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New signature scheme based on

di�culty of �nding roots

Nikolai A. Moldovyan and Victor A. Shcherbacov

Abstract. There are considered two digital signature schemes based on di�culty of �nding the
wth roots in the �nite ground �elds GF (p). The �rst scheme uses the prime value p = Nt0t1t2+1,
where N is an even number; t0, t1, t2 are prime numbers such that |t0| ≈ |t1| ≈ |t2| ≈ 80 bits.
The public key is de�ned as follows Y = Kw1

1 Kw2
2 , where w1 = t0t1 and w2 = t0t2. The second

scheme uses the value p = Nt1t2 + 1, and the public key composed of two values Y1 = Kt1
1 Kt2

2

mod p and Y2 = Kt1
3 Kt2

4 mod p, where four numbers K1, K2, K3, and K4 are the private key.

1. Introduction

There are well known signature schemes based on the di�culty of �nding discrete
logarithms [1] and factorization [3, 6] problems.

In paper [2] it has been proposed the signature scheme based on di�culty of
�nding the kth roots in the �nite �elds GF (p) such that p = Nk2 + 1, where k is
su�ciently large prime having the size | k |> 160 bits and N is even number such
that the size of p is | p |> 1024 bits.

To provide faster signature generation and veri�cation procedures it is interest-
ing to design signature schemes based on the last problem de�ned over the elliptic
curves (ECs) [5] having the order divisible by the square of large prime k. However
generating the EC with required order is an open problem. In the present paper
there are considered other approaches to designing signature schemes based on
di�culty of �nding roots in the �nite ground �elds. The proposed approaches can
be applied with using the ECs.

2. The �rst signature scheme

2.1. Algorithms for signature generation and veri�cation

For the synthesis of the DS schemes it can be used complexity of �nding the roots of
large degree modulo prime p in the case of the modulus structure p = Nt0t1t2 +1,
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where N is even number; t0, t1, t2 are prime numbers such that |t0| ≈ |t1| ≈ |t2| ≈
80 bits. In such signature schemes the di�culty of �nding the wth roots is de�ned
by di�culty of performing large number of checks that are required to �nd a value
that can be represented as the wth power of some number.

It is supposed performing computations in the multiplicative group of the �nite
ring (Zp,+, ·). The security of the DS scheme using the prime modulus p =
Nt0t1t2 + 1 is de�ned by the fact that procedure of �nding the qth roots, where q
is a prime that divides the group order Ω, can be performed only for Ω/q di�erent
elements of the group. For su�ciently large value q probability that a random
element a can be represented as xq is negligible. Let us consider the construction
of the DS scheme.

The public key Y is formed using two private keys K1 < p and K2 < p that
are selected at random. The public key is calculated as follows Y = Kw1

1 Kw2
2 ,

where w1 = t0t1 and w2 = t0t2. This is a characteristic feature of the considered
signature scheme. The digital signature is a triple e, S1 and S2. Suppose a message
M is given. The signature generation procedure is performed as follows:

1. Select at random two numbers T1 and T2.
2. Calculate the value R = Tw1

1 Tw2
2 (mod p).

3. Calculate the �rst signature element e: e = F (R,M) = RH (mod w1),
where H is the hash value computed from the message: H = FH(M).

4. Calculate the second signature element S1 using the formula
S1 = T1K

−e
1 (mod p).

5. Calculate the third signature element S2 using the formula
S2 = T2K

−e
2 (mod p).

2.2. The signature veri�cation algorithm

The signature veri�cation algorithm is as follows.
1. Using the given signature (e, S1, S2) calculate the value

R′ = Y eSw1
1 Sw2

2 (mod p).
2. Calculate the value e ′ = F (R′,M) = R′H (mod w1).
3. Compare e ′ with e. If e ′ = e, then the signature is valid.

Proof that signature veri�cation works. If the digital signature has been formed
correctly, i.e., using the true private key in accordance with the speci�ed procedure
for the signature generation, then in step 3 of the signature veri�cation procedure
it is obtained the equality of the values e and e′. On the basis of the equality e = e ′

it is concluded that the signature is valid. Correctness of the signature scheme can
be shown as follows. Substituting into the formula R′ = Y eSw1

1 Sw2
2 (mod p) the

values Y = Kw1
1 Kw2

2 (mod p), S1 = T1K
−e
1 (mod p), and S2 = T2K

−e
2 (mod p)

we obtain:

R′ = (Kw1
1 Kw2

2 )e (T1K
−e
1 )w1 (T2K

−e
2 )w2 (mod p) = Tw1

1 Tw2
2 (mod p) = R,

i.e., the value R′ obtained at the �rst step of the signature veri�cation procedure
is equal to R, therefore e ′ = R′H (mod w1) = RH (mod w1) = e.
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2.3. Possible attacks

Let us consider some attacks on the constructed signature algorithm.

The �rst type attack. In the �rst attack it is supposed that a potential attacker
can do the following attack, including the generation of random values T1 and T2,
then calculate value R = Tw1

1 Tw2
2 (mod p), e = F (R,M) and try to �nd a pair

numbers S1 and S1 such that the following equation Sw1
1 Sw2

2 = RY −e (mod p)
holds, where S1 and S2 are the unknowns.

In this case the right side of the equation has a random value because a function
F (R,M) is a confusion function, for example, a hash function, or function of the
form e = RH (mod w1).

If you set one of the unknowns, for example S2, the equation is transformed
into an equation with unknown S1. In the last equation the right side with negli-
gibly small probability will have a value, at which the last equation is solvable. An
exponentiation operation modulo p is performed to verify condition of the solv-
ability. To obtain the case when the solvability condition is satis�ed, it is required
to perform the described attempt on the average t1 time. When the length of t1
equal to 80 bits or more, the computational complexity of forging the signature
is so high that it is practically infeasible. Similarly, the signature forgery can be
performed with solving some equation relatively unknown S2, when it is required
do t2 described attempts. If the length of the value t2 is equal to 80 bits or more,
then the computational di�culty of such attempt is su�ciently high and the attack
is infeasible.

The second type attack. The second attack model is more sophisticated. In the
second variant it is considered the case in which the attacker generates the value
R = Y u (mod p), calculates e = F (R,M), and tries to �nd a pair of the numbers
S1 and S2 using the formulas S1 = Y s1w1 (mod p) and S2 = Y s2w2 (mod p).

For this representation of the desired values S1 and S2 the expression Y u =
Y eY s1w1Y s2w2 (mod p) holds, if the following relation holds u− e = s1w1 + s2w2

(mod (p− 1)), which is a Diophantine equation for the unknown s1 and s2.
Because w1 = t0t1 and w2 = t0t2, where t0, t1, and t2 are prime numbers,

then this Diophantine equation has a solution in integers only in the case when
the right side of the equation is divisible by the number t0, which is equal to
the greatest common divisor of the coe�cients for the unknowns s1 and s2. The
value e is determined by the formula e = F (R,M) and has a random value. The
probability that a number t0 will divide the number u − e (i.e., the probability
that a Diophantine equation has solutions) is 1/t0.

When the size t0 is equal to 80 bits, for one case the solvability of the Dio-
phantine equation requires on the average to perform 280 attempts to forge the
signature. The di�culty of the last process exceeds 280 exponentiations modulo p.

The third type attack. The most e�ective method for attacking the signature
scheme is based on solving the discrete logarithm problem in the �nite �eld GF (p).
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The method is described as follows. It is easy to �nd a primitive element G, the
degree of which run through all nonzero elements of the �eld GF (p). Then the
public key can be represented as:

Y = Gz = Xw1
1 Xw2

2 = Gx1w1Gx2w2 = Gx1w1+x2w2 (mod p),

where x1 and x2 are the values of the discrete logarithms of the secret key ele-
ments X1 and X2, respectively. The last relation shows that �nding the discrete
logarithm z from the public key to the base G allows one to obtain the equation
z = x1w1 + x2w2 = x1t0t1 + x2t0t2 (mod (p− 1)).

The last equation can be easily solved relatively the unknowns x1 and x2. Its
solvability follows from the fact of the divisibility of numbers z by t0. Let z = z′t0.
Then we have z′ = x1t1 + x2t2 (mod (p− 1)/t0)

From the last relation, for some integer N we obtain the following equation
with two unknowns x1 and x2: z′ + N p−1

t0
= x1t1 + x2t2, from which it follows

z′ = x1t1 (mod t2) ⇒ x1 =
z′

t1
(mod t2)

Similarly, one can obtain a formula for calculating the second unknown x2:
x2 = z′

t2
(mod t1). Thus, the DS scheme proposed in this section requires to use

a prime p, whose size is not less than 1024 bits. In the last case the discrete log-
arithm problem can be considered as practically infeasible one, since its di�culty
estimation is 280 multiplications mod p [4]. Thus, the proposed signature scheme
provides security > 280 for values p having size > 1024 bits.

3. The second signature scheme

3.1. Algorithms for generation and veri�cation signatures

Let us consider another variant of the construction of the DS scheme based on
di�culty of �nding the roots of large degree, which is characterized in using the
two-element public-key. In the construction it is used a prime modulus p having
the following structure p = Nt1t2 + 1, where N is an even number; t1 and t2
are prime numbers such that |t1| ≈ |t2| > 80 bits. In contrast to the DS scheme
described previously, the public key Y is formed in the form of two numbers, which
are calculated using the formulas Y1 = Kt1

1 Kt2
2 mod p and Y2 = Kt1

3 Kt2
4 mod p,

where four numbers K1 < p, K2 < p, K3 < p, and K4 < p are the private key.
The digital signature is a triple e, S1, and S2.

Suppose a message M is given. The signature generation procedure is per-
formed as follows:

1. Select at random two numbers T1 and T2.
2. Calculate the value R = T t1

1 T t2
2 (mod p).

3. Calculate the �rst signature element e: e = F (R,M) = RH (mod w1),
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where H is the hash value computed from the message: H = FH(M). The
value e is represented as the concatenation of two values e1 and e2: e = e1||e2.

4. Calculate second signature element S1 using the following formula

S1 = T1K
−e1
1 K−e2

3 (mod p).
5. Calculate the third signature element S2 using the following formula

S2 = T2K
−e1
2 K−e2

4 (mod p).
The signature veri�cation algorithm is as follows.

1. Using the signature (e, S1, S2) calculate the value
R′ = Y e1

1 Y e2
2 St1

1 St2
2 (mod p).

2. Calculate the value e ′ = F (R′,M) = R′H (mod t1).
3. Compare e ′ with e. If e ′ = e, then the signature is valid.

3.2. Proof that signature veri�cation works

If the digital signature has been formed correctly, i.e., using the true private key in
accordance with the speci�ed procedure of the signature generation, then in step 3
of the signature veri�cation procedure it is obtained the value e ′ equal to e. On the
basis of the equality e′ = e it is concluded about validity of the digital signature.
Correctness of the signature scheme can be proved as follows. Substituting into
the formula R′ = Y e1

1 Y e2
2 St1

1 St2
2 (mod p) the values Y1 = Kt1

1 Kt2
2 (mod p), Y2 =

Kt1
3 Kt2

4 (mod p), S1 = T1K
−e1
1 K−e2

3 (mod p), and S2 = T2K
−e1
2 K−e2

4 (mod p),
we obtain:

R′ = Y e1
1 Y e2

2 St1
1 St2

2 (mod p) =

(Kt1
1 Kt2

2 )e1(Kt1
3 Kt2

3 )e2(T1K
−e1
1 K−e2

3 )t1(T2K
−e1
2 K−e2

4 )t2 (mod p) =

T t1
1 T t2

2 (mod p) = R

i.e., the value R′ obtained at the �rst step of the signature veri�cation algorithm
is equal to R, so e′ = R ′H mod t1 = RH mod t1 = e.

3.3. Security discussion

The variants of the attack presented in Section 2.3 can be also applied against
the second DS scheme. Details of the algorithms for forging the signature are
di�erent, but the used ideas and approaches are similar to the case of attacking
the �rst signature scheme. The �rst two variants of the attack dictate the need of
the choice of the size of prime powers t1 and t2 equal to |t1| = |t2| > 80 bits. The
third type attack, based on solving the discrete logarithm problem, determine the
size of the prime modulus |p| = 1024 bits, which provides 80-bit security of the
considered signature scheme.
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4. Conclusion

The proposed two constructions of the signature algorithms illustrates two new
approaches to design of the digital signature schemes based on the di�culty of
�nding large prime roots in the ground �nite �elds. The cryptosystems can be
broken with solving the discrete logarithm problem in the �nite ground �eld like
in the case of the cryptosystem described in [2]. To obtain the 80-bit security
of the cryptosystems based on di�culty of �nding roots in the �nite �eld GF(p)
one should use the 1024-bit value p. The advantage of the proposed approaches
against the construction introduced in [4] consists in possibility to construct fast
signature schemes based on di�culty of �nding roots in the �nite groups of the
EC points.
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