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Some computational results

concerning the spectrum of sets of latin squares

Rafael A. Arce-Nazario, Francis N. Castro, Javier Córdova,

Kenneth Hicks, Gary L. Mullen, and Ivelisse M. Rubio

Abstract. We discuss some computational problems concerning the distribution of orthogonal

pairs in sets of latin squares of small orders.

1. Introduction

A latin square of order n is an n × n array in which each of n distinct symbols
appears exactly once in each row and each column. Two latin squares of order n
are orthogonal if when superimposed, each of the possible n2 ordered pairs occurs
exactly once. We refer to [1] Chapter III, along with [2], [3], and [6] for discussions
of latin squares and their applications.

Given a pair L1, L2 of latin squares of order n, let r = N(L1, L2) denote the
number of distinct ordered pairs which occur when L1 and L2 are superimposed.
If r distinct ordered pairs occur, we say that the latin squares L1 and L2 are
r-orthogonal.

We note that N(L1, L2) = N(L2, L1) and we clearly have n 6 r 6 n2 for any
pair of latin squares of order n. The upper bound r = n2 is obtained if L1 and L2

are orthogonal. The lower bound r = n can always be obtained, for example, by
letting L1 = L2. The spectrum for latin squares of order n is the set of all possible
r values that can occur between the above bounds of n and n2. Theorem 3.104,
page 190 of [1] gives the following spectrum for pairs of latin squares.

Theorem 1.1. For a positive integer n, a pair of r-orthogonal latin squares of

order n exists if and only if r ∈ {n, n2} or n+ 2 6 r 6 n2 − 2, except when

1. n = 2 and r = 4;

2. n = 3 and r ∈ {5, 6, 7};
3. n = 4 and r ∈ {7, 10, 11, 13, 14};
4. n = 5 and r ∈ {8, 9, 20, 22, 23};
5. n = 6 and r ∈ {33, 36}.
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2. The spectrum for more than two squares

Assume that the latin squares L1 and L2 are r-orthogonal. Because of the following
argument, we can assume that the �rst row is in the standard order 1, 2, . . . , n.
Assume that we apply a permutation φ1 to the entries of L1 in order to permute the
symbols to put the �rst row in standard order. Similarly, apply a permutation φ2
to the entries of L2 to also obtain a new square whose �rst row is in standard order.
Then we have a pair (a, b) occuring when the squares L1 and L2 are superimposed
if and only if the pair (φ1(a), φ2(b)) occurs when the two permuted squares are
superimposed. We can thus assume that the �rst row in each square is in standard
order.

We may also assume that the left column in one of the squares is also in
standard order (such a latin square is then said to be reduced). From the above
argument, we can assume the �rst rows of both squares are in standard order.
Now interchange the rows of the �rst square by applying a permutation to rows 2
through n of both squares so that this square now has both the �rst row, and the
�rst column, in standard order (and is thus a reduced latin square). Now apply
the same permutation to rows 2 through n of the second square. We will then
have one reduced square, and the second square will have its �rst row in standard
order. Moreover the resulting two squares will still be r-orthogonal.

We now consider a set of t > 2 latin squares of order n. Let rn(t) denote the
number of distinct pairs which arise when each possible pair of distinct squares is
checked to determine their level of r-orthogonality. We clearly have(

t

2

)
n 6 rn(t) 6

(
t

2

)
n2.

Moreover, rn(n − 1) =
(
n−1
2

)
n2 if and only if we have a complete set of n − 1

mutually orthogonal latin squares of order n. Equivalently, this bound is achieved
if and only if there is a projective plane of order n; see Theorem 3.20, page 162 of
[1]. The function rn(n− 1) thus provides a measure of how close one is to having
a complete set of n− 1 mutually orthogonal latin squares (MOLS) of order n; or
equivalently, a projective plane of order n. In [7] the conjecture that projective
planes of order n and complete sets of MOLS of order n exist if and only if n is a
prime power is proposed as the �Next Fermat Problem.� If there is a complete set
of n− 1 MOLS of order n, then rn(t) =

(
t
2

)
n2 for each 2 6 t 6 n− 1.

In [5] the authors used neo�elds to study the case rn(n− 1) where n > 2 was
an even positive integer. For any such n, they constructed n − 1 latin squares
of order n, with the property that any two distinct squares had an r value of
r = 5n− 4. As a result, r6(2) > 26 (it is known from Theorem 1 that r6(2) = 34),
r6(3) > 78, r6(4) > 156, and r6(5) > 260. Later in [4] these values for n = 6 were
improved to r6(3) > 94, r6(4) > 178, and r6(5) > 295.

In the following we will improve these values and provide considerable compu-
tational data for latin squares of small orders. For the sake of completeness, we
include some data for squares of orders n < 6.
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From our earlier discussion, when testing t squares, we may assume that one
square is reduced and the remaining t − 1 squares each have their �rst row in
standard order (such squares are said to be semi-reduced). Thus the total number
of tests for t latin squares of order n will be

ln((n− 1)!ln)
t−1 = [(n− 1)!]t−1ltn,

where ln is the number of reduced latin squares of order n. For small values of n,
our calculations were �rst based upon this brute-force method.

During our calculations, we observed that the use of isotopy classes can save
considerable computing time and thus allow us to handle larger values of t. For
instance, the execution time for computing the maximum orthogonality for n = 6,
t = 5 was decreased to 305 CPU-days by using isotopy classes, a 22× speedup vs.
ignoring the use of isotopy classes. Two latin squares of order n are isotopic if one
can be obtained from the other by applying a permutation φ to the rows of one of
the squares, then applying a permutation ψ to the columns of the resulting square,
and �nally applying a permutation δ to the symbols of the resulting square.

Representative squares for each of the isotopy classes of squares of order at
most six are given on pages 129-137 of [2]. The cardinalities of the isotopy classes
were given to us by Ian Wanless.

Theorem 2.1. Assume that A is a latin square of order n and that after consid-

ering all of the pairs (A,X) where X runs through the set of all semi-reduced latin

squares of order n, we obtain the nonzero r values r1, . . . , rk. Assume that B is

a latin square of order n which is isotopic to A, and that after considering all of

the pairs (B,X) where X runs through the set of all semi-reduced latin squares of

order n, we obtain the nonzero r values r′1, . . . , r
′
m. Then k = m and ri = r′i for

i = 1, . . . , k.

Proof. Let φ, ψ, δ be the row, column and symbol permutations respectively such
that when applied to the latin square A we obtain the latin square B. Then, for
each entry ai,j in A, we obtain the entry bk,l = bφ(i),ψ(j) = δ (ai,j) in B. Consider
the square X ′ with entries x′k,l = x′φ(i),ψ(j) = δ′ (xi,j), where xi,j is an entry in

X and δ′ is the permutation δ′
(
xφ−1(1),ψ−1(1)

)
= 1, δ′

(
xφ−1(1),ψ−1(2)

)
= 2, · · · ,

δ′
(
xφ−1(1),ψ−1(n)

)
= n. Then X ′ is a semi-reduced latin square. Now, (ai,j , xi,j)

is a pair occurring when A and X are superimposed if and only if
(
bk,l, x

′
k,l

)
is

a pair occurring when B and X ′ are superimposed. This implies that there is
a correspondence between pairs (A,X) with r distinct ordered pairs and pairs
(B,X ′) with r distinct ordered pairs.

We brie�y discuss our search procedure when determining the spectrum of
orthogonality for t squares. With 9408 distinct reduced and 1128960 distinct
semi-reduced latin squares of order 6, the number of cases to check at level t with
a brute-force approach is (9408)(1128960)t−1. Hence, at n = 6, increasing t by
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one requires about 106 times longer to �nish a complete calculation. For example,
for n = 6 and t = 5, it would take many months on a standard personal computer
(or years on a single-CPU machine) to do this calculation.

Consider the case t = 3 and assume the results for the number of pairs for t = 2
are already stored in computer memory. If the maximum in the spectrum for t = 2
is m2, then clearly the maximum of the spectrum for t = 3 is m3 < 3 ∗m2. To
see if this limit is reached, one can scan the list of combinations of squares Li and
Lj which, at level t = 2, have a number of pairs equal to m2 and look for a third
square, Lk which has nik pairs with square Li and njk pairs with square Lj . The
maximum for this case is then m2 + nik + njk. This provides a lower bound for
m3.

Proceeding in a similar manner, choose the next lowest value in the spectrum
for t = 2, call it nij . At level t = 3, it is only necessary to look for a square Lk
such that nij +nik +njk is above the lower bound found above. As nij decreases,
this requires the value nik + njk to increase. Hence there are many fewer cases to
calculate.

Extrapolating this algorithm to level t = 4, one starts with the maximum
number of pairs found for t = 3, with three squares, and scans for a fourth square
that maximizes the total number of pairs, which provides a lower bound for m4.
Next, we scan the squares for the next lowest in the spectrum for t = 3 and check
for a fourth square that could exceed this bound. Similarly, the same algorithm
applies to higher values of t.

The above algorithm was described in terms of �nding the maximum of the
spectrum of total pairs at level t, but a similar algorithm can be used to deduce
the minimum number of pairs. It should also be understood that the algorithm
can be adapted to �nd the second lowest (or second highest), in the spectrum at
level t. With care, the complete spectrum at level t is obtained.

At the website http://emmy.uprrp.edu/latinsquares/ we provide consider-
able more detail for squares of small orders. For example, we provide histograms
which indicate the frequencies with which the various values of r occur in the
spectrum. Also, for n 6 6 we provide an example of a set of t latin squares of
order n which achieve each of the values of r listed in the spectrum for squares of
order n considered t at a time.

2.1. Squares of orders 2 and 3

For n = 2, there are only two di�erent latin squares, and the spectrum in this case
is simply the value r = 2.

For n = 3 and t = 2, the spectrum only contains the values r = 3 and r = 9.

2.2. Squares of order 4

For n = 4 and t = 2 the spectrum is:

4, 6, 8, 9, 12, 16
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For n = 4 and t = 3, the spectrum is:

12, 16, 20, 21, 22, 26, 27, 28, 30, 32, 33, 34, 36, 40, 48

2.3. Squares of order 5

In the following, when listing say x − y in a spectrum, we mean that x, y and
every value between x and y are included in the spectrum.

For n = 5 and t = 2 the spectrum is:

5, 7, 10− 19, 21, 25

For n = 5 and t = 3 the spectrum is:

15, 19, 24, 25, 27, 29− 59, 63, 75

For n = 5 and t = 4 the spectrum is:

30, 36, 38, 43, 45, 46, 48− 120, 122, 124, 126, 130, 132, 150

2.4. Squares of order 6

In this section we provide similar data for latin squares of order 6. As a result, we
will improve the values listed in [4] for n = 6 with t = 3, 4, 5.

For n = 6 and t = 2, the spectrum is given by

6, 8− 32, 34

The value r = 36 is of course missing from the spectrum since there is no pair
of MOLS of order 6.

For n = 6 and t = 3 the spectrum is

18, 22, 24− 94, 96

For n = 6 and t = 4 the spectrum is

36, 39, 42, 44− 184, 188

For n = 6 and t = 5 the spectrum is

60, 68, 72, 74, 75, 76, 77, 78, 80− 298, 300

As a result of the above data we are now able to improve three values from
[4]. In the following table, the values in the K/M column come from [5]; those in
the D/S column come from [4] and the values in the last column come from the
various spectrums listed above.
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t K/M D/S M6(t)
2 26 34 34
3 78 91 96
4 156 178 188
5 260 295 300
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