of order at most 23.

2.2. Orthomorphisms and MOLS. Let us reconsider the pair of orthogonal
latin squares shown in Figure 1. We know that M is the Cayley table of Z; and we
observe that L can be obtained from M by permuting columns. This permutation
¢, essentially the first row of L as a permutation of the first row of M, is shown
in Figure 3: it is an orthomorphism of Z.

i |01 23456
() |0 3 6 1 5 4 2
o(i)—i|0 2 4 5 1 6 3

Figure 3: An orthomorphism of Z,.

Theorem 6. If M is the Cayley table of a finite group G and 0 a permutation of
G, then My is orthogonal to M if and only if 0 is an orthomorphism of G. If 0
and ¢ are two permutations of G, then My and My are orthogonal if and only if
the mapping g — ¢(g)~10(g) is a permutation of G.

Proof. Routine. O

We say that two mappings 0,¢: G — G are orthogonal if the mapping g —
#(g9)~10(g) is a permutation. Thus a mapping 6: G — G is a complete mapping of
G if it is orthogonal to the mappings g — 1 and g — g~ !, and an orthomorphism
if it is orthogonal to the mapping g — 1 and the identity mapping g — g. Orthog-
onality is a symmetric relationship. Note that, if # and ¢ are orthomorphisms of
G and 6y and ¢ are their respective normalizations, then 6 and ¢ are orthogonal
if and only if 6y and ¢ are orthogonal. By Theorem 6, pairwise orthogonal sets
of orthomorphisms can be used to construct MOLS.

Corollary 2. From r pairwise orthogonal orthomorphisms of a group of order
n > 1 we can construct a set of r +1 MOLS of order n.

Proof. Let M be the Cayley table of a group G of order n > 1, and let 64, ..., 0, be
a pairwise orthogonal set of orthomorphisms of G. Then the squares M, My, , ..., My
form a set of » +1 MOLS of order n. O

r

2.3. Complete sets of MOLS. While complete sets of MOLS of prime power
order were known long before the introduction of complete mappings and ortho-
morphisms, they are easily constructed from pairwise orthogonal sets of orthomor-
phisms.
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Corollary 3. If q is a prime power, then there exists a complete set of MOLS of
order q.

Proof. Let G = GF(q)", the additive group of the field of order q. Then the
mappings x — az, a # 0,1, form a set of ¢—2 pairwise orthogonal orthomorphisms
of G from which the result follows. O

The orthomorphisms used in the proof of Corollary 3 are called linear ortho-
morphisms and are represented by the orthomorphism polynomials ax, a # 0,1,
of GF(q).

We define w(G) to be the largest possible order of a set of pairwise orthogonal
orthomorphisms of G. Theorems 1 and Corollary 2 yield bounds on w(G) when
|G| > 1.

Theorem 7. If |G| =n > 1, then 0 < w(G) < n — 2.

By Theorem 5, the lower bound in Theorem 7 can be improved to 1 if the
Sylow 2-subgroup of G is either trivial or noncyclic. By the proof of Corollary 3
the upper bound in Theorem 7 is achieved when G is elementary abelian.

For a group G of order n > 2 a set of n—2 pairwise orthogonal orthomorphisms
of GG is called a complete set of orthomorphisms of G. By Corollary 2, a complete
set of orthomorphisms of a group G of order n yields a complete set of MOLS of
order n.

It is well-known that a complete set of MOLS of order n corresponds to a
projective plane of order n: see [11, 12, 13]. A projective plane is an incidence
structure in which two distinct points are incident with exactly one line, two
distinct lines meet in exactly one point, and there exist four points, no three of
which are collinear. By removing one line of the projective plane and all the points
on this line we obtain an affine plane. If 7 is a finite projective plane, then for
some n > 1, each line of 7 is incident with n + 1 points, and each point of 7 is
incident with n+1 lines: n is the order of 7 and also the order of the corresponding
affine plane. Given a group G of order n and a complete set of orthomorphisms
01,...,0,_2 of G we can construct an affine plane of order n as follows. Without
loss of generality we may assume that 6y,...,60,_o are normalized. Treat G as
an additive group with identity 0 whether abelian or not. We next form an affine
plane A of order n. The points of A are the ordered pairs (z,y), x,y € G. The lines
of A are described by the equations y =b, b€ G;y=xz+b,b € G; y = 0;(x) + b,
beG,i=1,....,n—2; and z = ¢, ¢ € G. Each class of equations describes a
parallel class of A. A collineation of a affine plane is a permutation of the points of
the plane that preserves lines, and a translation of an affine plane is a collineation
that fixes all parallel classes and fixes all the lines of a given parallel class. For
each g € G the mapping 74: (x,y) — (z,y + g) is a translation of A, and the set
{79 | g € G} is a group of translations of A that is transitive on the points of any
line z = ¢. This construction can be reversed.
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Theorem 8. An affine plane admits a group G of translations that fixes all lines
of a given parallel class and is transitive on the points of a line of this parallel
class if and only if G admits a complete set of orthomorphisms.

If a projective plane is constructed from a complete set of orthomorphisms of a
group G, then the corresponding projective plane is (P,[)-transitive for some line
[ and some point P on [, the corresponding collineation group being isomorphic to
G: see [11, 12, 13] for the definition of (P, !)-transitivity. The only groups known
to admit complete sets of orthomorphisms are the elementary abelian groups. An
unsolved problem:

Problem 1. Does there ezist a group G, |G| = n > 1, which is not elementary
abelian, that admits a complete set of orthomorphisms?

In particular, as it has long been conjectured that all finite affine and projective
planes are of prime power order, we might ask:

Problem 2. Does there exist a group G, |G| =n > 1, n not a prime power, that
admits a complete set of orthomorphisms?

While many finite projective planes can be constructed from complete sets
of orthomorphisms, this approach is rarely used in the study of finite projective
planes. As an example, translation planes are the projective planes that can
be constructed from complete sets of orthomorphisms, each of which is a fixed-
point-free automorphism of an elementary abelian group. However, translation
planes are usually constructed from other algebraic structures such as spreads and
quasifields. There are, however, some instances in which orthomorphisms have
been used to establish the nonexistence of certain affine and projective planes. In
1973 Baumert and Hall [4] showed that no projective plane of order 10 or 12, if such
existed, could be (P,!)-transitive for any point P on any line {: for the plane of
order 10, this result can be derived from Theorem 5. In 1972 Studnicka [58] showed
that no projective plane of order 2p™, if such existed, could be (P,!)-transitive for
any point P on any line I: this result can also be derived from Theorem 5. In 2004
Lazebnik and Thomason [43], using orthomorphisms and a computer, were able
to construct 3 of the 4 known projective planes of order 9 and 16 of the 22 known
projective planes of order 16: they found no new projective planes.

It has long been conjectured that, if p is a prime, then there is only one affine
(projective) plane of order p. This plane can be constructed from the linear ortho-
morphisms used in the proof of Corollary 3. It was shown in 1984 by Evans and
McFarland [23] that the existence of a complete set of normalized orthomorphisms
of Zy, p a prime, that are not all linear, would imply the existence of at least two
affine (projective) planes of order p.

Theorem 9 (Evans, McFarland, 1984). If, for a prime p, there ezists more than
one complete set of normalized orthomorphisms of Z,,, then there exists more than
one affine (projective) plane of order p.
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Problem 3. Does there exist more than one complete set of normalized ortho-
morphisms of Z,, for any prime p?

For primes 7 or less, Problem 3 is easily answered by hand: the answer is no. In
1961, via a computer search, Johnson, Dulmage, and Mendelsohn [36] showed that
there was only one complete set of normalized orthomorphisms of Z,1. Subsequent
computer searches confirmed this; by Cates and Killgrove [8] in 1981; by Evans
and McFarland [23] in 1984; and by Lazebnik and Thomason [43] in 2004. For
Zy3, in 1981 Cates and Killgrove [8] used a computer search to show that there
was only one complete set of normalized orthomorphisms of this group. This was
confirmed via computer searches by Mendelsohn and Wolk [46] in 1985, and by
Lazebnik and Thomason [43] in 2004.

An alternative approach to searching for other complete sets of normalized
orthomorphisms of Z,, p prime, was tried by Mendelsohn and Wolk [46] in 1985.
They restricted themselves to quadratic orthomorphisms. For ¢ an odd prime
power, the quadratic orthomorphism [A, B] of GF(q)" is defined by

0 if g=0,
[A, B](g) =< Ag if g is a nonzero square,

Bg if g is a nonsquare,

where AB and (A —1)(B — 1) are both nonzero squares. Note that the quadratic
orthomorphism [A, B] of GF(q)™ is represented by the orthomorphism polynomial
az'@t1/2 4 bx, where a = (A — B)/2 and b = (A + B)/2. The orthomorphism of
Z7, depicted in Figure 3, is the quadratic orthomorphism [3,5]. Mendelsohn and
Wolk showed by a computer search that there is only one complete set of quadratic
orthomorphisms of GF(13)* and of GF(17)*, that is the known complete set of
linear orthomorphisms. In 1987 Evans [14] extended this result to all primes p < 47
using simple hand calculations, and in 1989 Evans [15] extended this result to all
primes.

2.4. Lower bounds for N(n). A number of the best lower bounds for N(n) have
been obtained using difference matrices. For G a group of order n an (n,r;\)-
difference matriz over G is an r x An matrix D = (d;;) with entries from G
such that for any i,k € {1,...,7}, i # k, each element of G appears A\ times
in the form di_jldkj. We call X the index of D. An (n,r;\)-difference matriz
can be transformed into another (n,r; \)-difference matriz by permuting columns,
permuting rows, multiplying all the elements of a row on the right by an element
of GG, and multiplying all the elements of a column on the left by an element of
G. Employing these operations we may transform any difference matrix into a
normalized difference matrix, that is, one in which every entry in the first row and
first column is the identity. Given a normalized (n,r;1)-difference matriz over a
group G, the second row is a listing of the elements of G and the third through
rth rows, regarded as permutations of the second row, form a set of r — 2 pairwise
orthogonal normalized orthomorphisms of G: this construction can be reversed.
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Table 1 shows some of the lower bounds for N(n) that have been obtained from
difference matrices with the corresponding groups: this data is from [11].

n N(n) = The group

12 5 GF(3)" x GF(4)*
15 4 GF(3)t x GF(5)*
21 5 GF(3)t x GF(7)*"
24 7 GF(3)t x GF(8)*
28 5 GF(4)t x GF(7)*
33 5 GF(3)* x GF(11)*
35 5 GF(5)" x GF(7)*
36 8 GF(4)t x GF(9)*
39 5 GF(3)" x GF(13)*
40 7 GF(5)" x GF(8)"
44 5 GF(4)t x GF(11)*
45 6 GF(5)" x GF(9)*
48 8 GF(3)t x GF(16)*"

Table 1: MOLS from groups.

Problem 4. For a finite group G determine w(G) or improve bounds on w(G).

Problem 4 has only been completely answered for small groups, elementary
abelian groups (see Corollary 3), and for groups with nontrivial, cyclic Sylow 2-
subgroups (See Theorem 5).

2.5. Maximal sets of MOLS. Given a maximal set of pairwise orthogonal or-
thomorphisms of a group finite G, is the corresponding set of MOLS also maximal?
The answer to this question is yes. This was implicitly proved by Ostrom [50] in
1966 in the language of nets.

Theorem 10 (Ostrom, 1966). Let G be a finite group of order n and let M be its
Cayley table. If 01, ...,0, is a mazimal set of pairwise orthogonal orthomorphisms
of G, then M, My, , ..., My, is a mazimal set of MOLS of order n.

As an example, the orthomorphism of Zr, depicted in Figure 3, is not orthog-
onal to any other orthomorphism of Z;. Hence, by Theorem 10, the latin squares
in Figure 1 form a maximal set of 2 MOLS of order 7. A difference matrix over a
group G is mazimal if it cannot be extended to a larger difference matrix over G
by adding rows. As a corollary to Theorem 10 we obtain the following.

Corollary 4. If there exists a mazimal (n,r;1, G)-difference matriz, then there
exists a mazximal set of r —1 MOLS of order n.

All maximal (n,r; 1, G)-difference matrices over groups of order at most 10 were
determined by Jungnickel and Grams [37] in 1986. In 1991 Evans [17] generalized
Corollary 4.
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Theorem 11 (Evans, 1991). If there exists an (n,r; 1, G)-difference matrixz D for
which mD = (D ... D), i.e., m consecutive copies of D, is maximal and if either
m = 1 or there exist a set of r —1 MOLS of order m, then there exists a maximal
set of r — 1 MOLS of order nm.

Theorem 11 was used to prove the following.

Theorem 12 (Evans, 1991). If n = mp", p a prime, ged(m,p) = 1, and either
m = 1 or there exist a set of p—1 MOLS of order m then there exists a maximal
set of p—1 MOLS of order n.

The proof of Theorem 12 was obtained by generalizing the construction of a
maximal set of p — 2 pairwise orthogonal orthomorphisms of Z,-, p a prime. In
1992 Evans [18] used quadratic orthomorphisms to construct two infinite classes
of maximal sets of MOLS.

Theorem 13 (Evans, 1992). Let p > 7 be a prime.

(1) If p = 3 (mod 4), then there exists a mazimal set of (p — 3)/2 MOLS of
order p.

(2) If p = 1 (mod 4), then there ezists a mazimal set of (p — 1)/2 MOLS of
order p.

The maximal sets of MOLS, constructed in Theorem 13, are obtained from
maximal sets of pairwise orthogonal orthomorphisms of GF(p)™ that are con-
structed in the following way. If p is a prime and [A, B] is a nonlinear, quadratic
orthomorphism of GF(p)*, then [A, B] is orthogonal to precisely (p—7)/2 linear or-
thomorphisms of GF (p)™, forming a set of (p—5)/2 pairwise orthogonal orthomor-
phisms of GF(p)™. If p =3 (mod 4), then this set is maximal. If p =1 (mod 4),
then [B, A] must be included yielding a maximal set of (p —3)/2 pairwise orthogo-
nal orthomorphisms of GF(p)*. As examples, [7,7],[8, 8], [2, 6] is a maximal set of
3 pairwise orthogonal orthomorphisms of GF(11)", and [6, 6], [7, 7], [10, 10], [2, 5],
[5,2] is a maximal set of 5 pairwise orthogonal orthomorphisms of GF(13)".

In 1993 Pott [54] gave a simpler proof of Theorem 13 using a result of Rédei.
Using a computer and cyclotomic orthomorphisms, a generalization of quadratic
orthomorphisms, Pott found a maximal set of 2 MOLS of order 13, a maximal set
of 4 MOLS of order 13, a maximal set of 3 MOLS of order 17, a maximal set of 4
MOLS of order 17, a maximal set of 3 MOLS of order 19, and a maximal set of 6
MOLS of order 19.

2.6. Strong complete mappings and Knut Vic designs. Let G = {g1,...,9,}
be a group of order n. The normal multiplication table of G is the n x n array
with 7jth entry gigj_l. Strong complete mappings are important in determining
the existence of latin squares orthogonal to both N and the Cayley table M of G.

Theorem 14. Let G be a finite group with Cayley table M and normal multipli-
cation table N. There ezists a latin square orthogonal to both M and N if and
only if G admits a strong complete mapping.
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Proof. See [22]. O

In fact, if 6 is a strong complete mapping of G, then Mjy is orthogonal to both
M and N. In the special case G = Z,, = {0,1,...,n — 1}, any latin square L
orthogonal to both the Cayley table of G and the normal multiplication table of
G is a Knut Vic design: these are characterized by each broken left and right
diagonal being a transversal.

Problem 5. Which finite groups admit strong complete mappings?

Problem 5 was implicitly solved for cyclic groups in papers by Hedayat and
Federer [28] in 1975 and Hedayat [27] in 1977.

Theorem 15 (Hedayat, Federer, 1975 & 1977). Z,, admits strong complete map-
pings if and only if ged(n,6) = 1.

As a consequence of Theorem 5, if the Sylow 2 subgroup of a finite group G
is nontrivial and cyclic, then G cannot admit strong complete mappings. In 1990
Evans [16] and Horton [29] showed that the structure of the Sylow 3-subgroup also
plays a role in determining the existence of strong complete mappings.

Theorem 16. If a finite group G has a nontrivial, cyclic Sylow 3-subgroup that
is a homomorphic image of G, then G does not admit strong complete mappings.

The special case of Theorem 16, G abelian, was proved by Horton and the
general case by Evans. For finite abelian groups the existence of strong complete
mappings is completely determined by the structure of the Sylow 2-subgroups and
the Sylow 3-subgroups: this was proved by Evans [21] in 2012.

Theorem 17 (Evans, 2012). A finite abelian group with a trivial or noncyclic Sy-
low 2-subgroup and a trivial or noncyclic Sylow 3-subgroup admits strong complete
mappings.

In light of Theorem 5, it is natural to ask whether it is true that a finite
group with a nontrivial, cyclic Sylow 3-subgroup does not admit strong complete
mappings. The answer to this question was shown to be no by Shieh, Hsiang, and
Hsu [57], who described a strong complete mapping of D2, the dihedral group of
order 12. Since then, Evans [22] has shown a number of classes of dihedral groups
and quaternion groups to admit strong complete mappings, as well as most groups
of order at most 31. Let Dyi, = (a,b | a®* = b? = 1,ab = ba~') denote the dihedral
group of order 4k, and Qu; = (a,b | a®* = 1,b> = a*,bab~! = a~!) the quaternion
group of order 4k. Evans’ results are given in Theorems 18, 19, and 20.

Theorem 18. Ds does not admit strong complete mappings. If ged(m,6) = 1,
then Dy, Diom, Digm, and Day,, admit strong complete mappings.

Similar results hold for the quaternion groups.
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Theorem 19. Qg does not admit strong complete mappings. If ged(m,6) = 1,
then Q1gm and Qo4 admit strong complete mappings.

The following is the result of a computer search for strong complete mappings.

Theorem 20. All groups of order at most 31 admit strong complete mappings
with the following exceptions:
(1) any group with nontrivial, cyclic Sylow 2-subgroups,
(2) any group G with a nontrivial, cyclic Sylow 3-subgroup that is a homo-
morphic image of G,
(3) Ds, and
(4) @s.

3. Group labeling problems

In this section we will discuss group sequencings, which can be constructed from a
class of near complete mappings: these arose in the construction of complete latin
squares. We will also discuss two variants of group sequencings, R-sequencings
and harmonious orderings, both of which can be constructed from classes of or-
thomorphisms.

3.1. Group sequencings. A sequencing of a group G of order n is an ordering
agp = 1,a1,a9,...,a,_1 of the elements of G such that the partial products by =
ap =1, by = apay, by = apaias ,...,bp_1 = apaqas - --a,_1 are distinct. We say
that a group is sequenceable if it possesses a sequencing.

Group sequencings were introduced by Gordon [25] in 1961 in the construction
of complete latin squares. A latin square L = {l;;} of order n is row complete
if the n(n — 1) ordered pairs (l;;,0; j41), ¢ =1,...,nand j = 1,...,n — 1, are
distinct, column complete if the n(n — 1) ordered pairs ({;5,0;4+1,5),i=1,...,n—1
and j =1,...,n, are distinct, and complete if it is both row complete and column
complete.

Theorem 21 (Gordon, 1961). Let ag,a1,az,...,a,—1 be a sequencing of a group
G of order n and let by, b1,ba,...,b,_1 be the corresponding sequence of partial
products. Then the n X n matriz with ijth entry {b;lbj} is a complete latin square
of order n.

Proof. See Theorem 2 in [25]. O

Example 1. Let 0,1,8,3,6,5,4,7,2,9 be an ordering of the elements of Z1y. As
the partial sums 0,1,9,2,8,3,7,4,6,5 are distinct this is a sequencing of Zi9. The
associated complete latin square is shown in Figure 4.

The sequencing of Example 1 can be generalized: the ordering

0,1,-2,3,—4,...,2n—3,—(2n — 2),2n — 1
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is a sequencing of Zs,, as the partial sums are

0,1,-1,2,-2,....,n—1,—(n—1),n.

01 9 2 8 3 7 46 5
908 1 7 2 6 3 5 4
12 0 3 9 48 5 76
8 9 706 1 5 2 4 3
2314059 6 87
78 6 95 041 3 2
342516 07 9 8
6 75 8 4 9 3 0 21
4 53 6 2718 09
5 6 4 7 3 8 2 9 10

Figure 4: A complete latin square of order 10.

It should be noted that the complete latin square in Figure 4 can be obtained
from the Cayley table of Z1¢ by permuting rows and columns. This was observed
by Keedwell [38] in 1976.

Theorem 22. A complete latin square can be obtained from the Cayley table of a
finite group G, by permuting rows and columns, if and only if G is sequenceable.

From a sequencing of a group we can construct a near complete mapping of
the group.

Theorem 23. Let ag,a1,as2,...,a,—1 be a sequencing of a group G of order n
and let by, by, ba, ... ,bu_1 be the partial products. Define 6: G\ {b,—1} — G\ {1}
by

Q(bl) = ai+1,i = 0,...,%72.

Then 0 is a near complete mapping of G with exdomain element b,,_.

Proof. First note that {bg,...,bp—2} =G\ {bp_1}.

Now
{0(bg),...,0(bp—2)} ={a1,...,an-1} =G\ {1}
and
{b0b(bo), - - -, bn—20(bn—2)} = {b1,...,bu1} =G\ {1},
from which the result follows. O

As an example, the near complete mapping derived from the sequencing of Z,
described in Example 1, is shown in Figure 5. The exdomain element of this near
complete mapping is 5.
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g 01 23 45617289
6(g) |1 8 6 4 2 9 7 5 3
g+0(g)[1 9 8 7 6 5 4 3 2

Figure 5: A near complete mapping from a sequencing of Zg.

Just as the cycle (¢g ¢1 -+ cgx—1) is used to represent the mapping ¢; — ¢;11,
i=0,...,k—1, the subscripts being added modulo k, the sequence [cy ¢1 -+ cx—1]
is used to denote the mapping is used to represent the mapping ¢; — ciy1, ¢ =
0,...,k—2. Any complete mapping, orthomorphism, near complete mapping, or

near orthomorphism can be written as a product of disjoint cycles and sequences.
The near orthomorphism, g — g+6(g), associated with the near complete mapping
in Figure 5 can be written as the sequence [01 9283746 5].

In 1984 Hsu and Keedwell [34] characterized the normalized near orthomor-
phisms from which group sequencings can be constructed.

Theorem 24 (Hsu, Keedwell, 1984). A group G of order n is sequenceable if and
only if it admits a normalized near orthomorphism that consists of one sequence
of length n.

Proof. Let ag,aq,as,...,a,—1 be a sequencing of a group G of order n and let
bo, b1, b2, ...,b,—1 be the partial products. Then [by by -+ b,_1] is a normalized
near orthomorphism of G.

If [bg by -+ by—1] is a normalized near orthomorphism of G, then setting

1 if i=0,
a; = 1 e
b, b if i=1,...,n—-1,
yields a sequencing aq,...,a,—1 of G. O
Problem 6. Which groups are sequenceable?

Problem 6 was answered for abelian groups by Gordon [25] in 1961.

Theorem 25 (Gordon, 1961). An abelian group is sequenceable if and only if it
has a unique element of order 2.

Proof. See Theorem 1 in [25]. O

The situation is different for nonabelian groups. Order 10 appears to be a
dividing line.

Theorem 26. No nonabelian group of order less than 10 is sequenceable.

Proof. See Gordon [25]. O
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However, the nonabelian group of order 10, the dihedral group Do = (a,b |
a® = b? = 1,ab = ba~!) is sequenceable. 1,ba,a*, ba?,b,ba* a? a,ba® a® is a
sequencing for this group. In 1983 Keedwell [40] conjectured that nonabelian
groups of order less that 10 were the only nonsequenceable nonabelian groups.

Conjecture 1 (Keedwell). All nonabelian groups of order at least 10 are sequence-
able.

Keedwell’s conjecture has been proved true for many classes of groups.

Theorem 27 (Anderson, 1987). All nonabelian groups of order n, 10 < n < 32
are sequenceable.

Proof. See [1] and [2]. O
Theorem 28 (Anderson, 1987). As and S5 are sequenceable.
Proof. See [1]. O

The proof that the dihedral groups satisfy Keedwell’s conjecture is the result
of work by several mathematicians, whose work is described in the dynamic sur-
vey [49] by Ollis.

Theorem 29. The dihedral group of order 2n, Dy, n =5, is sequenceable.

There are a number of results for binary groups: a group is binary if it has
exactly one involution. Theorem 25 can be restated as, a finite abelian group is
sequenceable if and only if it is a binary group. Keedwell’s conjecture has been
proved for binary solvable groups.

Theorem 30 (Anderson and Thrig, 1993). All binary solvable groups, except the
quaternion group of order 8, are sequenceable.

Proof. See [3]. O

Anderson and Thrig actually proved the stronger result that solvable groups
with a unique element of order 2 are symmetrically sequenceable. A symmetric
sequencing of a group G of order 2n, with a unique element u of order 2, is a
sequencing ag = 1,a1,as,...,a:,—1 of G for which a, = u and a,_; = a;}ri,
1 =1,2,....,n— 1. A group is symmetrically sequenceable if it possesses a sym-
metric sequencing. A number of other groups have been shown to be sequenceable
including many binary groups and groups of odd order: see [49] for details.

3.2. R-sequencings. An R-sequencing of a group G of order n is an order-
ing ag = 1,a1,a9,...,ap—1 of the elements of G such that the partial products
bo = ag = 1, b1 = apaiy, b2 = apaiaz ..., bn_g = apai1ag - - ap_o are distinct and
agaias -+ -a,—1 = 1. A group is R-sequenceable if it possesses an R-sequencing.
R-sequencings were introduced by Paige [53] in 1951 as a sufficient condition for a
group to admit complete mappings, equivalently orthomorphisms. they were also
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used by Ringel [55] in 1974 in his solution of the map coloring problem for all com-
pact 2-dimensional manifolds except the sphere. Note that in and R-sequencing
of a finite group G exactly one element of G does not appear as a partial product.

Theorem 31. Let ag,a1,as9,...,a,—1 be an R-sequencing of a group G of order
n, let by, b1, ba,...,bh_o be the corresponding sequence of partial products, and let
c be the element of G that is not in the list of partial products. Then, the mapping
0: G — G defined by

bi-’rl Zf g:biaizoala"'aniga
0(g) =qbo if g="Dbpna,
c if g=c,
is an orthomorphism of G.
Proof. Routine. O

An immediate consequence of Theorems 5 and 31.

Corollary 5. If G is a finite R-sequenceable group, then its Sylow 2 subgroup is
either trivial or non-cyclic.

As an example 0,12,2,10,4,8,6,5,9,3,11,1,7 is an R-sequencing of Z;3. The
partial sums are 0,12,1,11,2,10,3,8,4,7,5,6, missing 9. The associated ortho-
morphism is shown in Figure 6.

g 0 1 2 3456 7 8 9 10 11 12
6lg) |12 11 10 8 7 6 0 5 4 9 3 2 1
flg) —g|12 10 8 5 3 1 7 11 9 0 6 4 2

Figure 6: An orthomorphism of Z3.

The orthomorphism in Figure 6 is the cycle (01211121038 475 6). In
1984 Hsu and Keedwell [34] characterized the normalized orthomorphisms from
which R-sequencings can be constructed.

Theorem 32 (Hsu, Keedwell, 1984). A group G of order n is R-sequenceable if
and only if it admits a normalized orthomorphism that consists of one cycle of
length n — 1.

Proof. Similar to the proof of Theorem 24. O
Problem 7. Which finite groups are R-sequenceable?

Cyclic groups of odd order were shown to be R-sequenceable groups by Fried-
lander, Gordon, and Miller [24] in 1978.
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Theorem 33 (Friedlander, Gordon and Miller, 1978). If n is odd, then Z, is
R-sequenceable.

Proof.

0,-1,2,-3,4,...,—(2n—1),2n,2n — 1, —(2n — 2),
2n—3,—(2n—4),...,3,-2,1,—2n

is an R-sequencing of Zy4,,+1, and

0,-1,2,-3,4,...,—(2n—1),2n,—(2n + 2),2n + 3,
—(2n+4),...,—4dn,dn+1,—(4n+2),2n + 2
is an R-sequencing of Z4;, 4 3. O

There are many other classes of R-sequenceable groups known: see Ollis [49].

3.3. Harmonious groups. A harmonious ordering of a group G of order n is
an ordering ag = 1,a1,as,...,a,—1 of the elements of G such that the products
apai, a1as, G2as3,..., an_16g are distinct. G is a harmonious group if it possesses
a harmonious ordering. Harmonious groups were introduced by Beals, Gallian,
Headley, and Jungreis [5] in 1991.

Theorem 34. If ag = 1,a1,a2,...,0,—1 1S a harmonious ordering of a group
G, of order n, then the mapping a; — a;a;,41, indices added modulo n, is an
orthomorphism of G.

Proof. Routine. O

As an example, 0,1,2,...,n — 1 is a harmonious ordering of Z, if n is odd.
The associated orthomorphism is ¢ — 2¢ + 1. Note that this orthomorphism is
not normalized, and that its associated complete mapping ¢ — ¢ + 1 is a cycle of
length n. Beals, Gallian, Headley, and Jungreis characterized complete mappings
from which harmonious orderings can be constructed.

Theorem 35. A group G of order n is harmonious if and only if it admits a
complete mapping that consists of one cycle of length n.

Proof. Routine. O
An immediate corollary of Theorems 5 and 34.
Corollary 6. Finite groups with nontrivial cyclic 2-groups are not harmonious.

Beals, Gallian, Headley, and Jungreis [5] discovered an additional class of non-
harmonious groups.

Theorem 36 (Beals, Gallian, Headley, and Jungreis, 1991). The additive group
of the finite field GF(2™) is not harmonious.
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Problem 8. Which finite groups are harmonious?

Beals, Gallian, Headley, and Jungreis [5] completely characterized finite abelian
harmonious groups and showed all groups of odd order to be harmonious.

Theorem 37 (Beals, Gallian, Headley, and Jungreis, 1991). Groups of odd order
are harmonious.

Theorem 38 (Beals, Gallian, Headley, and Jungreis, 1991). Abelian groups, ez-
cept GF(2™)%, with trivial or noncyclic 2-groups, are harmonious.

In addition, several dihedral and quaternion groups have been shown to be
harmonious: See Ollis [49]

4. Neofields

Neofields were first introduced in 1949 by Paige [52]: they were also the subject
of his 1947 Ph.D thesis [51]. A left neofield is a set N with two binary operations,
addition and multiplication, satisfying the following:

1. The elements of N form a loop under addition, with identity O.
2. The nonzero elements of N form a group under multiplication, with identity 1.

3. The left distributive law holds: a(b+ ¢) = ab + ac for all a,b,c € N.

A left neofield is called a meofield if the right distributive law is also satisfied.
For a neofield or left neofield we will use N* to denote the additive loop and N*
to denote the multiplicative group of nonzero elements.

Loops that can be the additive loop of a left neofield can be characterized by
their automorphism groups.

Theorem 39. A loop can be the additive loop of a left neofield if and only if it
admits an automorphism group that acts sharply transitively on its nonidentity
elements.

Proof. Let N be a left neofield and, for each ¢ € N*, define 7,: N — N by
74(a) = ga. Then {7, | ¢ € N*} is an automorphism group of N* that acts
sharply transitively on the nonzero elements of N.

Conversely, let L be a loop written additively with identity 0. Let us assume
that G is an automorphism group of L that acts sharply transitively on the nonzero
elements of L. We will use G to define multiplication on L. Pick a nonzero element
of L and denote it 1 and for each nonzero element a € L, let 7, denote the unique
element of G satisfying 7,(1) = a. Define multiplication on L by:

Tqo(b) if a,b#0.
With this multiplication L is a left neofield. O

{0 if a=0orb=0,
ab =
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An automorphism of a left neofield N is a bijection a : N — N for which a(a+
b) = a(a)+a(b), and a(adb) = a(a)«x(b), for all a,b € N. Clearly the automorphism
group Aut(N) of a left neofield N is a subgroup of the automorphism group of
N*, as well as a subgroup of the automorphism group of NT.

4.1. Orthomorphisms and near orthomorphisms. The presentation function
of a left neofield N is the mapping 8: N — N defined by 0(z) = 1 +z. A
left neofield NV is complete determined by its multiplicative group N* and its
presentation function 6 as, if a,b # 0, then

a+b=a(l+a"'b) =ab(a'b).

The presentation function of a left neofield N is essentially an orthomorphism or
near orthomorphism of N* depending on whether 1 +1 = 0 in N or not. Bruck
(see [52], Theorem I.1) implicitly established the connection between neofields with
multiplicative group G and orthomorphisms and near orthomorphisms of G. Later
in 1984 Hsu and Keedwell [34] generalized this result to establish a correspondence
between left neofields with multiplicative group G and orthomorphisms and near
orthomorphisms of G. Neofields in which 1 + 1 = 0 can be constructed from
orthomorphisms.

Theorem 40 (Hsu, Keedwell, 1984). Let G be a group, written multiplicatively
with identity 1, let 6 be a normalized orthomorphism of G, and define 8': GU{0} —
GU{0} by
0 if g=1,
0'(9) =41 if 9=0,
0(g) if g#0,1.
Then ¢ is the presentation function of a left neofield in which 1 +1 = 0.

Proof. Let N = G U {0} and define addition and multiplication in N as follows.
Multiplication is as in G except that Oa = a0 = 0 for all @ € N. To define addition,

Y if =0,
r+y=
20 (z7ty) if x #0.

N is then a left neofield, with presentation function #’, in which 1+1=0. O

This construction can be reversed.

Theorem 41 (Hsu, Keedwell, 1984). Let 0 be the presentation function of a left
neofield, in which 1 + 1 = 0, with multiplicative group G. Define 8': G — G by

/ _ 1 if g=1,
9(9)_{9@) if g#1.

Then 0’ is a normalized orthomorphism of G.
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Proof. Routine. O
The constructions of Theorems 40 and 41 establish a one-one correspondence.

Corollary 7. There is a one to one correspondence between the set of normalized
orthomorphisms of a group G and the set of left neofields, in which 1+1 = 0, with
multiplicative group G.

Neofields in which 1+ 1 # 0 can be constructed from near orthomorphisms.

Theorem 42 (Hsu, Keedwell, 1984). Let G be a group, written multiplicatively
with identity 1, let 0 be a normalized near orthomorphism of G, with exdomain
element t, and define 0': GU {0} — G U {0} by

0 Zf g:ta
0'(g) =141 if g=0,
0(g) if g#0,t.

Then O is the presentation function of a left neofield in which 1+t = 0.
Proof. Similar to the proof of Theorem 40. O
This construction can be reversed.

Theorem 43 (Hsu, Keedwell, 1984). If 0 is the presentation function of a left
neofield, in which 1 +t =0, t # 1, with multiplicative group G, then 0, restricted
to G\ {t}, is a normalized near orthomorphism of G with exdomain element t.

Proof. Similar to the proof of Theorem 41. O
The constructions of Theorems 42 and 43 establish a one-one correspondence.

Corollary 8. There is a one to one correspondence between normalized near or-
thomorphisms of a group G and left neofields, in which 1+1 # 0, with multiplicative
group G.

4.2. Properties of left neofields. We have associated to each neofield N a
normalized orthomorphism of N* if 141 = 0 or a normalized near orthomorphism
with exdomain element ¢ if 1 +¢ = 0 and t # 1. Thus properties of neofields
and their additive loops can, in principle, be determined from their associated
normalized orthomorphisms or normalized near orthomorphisms.

For normalized orthomorphisms of a group G the following maps will prove
useful. For a € Aut(G) the homology H, is defined by H,[0] = afa~!; the
reflection R is defined by R[0](z) = z0(x~'); and the inversion I is defined by
I[0)(z) = 6~ (z). All of these mappings map normalized orthomorphisms to nor-
malized orthomorphisms. Homologies, and reflections preserve orthogonality, but
inversion does not. However, if 6 is a normalized orthomorphism, then there is a



Applications of complete mappings and orthomorphisms 25

one-one correspondence between the normalized orthomorphisms orthogonal to 6
and the normalized orthomorphisms orthogonal to I[f] that preserves orthogonal-
ity. For more information about these and other mappings that map orthomor-
phisms into orthomorphisms see [19].

For normalized near orthomorphisms these same maps will be useful. The
homologies and reflection are defined as for normalized orthomorphisms, but in-
version must be defined differently. If 6 is a normalized near orthomorphism of a
group G with exdomain element ¢, then I[0] is defined by I[0](z) = t~10~ (tz).
The exdomain element for H, is a(t), and the exdomain element for both R[6]
and I[0] is ¢t~

Theorem 44. When acting on the set of normalized orthomorphisms of a group,
the following relationships hold between homologies, reflection and inversion.
(1) HoHpg = Hug,

(2) R?Z=1,
(3) H,R=RH,,
(4) I’ =1,
(5) HoI =1IH,,
(6) (IR)®=1.
Proof. Routine. O

The relationships in Theorem 44 still hold for actions on the set of normalized
near orthomorphisms of a group except, possibly, for the last (IR) = 1. If 6 is
a normalized near orthomorphism with exdomain element ¢, then (IR)3[0] = 6 if
te Z(G) and t? = 1.

The homologies that fix the normalized orthomorphism or normalized near
orthomorphism associated with a left neofield determine automorphisms of the
left neofield and instances of the right distributive law.

Theorem 45. Let 0 be a normalized orthomorphism or normalized near ortho-
morphism of a group G, let N be the left neofield constructed from 6, and let

a € Aut(G).
(1) « extends to an automorphism of N, by setting a(0) = 0, if and only if
H,[0] =6.
(2) If a(z) = ¢ twc then Hyl0) = 6 if and only if (a + b)c = ac + be for all
a,be N.

Proof. (1). If a,b # 0 then a(a + b) = a(a) + a(b) if and only if a(af(a=tb)) =
a(a)f(a(a=1b)) if and only if a(8(a=1b)) = O(a(a™tb)). By setting z = a(a™1b),
this is seen to be true if and only if ada~!(z) = (x). Hence the result.

(2). If any of a, b, or ¢ is zero then (a + b)c = ac+ be. If a,b,c # 0 then
(a+b)c = ab(a"tb)c and ac+bec = acf(c~ra"tbc) and af(a='b)c = ach(c ta=tbe)
if and only if H,[0] = 6. O

An immediate corollary.
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Corollary 9. If N is the left neofield constructed from a normalized orthomor-
phism or a normalized near orthomorphisms 0 of a group G, then

Aut(N) = {a € Aut(G) | Ha[0] = 0}.

Theorem 45 yields a characterization of those normalized orthomorphisms and
normalized near orthomorphisms that correspond to neofields.

Corollary 10. Let 0 be a normalized orthomorphism or mormalized near ortho-
morphism of a group G, and let N be the left neofield constructed from 6. Then
N is a neofield if and only if H,[0] = 0 for all o € Inn(G).

Corollary 11. If 0 is a normalized near orthomorphism of a group G with exdo-
main element t corresponding to a neofield, then the t € Z(G).

Proof. By Corollary 10, H,[0] = 6 for all a € Inn(G). As the exdomain element
of H,[0] is a(t), a(t) =t for all o € Inn(G). The result follows. O

Let N be a left neofield. N is commutative if N is commutative and abelian
if N* is abelian. N has the right inverse property if for all a € N there exists
(—a)r € N such that (x 4+ a) + (—a)g = = for all z € N. N has the left inverse
property if for all a € N there exists (—a), € N such that (—a)r + (a +2) =«
for all z € N. N has the inverse property if it has both the left and right inverse
properties. N has the exchange inverse property if for all a € N there exists
(—a)r € N such that (—a)p + (z+a) =z for all z € N. If a left neofield N is con-
structed from a normalized orthomorphism or normalized near orthomorphism 6,
then the properties N satisfies are determined by which elements of (R, I) fix 6.

Lemma 1. Let N be a left neofield in which 1+t =0, t £ 1. If N is commutative,
satisfies the left inverse property, or satisfies the right inverse property, then t*> = 1.

Proof. If N is commutative, then ¢t +1 = 0 and so (1 +¢~1) = 0, from which it
follows that ¢~ = ¢.

If N has the right inverse property then (—t)g =1 as (14+1¢)+ (—t)g =1 and
then (0 +¢) + 1 = 0, which again implies that t? = 1.

If N has the left inverse property then (—1);, = ¢ as (—1), + (1 4+¢) = ¢ and
then ¢ + (1 + 0) = 0, which again implies that ¢*> = 1. O

Theorem 46. Let 0 be a normalized orthomorphism of a group G, or a normalized
near orthomorphism of G with exdomain element t, and let N be the left neofield
constructed from 6.

(1) N is commutative if and only if R[0] = 0.

(2) Ift € Z(G) then N has the right inverse property if and only if IRI[0] = 6.

(3) N has the left inverse property if and only if 1[0] = 6.

(4) Ift € Z(G) then N has the inverse property if and only if I[0] = 6 and

IRI[0) = 6.
(5) N has the exchange inverse property if and only if RI[0] = 6.
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Proof. We will give the proof for the special case 6 a normalized orthomorphism:
thus a + a = 0 for all @ € N. The proof for the case 6 a normalized near ortho-
morphism is similar except that it requires Lemma 1.

N is commutative if and only if a + b = b + a, for all a,b # 0, if and only if
af(a=tb) = bO(b~1a), for all a,b # 0, if and only if #(a=1b) = (a=1b)8((a"1b)1),
for all a,b # 0, if and only if R[f](a"'b) = 0(a~1b), for all a,b # 0, if and only if
R[0] = 6.

If N has the right inverse property, then, as (0+a)+(—a)g =0, (—a)gr = a. If
a,z # 0, then (z+a) +a = z if and only if 0(8(z~ta)"1z71a) = §(z~'a) ! if and
only if 8(yf~1(y~1)) =y, where y = f(z~ta)~L, if and only if y8~1(y=1) = -1 (y)
if and only if RI[0](y) = I[0](y) if and only if TRI[0] = 6.

A similar proof shows that N has the left inverse property if and only if I[6] = 6.

N has the inverse property if and only if N has both the right and left inverse
properties, if and only if I[] = 0 and IRI[0] = 6.

If N has the exchange inverse property then (—a);, = a. If a,x # 0, then
a+ (z +a) =z if and only if af(a~'20(x~1a)) = z if and only if RI[0](a™'z) =
0(a'z), if and only if RI[0] = 6. O

Further correspondences between the properties of neofields and properties of
the corresponding near orthomorphisms can be found in [39]. These properties
were used in Hsu [31] in 1980 to classify cyclic neofields, i.e. neofields in which the
multiplicative group is cyclic.

5. Final remarks

This survey of applications of complete mappings and orthomorphisms, and the
related near complete mappings and near orthomorphisms is not exhaustive. We
have tended to emphasize applications in which there is a clear relationship be-
tween properties of the mappings and properties of the algebraic and combinatorial
structures constructed from them.

In Section 3, there are a number of variants of group sequencings that we did not
cover: symmetrically harmonious orderings, R*-sequencings, and 2-sequencings for
instance. Readers interested in pursuing these topics should consult Ollis [49] or
the chapter on sequenceable and R-sequenceable groups in Dénes and Keedwell’s
book [13].

Readers who want to know more about neofields should consult the papers by
Hsu and Keedwell [34, 35] or the more recentpaper by Keedwell [41].

A number of applications are described in the papers in the reprint volumes [32,
33], edited by Hsu, and in the papers by Hsu and Keedwell [34, 35]. Other appli-
cations include the construction of Bol loops by Niederreiter and Robinson [48],
Mittenthal’s [47] use of orthomorphic mappings in cryptography, Wanless’ [59] use
of cyclotomic orthomorphisms in the construction of atomic latin squares, and Sha-
heen and Winterhof’s [56] use of complete permutation polynomials to construct
check digit systems.



28

A. B. Evans

References

(1
2]
(3]

[4]
[5]
[6]
(7]
18]
(9]

[10]
[11]

[12]
[13]

[14]
[15]

[16]
[17]

[18]
[19]
20]

[21]

B.A. Anderson, S5, As and all non-abelian groups of order 32 are sequenceable,
Congr. Numer. 58 (1987), 53-68.

B.A. Anderson, A fast method for sequencing low order non-abelian groups, Ann.
Discrete Math. 34 (1987), 27-42.

B.A. Anderson and E.C. Ihrig, Every finite solvable group with a unique element
of order two, except the quaternion group, has a symmetric sequencing, J. Combin.
Des. 1 (1993), 3-14.

L. Baumert and M. Hall Jr., Nonezistence of certain planes of order 10 and 12,
J. Combin. Theory Ser. A 14 (1973), 273-280.

R. Beals, J.A. Gallian, P. Headley and D. Jungreis, Harmonious groups, J.
Combin. Theory Ser. A 56 (1991), 223-238.

R.C. Bose, I.M. Chakravarti and D.E. Knuth, On methods of constructing
sets of mutually orthogonal latin squares using a computer I, Technometrics 2 (1960),
507-516.

J.N. Bray, personal communication.

M.L. Cates and R.B. Killgrove, One-directional translation planes of order 13,
Congr. Numer. 32 (1981), 173-180.

A. Cayley, On the theory of groups as depending on the symbolical equation 0" = 1,
Phil. Mag. 7 (1854), 40-47.

A. Cayley, On the theory of groups, Proc. London Math. Soc. 9 (1877/78), 126-133.

C.J. Colbourn and J.H. Dinitz (ed.), Handbook of combinatorial designs, 2nd
ed. Chapman and Hall, CRC, Florida (2007).

J.Dénes and A.D. Keedwell, Latin squares and their applications, English Uni-
versities Press, London (1974).

J.Dénes and A.D. Keedwell, Latin squares: New developments in the theory and
applications, Annals Discrete Math. 46, North Holland (1991).

A.B. Evans, Orthomorphisms of Zp, Discrete Math. 64 (1987), 147-156.

A.B. Evans, On planes of prime order with translations and homologies, J. Geom.
34 (1989), 36-41.

A.B. Evans, On strong complete mappings, Congr. Numer. 70 (1990), 241-248.

A.B. Evans, Mazimal sets of mutually orthogonal Latin squares I, Europ. J. Com-
binatorics 12 (1991), 477-482.

A.B. Evans, Mazimal sets of mutually orthogonal Latin squares II, Europ. J. Com-
binatorics 13 (1992), 345-350.

A.B. Evans, Orthomorphism graphs of groups, Lecture Notes Math. 1535,
Springer-Verlag (1992).

A.B. Evans, The admissibility of sporadic simple groups, J. Algebra 321 (2009),
105-116.

A.B. Evans, The eristence of strong complete mappings, Electronic J. Combin. 19
(2012), # P34.



Applications of complete mappings and orthomorphisms 29

[22]
23]

[24]
[25]
[26]

27]

[28]
[29]
[30]
131]
132
133
[34
[35]
[36]
137
[38]
[39]
[40]
[41]

42]

A.B. Evans, The strong admissibility of finite groups: an update, submitted.

A.B. Evans and R.L. Mcfarland, Planes of prime order with translations, Congr.
Numer. 44 (1984), 41-46.

R.J. Friedlander, B. Gordon and M.D. Miller, On a group sequencing problem
of Ringel, Congr. Numer. 21 (1978), 3077-321.

B. Gordon, Sequences in groups with distinct partial products, Pacific J. Math. 11
(1961), 1309-1313.

M. Hall and L.J. Paige, Complete mappings of finite groups, Pacific J. Math. 5
(1955), 541-549.

A. Hedayat, A complete solution to the existence and non-ezistence of Knut Vic
designs and orthogonal Knut Vic designs, J. Combin. Theory Ser. A 22 (1977),
331-337.

A. Hedayat and W.T. Federer, On the non-existence of Knut Vic designs for
all even orders, Ann. Statist. 8 (1975), 445-447.

J.D. Horton, Orthogonal starters in finite abelian groups, Discrete Math. 79 (1990),
265-278.

J. Hsiang, D.F. Hsu, and Y.-P. Shieh, On the hardness of computing problems
of complete mappings, Discrete Math. 277 (2004), 87-100.

D.F. Hsu, Cyclic neofields and combinatorial designs, Springer-Verlag, Lecture
Notes Math. 824 (1980).

D.F. Hsu (ed.), Advances in discrete mathematics and computer science, vol I,
Neofields and combinatorial designs, Hadronic Press (1985).

D.F. Hsu (ed.), Advances in discrete mathematics and computer science, vol. II,
Generalized complete mappings, Hadronic Press (1987).

D.F. Hsu and A.D. Keedwell, Generalized complete mappings, neofields, se-
quenceable groups and block designs. I, Pacific J. Math. 111 (1984), 317-332.

D.F. Hsu and A.D. Keedwell, Generalized complete mappings, neofields, se-
quenceable groups and block designs. II, Pacific J. Math. 117 (1985), 291-312.

D.M. Johnson, A.L. Dulmage and N.S. Mendelsohn, Orthomorphisms of
groups and orthogonal latin squares, I. Canad. J. Math. 13 (1961), 356-372.

D. Jungnickel and G. Grams, Mazimal difference matrices of order < 10, Dis-
crete Math. 58 (1986), 199-203.

A.D. Keedwell, Latin squares P-quasigroups and graph decompositions, Recueil
des Travaux de I'Institute Mathématique, Belgrade, N.S. 1(9) (1976), 41-48.

A.D. Keedwell, The ezistence of pathological left neofields, Ars Combinatoria 16B
(1983), 161-170.

A.D. Keedwell, Sequenceable groups, generalized complete mappings, neofields and
block designs, Lecture Notes Math. 1036 (1983), 49-71.

A.D. Keedwell, Construction, properties and applications of finite neofields, Com-
ment. Math. Univ. Carolin. 41 (2000), 283-297.

A.D. Keedwell, Latin squares and their applications, 2nd edition (in press).



30

A. B. Evans

[43]
4]
[43]
J46]
[47]
J48]
J49]
150]

[51]
52]
[53]
[54]
[55]

[56]
[57]
[58]
[59]

[60]

F. Lazebnik and A. Thomason, Orthomorphisms and the construction of pro-
jective planes, Math. Comp. 73 (2004), 1547-1557.

H.B. Mann, On orthogonal latin squares, Bull. Amer. Math. Soc. 50 (1944), 249—
257.

B.D. McKay, J.C. McLeod and I.M. Wanless, The number of transversals in
a latin square, Des. Codes Cryptogr. 40 (2006), 269-284.

N.S. Mendelsohn and B. Wolk, A search for a nondesarguesian plane of prime
order, Lecture Notes Pure and Appl. Math. 103 (1985), 199-208.

L. Mittenthal, Block substitutions using orthomorphic mappings, Adv. in Appl.
Math. 16 (1995), 59-71.

H. Niederreiter and K.H. Robinson, Bol loops of order pq, Math. Proc. Camb.
Phil. Soc. 89 (1981), 241-256.

M. A. Ollis, Sequenceable groups and related topics. Dynamic survey, Electronic J.
Combin. 20(2) (2013), #DS10v2.

T.G. Ostrom, Replaceable nets, net collineations, and net extensions, Canad. J.
Math. 18 (1966), 666-672.

L.J. Paige, Neofields, PhD dissertation, University of Wisconsin, 1947.

L.J. Paige, Neofields, Duke Math. J. 16 (1949), 39-60.

L.J. Paige, Complete mappings of finite groups, Pacific J. Math. 1 (1951), 111-116.
A. Pott, Mazimal difference matrices of order q, J. Combin. Des. 1 (1993), 171-176.

G. Ringel, Cyclic arrangements of the elements of a group, Notices Amer. Math.
Soc. 21 (1974), A95-96.

R. Shaheen and A. Winterhof, Permutations of finite fields for check digit sys-
tems, Des. Codes Cryptogr. 57 (2010), 361-371.

Y.-P. Shieh, J. Hsiang, and D.F. Hsu, On the existence problems of complete
mappings, preprint.

I. Studicka, Non-ezistence of Cartesian groups of order 2p™, Comment. Math.
Univ. Carolin. 13 (1972), 721-725.

I.M. Wanless, Atomic latin squares based on cyclotomic orthomorphisms, Elec-
tronic J. Combin. 12 (2005), # R22.

S. Wilcox, Reduction of the Hall-Paige conjecture to sporadic simple groups, J.
Algebra 321 (2009), 1407-1428.

Received May 15, 2015

Department of Mathematics and Statistics, Wright State University, Dayton, Ohio, USA
E-mail: anthony.evans@wright.edu



