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On regular medial division algebras

Sergey S. Davidov

Abstract. We prove a Toyoda’s type theorem for regular medial division n-ary groupoids and

regular medial division algebras without unary operations.

1. Introduction

We recall that the algebra (@, X) is said to be medial (entropic), if it satisfies the
mediality hyperidentity (for hyperidentities see [13]), i.e., for any f,g € X:

Flg(@11y s ®1n)y ooy G @ity ooy Tmn)) = 9(F (X115 ooy T )y ooy STy ooy Tmn ). (1)

In particular, the n-ary groupoid Q(f) is said to be medial, if it satisfies the
identity:

f(f(l‘ll, ...7.’171n), ceny f(LUn]_, ,l‘nn)) = f(f(.%‘ll’ ...7J,‘n1)7 ceey f(.’l?]_n, ,.Z'nn))

It should be noted here that medial identity studies have been made under
various names: abelian, alternation, bi-commutative, bisymmetric, entropic, sur-
commutative.

Medial systems were studied by many authors (Sade, Stein, Toyoda, Bruck, Be-
lousov, Kurosh, Smith, Romanowska, Dudek, Jezek, Kepka, Movsisyan, Shcherba-
cov and others). Medial systems are connected with the notion of entropy in
information theory [18], and have some applications in cybernetics, economics,
physics and biology.

In [16], multiplicative semigroups of a field are characterized by the Cayley
type theorem, using the transitive mode (i.e., an idempotent and medial algebra
[17).

Some special types of medial n-ary groupoids are described in [4] and [5]. Some
aspects of binary medial algebras are considered in [3].

The n-ary groupoid Q(f) is called an n-ary quasigroup or in short, an n-quasi-
group, if in the equation f(z1,...,2,) = Tp41 any n elements of x1, 29, ..., Tpn, Tni1
uniquely determine the remaining one.

In [2] V.D. Belousov proved the following theorem. (This theorem follows from
results of T. Evans ([7], Theorem 6.2), too.)
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Theorem 1.1. Let Q(f) be a medial n-ary quasigroup. Then there exist an abelian
group Q(+), its pairwise commuting automorphisms aq, .. ., ay, and an element a
of the set @ such that

f(@1,20, ... 2n) = anzy + Q2o + ... + Ay + @
foralz, €Q,i=1,...,n. ]

The classical Toyoda theorem (see [1]) follows from Theorem 1.1.

Let G(-) be a groupoid and a € G. Denote by L, (R,) the map of G to G such
that L,(x) = ax (Re(x) = za) for all x € G .

A groupoid G(-) is said to be a division groupoid if L, and R, are surjective
for every a € G.

A groupoid G(+) is called left regular if R, = R}, whenever a,b € G and ca = cb
for some ¢ € G. Right regular groupoids are defined dually. A groupoid is regular
if it is both left and right regular.

The following characterization of medial regular division binary groupoids was
obtained by Kepka ([10]).

Theorem 1.2. A groupoid G(-) is a regular medial division groupoid if and only
if there exist an abelian group G(+), two surjective endomorphisms f,g of G(+),
and an element a € G such that fg = gf and -y = f(x) + g(y) + a, for all
x,y € G. O

In this paper we generalized the Kepka theorem for medial regular division
n-ary groupoids and medial regular division algebras without unary operations.

2. Preliminary notions and results

First we introduce some notations. The sequence x,,,Zn11, ..., T is denoted by
™ or {z;}", where n,m are natural numbers, n < m. If n = m, then 2! is an
element z,. The sequence a,a,...,a (m times) is denoted by a™. The operations

on the set ) are denoted by A, B,C or (a}) = b and [a}] = b. The nonempty set
@ with an n-ary operation A is called an n-ary groupoid or in short, an n-groupoid.

Let Q(A) be an m-groupoid and A(z7*) = y. If we replace x,,Tk,,..., Tk
(n < m) by fixed elements a1, as,...,a, in A(z}), then we obtain

n

k-1 ka—1 bn—1
A(xll aalaxk?+1va’27'"7xk”71+15an7x21+1)'
Thus we get a new operation B(:r]fl_l,xﬁf;%, oozt ) with the arity, m — n.
The (m — n)-groupoid, Q(B), is called the retract of the m-groupoid Q(A).
Let Q( ) be an n-groupoid. Denote by @ the sequence af € @ and by L;(a) the
map from @ to @ such that

L@z = (a1...a;-12a;11 ... ay) = (a} 'zal,)
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for all x € Q. The map L;(@) is called the i-translation with respect to a.

An n-groupoid Q( ) is called a division n-groupoid if every L;(a) is a surjection
foralla € @ and all i = 1,...,n. Note that every retract of the medial division
n-groupoid also is medial.

An n-groupoid Q( ) is i-regular if L;(@) = L;(b), whenever a,b € Q and
L;(@)c = L;(b)c, for some ¢ € Q. An n-groupoid Q( ) is regular if it is i-regular,
for every i = 1,...,n. Note that our i-regularity is different from the regularity
proposed bt Sioson (see for example [6]).

It is clear that every retract of the regular n-groupoid also is regular.

The triplet T = (o, 3,7) of maps of Q(-) into itself is called an endotopy of
Q(-) if the identity y(z -y) = ax - By is true for all 2,y € Q. The third component
~ of this endotopy is called a quasiendomorphism. In the case o« = § = v the
triplet T = (v, ~,7) is called an endomorphism.

The following two lemmas are proved in [19].

Lemma 2.1. Any quasiendomorphism v of a group, Q(+) has the form:

Y= §8707 (2)

where o is an endomorphism of the group Q(+), ﬁs(x) =xz+s, 5 €Q, and,
conversely, the map ~y defined by (2) is a quasiendomorphism of the group Q(+).
O

Lemma 2.2. Let v be a quasiendomorphism of the group, Q(4). Then v is
endomorphism i and only if v(0) = 0, where 0 is the identity element of the group

Q(+)- O

The groupoid Q(+) is homotopic to the groupoid Q(x) if there exist three maps
a, 3,7 of Q to @ such that y(z xy) = ax - By for all z,y € Q. The homotopy of
the form T = («, 3, €), where ¢ is the identity map, is called principal.

Lemma 2.3. If the group Q(x) is principally homotopic to the group Q(-), then
xxy=a-k-y for somek € Q and oll x,y € Q.

Proof. We have = x y = ax - By, where «, 3 are the maps of @ to (). Putting in
this equality: y = e and z = e, where e is the identity element of the group Q(x),
we obtain:

r=azxr-Pe, y=ae- Gy,
ie.,
az=z(Be)”!,  By=(ae) "y

Therefore, we get: x*y = (z-(Be)™1) - ()t y)=a-k-y. O
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3. Main results

Theorem 3.1. Let Q( ) be a regular medial division n-groupoid. Then there
exist an abelian group Q(4), its pairwise commuting surjective endomorphisms
Q1,...,0n, and a fired element b € Q) such that

(122 .. 2p) = (2]) = 0qx1 + 02 + ... + apxy + b
forallz; €Q,i=1,...,n.

Proof. The proof is by induction on n. For n = 2, the assumption follows from
Theorem 1.2. Suppose the theorem is true for all natural numbers which are less
than n. Let us write the medial identity as a matrix:

11 T12 Tin
T21  X22 Tan

: (3)
Tnl Tn2 Tnn

({zij}j=1) = vi, ({zis}iz1) = 2

Then, the medial identity can be represented as:
(wr) = (7). (4)

Consider the following matrix:

a a a a a
Iy a a a a
a g X3 X4 In
a a a a a
a a a a a

For y; and z; from (4), we have:

y‘:(CLTL):b, 7/7&2737 _

y; = (z10"7") = amxy 21 = (ama™) = fay,

Ys = ((11'”) 7 7= (anianig) = M4, ( # 17
- 2/

where «, 8, p are some surjections from @ to Q. Thus, from (4), we obtain:

(b7 axTy, (axg)a bni&) = (ﬁzla {/L:Ci}?:Q)'

Let A(u,v) = (b,u,v,b"3). Then Q(A) is a regular, medial and division
groupoid.
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Let
B(zy) = (ax3). (5)

Then B is a regular, medial and division (n — 1)-ary operation.
By the assumption, there exist abelian groups Q(®) and Q(+) such that:

A(u,v) = yu @ dv @ d,
B(uf) = MugFAzuzt. ..+ puntc,

where d, ¢ € Q, v,d are commuting surjective endomorphisms of the group Q(&)
and \; i = 2,...,n, are pairwise commuting surjective endomorphisms of the group

Q).
Thus, (5) has the form A(axy, B(x4)) = (Bx1, {ux:}y), ie.,

yazy ® §(Aaza+Azxs+ ... FAxntc) & d = (Bry, {ux;}y). (6)

Let h,, be the map of Q to @ such that ph, = ¢ (¢ is the identity map of Q to Q);
then, from (6), we obtain:

yazy & 6(AehyzatAshuzst ... FAnhyzntc) & d = (Bay, 2h).

There exists an element a1 € @ such that yaa; & d = Og, where Og is the identity
of the group Q(®). Hence, we get:

§(Aahyzot ... FAnhyz,+c) = (Bay, 25).

The retract (Baq, 2%) is an (n—1)-ary regular, medial, division groupoid; there-
fore, there exist: an abelian group Q(+) and its commuting surjective endomor-
phisms ¢; (i =2,...,n), such that:

S(Ahumat ... F N huxntc) = poma + . o+ Yntn + 1= oxo + ...+ QLxn,  (7)
where ¢}, = pnx, + 1 and | € Q. Let us rewrite (6) in the form:
yahgzy © 6(Aahyzot ... A hyzy+e) & d = (zF)
where hg = e. Using (7), we get (z7) = yahgz1 ® (p2x2 + ...+ @hx,) D d, ie.,
(@]) = mz1 & (p222 + ... + PpTn), (8)

where m 21 = yahga;. It follows from (8), that 7 is a surjection.
Now we consider the retract, (z7'"'a). By the inductive assumption, there
exists an abelian group Q(x) such that:

(ljllfla) = U1T1 K 2T * ..k Uy 1Tp—1 * h, (9)
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where p; (i =1,...,n— 1) are commuting surjective endomorphisms of the group

Q(x) and h € Q.

Substituting a for z,, in (8) and taking into account (9), we obtain:
TT1 B (P22 4« oo+ Oy 1Tp—1) = HITL * UoTo * ... % [y Tp_1, (10)
where ¢}, _1Zn_1 = On_1Tn—1+ ©ha, M, _1Tp—1 = fn—1Tn—1 * h.

Choose the elements a}~* such that pzaz +...+¢,_ja,_1 = 0, where 0 is the
identity of the group Q(+); then from (5) we get:

TIT1 D Paly = 1T * [lyT2,
where phro = poxo * pzas * ... * puk_ja,_1; therefore pf is a surjection.
Hence, z1 * 22 = mh,,x1 ® @Qhuél'g, where p1h,, = ¢ and M'zh#; = ¢. Thus,
the groups Q(*) and Q(@®) are principally homotopic and, by Lemma 2.3, we get:
UDv=axvx*l. (11)

Now we choose the elements aq, aff_l such that ma; = 0g and pgaq + ... +
¢! _1an—1 = 0. Then, from (10), we obtain:

P20s + p3a3 = fIoTa * (1573,
where pf is a surjection. By Lemma 2.3, we have:
udv=a+ v+ I (12)
Combining (11) and (12), we obtain:
udv=a+ v+ 1" (13)
According to (13), we get from (8):
(7)) = mxr + paxo + ...+ @Lxn +1" = 1o+ ..+ Ypz, +o (14)

where 91, ...,1, are surjections.

Note that we can assume in (14) that ¥;,0=0,i=1,...,n.

Now, we prove that ¢; (i = 1,...,n) are endomorphisms of the group Q(+),
and ¥;¢; = ¢;¢; for all 4,5 € {1,...,n}. Let us consider the following retract of
matrix (3).
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where z;; = u, ;. = v and other elements are equal to 0. For y; and z;, we have:

zZ; =Yiu+r
Yi = wju—mlzkv—i-r, J Vi ’
=r if s#1 2 =Yiv
o ’ zs =1, if s# 4,k
Thus,
(y?) = (r' 1 bju + Yrv + e,
(21) = (Tjﬂa Y+ 7P o 4o, r”’k).
Hence,

(ri_la ¢]U + Qﬁk;’l} + T, Tn_i) = (rj_la wlu + T, ’rk—j_la wiv + T Tn_k)'

From the last equality, by (14), we obtain:

1—1 n
Zwsr+¢i(¢ju+¢kv+r)+ Z 1/Js’l"+7‘:
s=1 s=i+1

j—1
D ber i (u ) + Z st + Yk (i +7) + Z par
s=1

s=j+1 s=k+1

From this equality we get:
Yi(Yju+ Prv + 1) = i (Yiu + 1) + e (v + 1) + ¢, (15)

where ¢ is some element of Q. Substituting hy, v and hy, (v —r) for v and v in
(15), respectively, we obtain:

Yi(u+v) = (Wil u+7) + hr(Pihy, (v —7) + 1) +1
ie.,
Yi(u+v) =ou+ Tv,

where ¢ and 7 are some maps of Q to Q. Thus, ¥; is a quasiendomorphism of
the group Q(+). Since, ¥;0 = 0, it follows from Lemma 2.2 that each v; is an
endomorphism of the group Q(+).

If we take v = 0 in (15) and since 1; is an endomorphism of the group Q(+),
we have:

¢i¢ju + Yr = %wzu + ¢j’l‘ + pr + L. (16)

Now, if we take w = 0 in (16), we obtain: ¢;r = ¥;r + ¢r + t. Substituting
Wpir + Ygr +t for ¢;r in (16), we get: ¥;9;u = ;¢,u. To conclude the proof, it
remains to note that ¢, j are arbitrary. O
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Denote by L (@) the i-translation of the algebra (Q, ¥) with respect to@ € Q!
(JA] is the arity of the operation A) and the operation A € ¥, namely:

L;A(E)J} = A(a'lv s A1, T, it 1y - - - 70'\14\)'

The algebra (Q, ) is a division (invertible) algebra, if every L (@) is a surjec-
tion (bijection), for alla € Q4! Ac S andi=1,...,|A|

(Q,X) is i-regular if LA(@) = L (b), whenever a,b € QI41, A € ¥ and LA (a)c =
LA(b)e, for some ¢ € Q. If (Q,X) is is i-regular for all i = 1,...,|A|, then it is
called regular.

Theorem 3.2. Let (Q, %) be a regular medial division algebra. Then there exists
an abelian group Q(+) such that every operation A € ¥ has the representation:

A(z1,.. .y mpa) = Piar + ..+ oy T4+ ta, (17)

where i ..., <p|‘i‘4| are pairwise commuting surjective endomorphisms of the group
Q(+) and t4 is a fized element of Q.

Proof. According to Theorem 3.1, every operation A € ¥ (JA| = m) has the form:
A1, am) = Q1@ +a - +a Pipm +at, (18)

where the abelian group Q(+4) corresponds to the operation: A € ¥. Let us
rewrite medial hyperidentity (1) (in terms of the operations, +4 and +p5) in the
following way:

80’14(801135511 +5...+BPBT1, +BtE) tAa...+a @ﬁ(@?$m1 +B ...+ BTyt
BtB) +ata =P otz +a.. +a0htmi +ata) +5 ...+ 05 (i1t
FA AP T +atA) +B B

If we take each of x;; equal to Op, (where Op is the identity of the group
Q(+5)), besides x17 and T, in the last equality, then we obtain:

ot (pPri1 +ptB) +a +oa (B2, +BtE) +aca
= Bz +a k1) +B 0B (0A 200 +a k2) +5 B,

where c4,cp, k1 and ko are some elements of the set Q.
From the last equality we get:

oz +4 +BTmn = Y211 +B 0Tmn,

where «, 3,7, are surjective maps of @ to Q.
Thus, the groups Q(+4) and Q(+p) are homotopic and, by Lemma 2.3, we
obtain:

r+ay=x+BY+Bk, (19)
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T+BY=T+aYy-+at, (20)
for some k,t € Q.
We fix the operation +p and further we denote it by +. According to (18) and
(19), for the operation A € ¥ we have:

Az, ..., Tm) zap‘f‘xl 4+a4...+a4a go,‘?lxm +AtA:g0{3x1 +5...+B gofxn +pug =

go‘f‘xl —|—...+g0;?1xm+uA.

Since the operation A is arbitrary, we have proved that every operation A € ¥
has the form:

A@1,y o T) = P11+ o+ P+ uA. (21)

Let us prove that cpf‘ (¢t = 1,...,m) are quasiendomorphisms of the group
Q(+). According to (19) and (20), we have:

et @+y) = (@ +ay+at) =0l v +a+oly+aol=plz+ay,

where « is a map of Q to Q. Thus, ¢ is a quasiendomorphism of the group Q(+)
and, by Lemma 2.1, we have:

ot = Ry,
where v € End Q(+). Hence, from (21), it follows that:
ATy, .. @) =Yl + . YTy, 4 dg,
where d4 € Q.

Similar to the proof of Theorem 3.1, we can show that the endomorphisms !
are pairwise commuting for all ¢ =1,...,|A| and A € 3. O

Analogously we can prove the following theorem.

Theorem 3.3. Let (Q,X) be a medial invertible algebra. Then there exists an
abelian group Q(+) such that every operation A € X has the representation:

A(z1,...,2p4) = o, +...+<p|‘i‘4|x‘A| +ta,

where i, ..., @ﬁl are pairwise commuting automorphisms of the group Q(+) and
ta is a fized element of Q. O
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