Recursively r-differentiable quasigroups
within S-systems and MDS-codes

Galina B. Belyavskaya

Abstract. We study recursively r-differentiable binary quasigroups and such quasigroups with an additional property (strongly recursively r-differentiable quasigroups). These quasigroups we find in S-systems of quasigroups and give a lower bound of the parameters of idempotent 2-recursive MDS-codes that respect to strongly recursively r-differentiable quasigroups. Some illustrative examples are given.

1. Introduction

In the article [7], the notion of a recursively r-differentiable k-ary quasigroup which arise in the connect complete k-recursive codes is introduced. The minimum Hamming distance of these codes achieves the Singleton bound.

Let $Q = \{a_1, a_2, \ldots, a_q\}$ be a finite set. Any subset $K \subseteq Q^n$ is called a code of length n or an n-code over the alphabet Q. An n-code is called an $[n,k]_Q$-code if $|K| = q^k$. An $[n,k,d]_Q$-code is an $[n,k]_Q$-code with the minimum Hamming distance d between code words. An $[n,k,d]_Q$-code is an MDS-code if $d = n - k + 1$ ($d \leq n - k + 1$ is the Singleton bound).

A code K is a complete k-recursive code if there exists a function $f : Q^k \rightarrow Q$ ($k \leq n$) such that K is the set of all words $u(0,n-1) = (u(0),\ldots,u(n-1))$ satisfying the condition $u(i+k) = f(u(i),\ldots,u(i+k-1))$ for $i \in 0, n-k-1$, where $u(0),\ldots,u(k-1)$ are arbitrary elements of Q.

This code is a error-correcting code and is denoted by $K(n,f)$. Any subcode $K_1 \subseteq K$ of a complete k-recursive code is called k-recursive.

A complete k-recursive code $K(n,f)$ is called idempotent if the function f is idempotent, that is $f(x,x,\ldots,x) = x$.

Let $n^r(k,q)$ ($n^r(k,q)$) denote the maximal number n such that there exists a complete k-recursive MDS-code (a complete idempotent k-recursive MDS-code) over an alphabet of q elements.

By Theorem 6 of [7], the equality $n^r(2,q) = q+1$ holds for any primary number (prime power) $q = p^a \geq 3$ and by Corollary 4 of [7],

$$n^r(2,q) \geq \min\{p_1^{a_1} + 1, p_2^{a_2} + 1, \ldots, p_t^{a_t} + 1\}$$

2010 Mathematics Subject Classification: 20N05, 94B60, 05B15

Keywords: quasigroup, S-system of quasigroups, orthogonal operations, balanced incomplete block design, recursively r-differentiable quasigroup, recursive MDS-code
if \(q = p_1^{s_1}p_2^{s_2} \cdots p_t^{s_t} \) is the canonical decomposition of the number \(q \).

According to Proposition 10 from [7], \(n_r^r(2, q) \geq q - 1 \) for any primary \(q \geq 3 \).
By Proposition 11 from [7], \(n_r^r(2, p) \geq p \) if \(p \) is a prime number.

For binary function \(f \) a code \(K(n, f) \) the system of check functions has the form \(f^{(i)}(x, y) = f(f^{(i-2)}(x, y), f^{(i-1)}(x, y)) \) for \(i \geq 2 \), where \(f^{(0)}(x, y) = f(x, y) \) and \(f^{(1)}(x, y) = f(y, f^{(0)}(x, y)) \).

In [7] it is proved that \(r \)-differentiable quasigroups correspond to complete recursive codes and various methods of constructions of binary recursively \(1 \)-differentiable quasigroups are suggested. Moreover, in [7] it is proved that for any \(q \in \mathbb{N} \), excepting 1, 2, 6 and possibly 14, 18, 26, 42, there exist recursively \(1 \)-differentiable quasigroups of order \(q \), that is \(n_r^r(2, q) \geq 4 \).

A quasigroup operation \(f \) is called \emph{recursively \(r \)-differentiable} if all its recursive derivatives \(f^{(1)}, f^{(2)}, \ldots, f^{(r)} \) are quasigroups. By Theorem 4 of [7], a quasigroup \((Q, f)\) is recursively \(r \)-differentiable if and only if the code \(K(r + 3, f) \) is an MDS-code. In this case the code words are \((x, y, f^{(0)}(x, y), f^{(1)}(x, y), \ldots, f^{(r)}(x, y))\), \((x, y) \in Q^2\).

V. Abashin in [1] consider special linear recursive MDS-codes with \(k=2 \) or 3. V. Izbash and P. Syrbu in [9] prove that for any \(k \)-ary \((k \geq 2)\) operation \(f \) the equality \(f^{(i)} = f \theta^i \) holds, where \(\theta : Q^k \to Q^k, \theta(x^1_k) = (x_2, x_3, \ldots, x_k, f(x^k)) \) for all \((x^k) \in Q^k\). (Note that this result for \(k = 2 \) was announced in [4]). They also establish a connection between recursive differentiability of a binary group and the Fibonacci sequence.

In this article we establish properties of binary recursively \(r \)-differentiable quasigroups, introduce the notion of a strongly recursively \(r \)-differentiable quasigroup, and find such idempotent quasigroups in \(S \)-systems of quasigroups. A lower bound of \(n_r^r(2, q) \) for complete idempotent strongly \(2 \)-recursive MDS-codes with primary \(q \) is found and illustrative examples are given.

2. Preliminaries

Let \(Q \) be a finite or infinite set, \(\Lambda_Q \) be the set of all binary operations defined on \(Q \). On the set \(\Lambda_Q \) it can be defined the \emph{Mann’s right (left) multiplication} \(A \cdot B \) \((A \circ B)\) of operations \(A, B \in \Lambda_Q \) in the following way:

\[
(A \cdot B)(x, y) = A(x, B(x, y)) = A(F, B)(x, y),
\]

\[
(A \circ B)(x, y) = A(B(x, y), y) = A(B, E)(x, y),
\]

where \(E(x, y) = y, F(x, y) = x \) are the right and the left identity operations.

For any operations \(A, B \in \Lambda_Q \) the equality \((A \circ B)^* = A^* \cdot B^*\) holds, where \(A^*(x, y) = A(y, x) \) (Lemma 4.5 in [2]).

The set \(\Lambda_r(\cdot) \) (the set \(\Lambda_l(\cdot) \)) of all invertible from the right (from the left) operations given on a set \(Q \) forms the group \(\Lambda_r(\cdot) \) (the group \(\Lambda_l(\cdot) \)) under the right (under the left) multiplication of operations.
The operation \(E, F\) are the identity elements of the group \(\Lambda_r(\cdot)\) and \(\Lambda_l(\cdot)\), respectively, and \(A^{-1} \cdot A = A \cdot A^{-1} = E, \quad -A \circ A = A \circ -A = F\), where

\[
A^{-1}(x, y) = z \Leftrightarrow A(x, z) = y, \quad -A(x, y) = z \Leftrightarrow A(z, y) = x.
\]

Every pair \((A, B)\) of operations of the set \(\Lambda_Q\) defines a mapping \(\theta\) of the set \(Q^2\) into \(Q^2\) in the following way:

\[
\theta(x, y) = (A(x, y), B(x, y)), \quad x, y \in Q.
\]

And conversely, any mapping \(\theta\) of the set \(Q^2\) into \(Q^2\) uniquely defines the pair of operations \(A, B \in \Lambda_Q\): if \(\theta(a, b) = (c, d)\), then \(c = A(a, b), d = B(a, b)\), and \((A, B) = (C, D)\) if and only if \(A = C, B = D\).

If \(\theta\) is a permutation on a set \(Q^2\), then operations \(A, B\) defined by \(\theta\) are orthogonal (shortly, \(A \perp B\)), that is the system of equations \(\{A(x, y) = a, B(x, y) = b\}\) has a unique solution for any \(a, b \in Q\). And conversely, an orthogonal pair of operations, given on a set \(Q\), corresponds to the permutation \(\theta\) on the set \(Q^2\).

If \(A, B, C \in \Lambda_Q\), then the new binary operation \(D\) can be defined by the following superposition:

\[
D(x, y) = A(B(x, y), C(x, y))
\]

or shortly, \(D = A(B, C) = A\theta\), where \(\theta = (B, C)\), that is \(D(x, y) = A\theta(x, y)\).

The identity operations \(F, E\) of \(\Lambda_Q\) define the identity permutation \((F, E) = \tau\) on \(Q^2\). The equality \((A, B)\theta = (A\theta, B\theta)\) holds \([2, 3]\).

3. Recursively \(r\)-differentiable quasigroups

Let \((Q, A)\) be a finite quasigroup given on a set \(Q\). Then, the sequence of operations \(A^{(0)}, A^{(1)}, \ldots, A^{(t)}, \ldots\) for \(A\) is defined in the following way:

\[
A^{(0)}(x, y) = A(x, y), \quad A^{(1)}(x, y) = A(y, A^{(0)}(x, y)),
\]

\[
A^{(t)}(x, y) = A(A^{(t-2)}(x, y), A^{(t-1)}(x, y))
\]

for \(t \geq 2\). This sequence can be written shortly as:

\[
A^{(0)} = A(F, E), \quad A^{(1)} = A(E, A^{(0)}), \quad A^{(t)} = A(A^{(t-2)}, A^{(t-1)}), \quad t \geq 2.
\]

According to \([7]\), the operation \(A^{(r)}\) of this sequence is called the \(r\)-th recursive derivative of a quasigroup \((Q, A)\).

By definition, a quasigroup \((Q, A)\) is recursively \(r\)-differentiable if all its recursive derivatives \(A^{(1)}, A^{(2)}, \ldots, A^{(r)}\) are quasigroup operations. In this case, the system of operations \(\Sigma = \{F, E, A, A^{(1)}, A^{(2)}, \ldots, A^{(r)}\}\) is orthogonal (Proposition 7 of \([7]\)).
By Theorem 4 of [7], a quasigroup \((Q, A)\) is recursively \(r\)-differentiable if and only if the 2-recursive code \(K(r + 3, A)\) is an MDS-code.

First we establish some properties of finite binary recursively \(r\)-differentiable quasigroups.

Theorem 1. Let \(A^{(i)}\) be the \(i\)-th recursive derivative of a quasigroup \((Q, A)\) and \(\theta = (E, A)\), then \(A^{(i)} = A\theta^i, \ A^{(i+1)} = (A^{(i-1)}, A^{(i-1)}), \ \theta^2 \neq (F, E)\).

Proof. Note that the mapping \(\theta = (E, A)\) of \(Q^2\) into \(Q^2\) is a permutation since \(A\) is a quasigroup operation. By the definition,

\[
A^{(1)}(x, y) = A(y, A(x, y)) = A(E, A)(x, y) = A\theta(x, y),
\]

\[
A^{(2)} = A(A, A(E, A)) = A(A, A\theta) = A\theta^2,
\]

since \((E, A)^2 = (E, A)(E, A) = (A, A(E, A)) = (A, A\theta)\) whence \((E, A)^2 \neq (F, E)\) as \(A \neq F\).

Let \(A^{(k)} = A\theta^k\) for all \(k, 1 \leq k \leq i - 1\), then by the induction we have

\[
A^{(i)} = A(A^{(i-2)}, A^{(i-1)}) = A(A\theta^{i-2}, A\theta^{i-1}) = A(A, A\theta)\theta^{i-2} = A\theta^{2i-2} = A\theta^i.
\]

From these equalities the second equality of the theorem follows.

Note that, in the general case, the equality \(A\theta_1 = A\theta_2\), where \(\theta_1, \theta_2\) are two permutations not necessarily implies \(\theta_1 = \theta_2\). \(\square\)

The result of Theorem 1 for binary quasigroups was announced in [4] and was generalized for \(k\)-ary quasigroups in [9].

Let \(A^*(x, y) = A(y, x)\), then \(A^* = (A^{-1})^{-1} = -(1)(-1)(-1)\) (see [3]).

Corollary 1. If \(A^{(1)}, A^{(2)}, \ldots, A^{(i)}, \ldots\) are the sequence of the recursive derivatives of a quasigroup \((Q, A)\), then for \(i \geq 1\) we have

\[
A^{(i)} = (A^{(i-1)} \cdot A^*)^* = (A^{(i-1)})^* \circ A,
\]

where \((\cdot)\) and \((\circ)\) are the right and left multiplication of the operations given on the set \(Q\).

Proof. Indeed, by Theorem 1,

\[
A^{(i)} = A\theta^i = A^{(i-1)}(E, A) = (A^{(i-1)})^* \circ A = (A^{(i-1)} \cdot A^*)^*,
\]

since \(A(E, B) = A^* \circ B\) and \((A \circ B)^* = A^* \cdot B^*\). \(\square\)

Proposition 1. Let a quasigroup \((Q, A)\) be recursively \(r\)-differentiable. Then,

\[
A^{(i)} = -1(A^{-1})\text{ for any } i = 0, 1, 2, \ldots, r - 1, \ r \geq 1.
\]

If \(A^{(r+1)} = F, \ r \geq 0\), then \(A^{(r)} = -1(A^{-1})\) and \(A^{(r+2)} = E\).

If \(A^{(r+2)} = E, \ r \geq 0\), then \(A^{(r+1)} = F\).
Proof. By the criterion of orthogonality of two quasigroups (cf. [2]), $A \perp B$ if
and only if $A \cdot B^{-1}$ is a quasigroup operation. But by Corollary 1, the operations
$A^{(r+1)} = (A^{(i)} \cdot A)^* \cdot A^* (i \geq 0)$ are quasigroup operations, and therefore the operation
$(A^{(r+1)})^* = A^{(i)} \cdot A^*$ is a quasigroup operation. Taking into account that
$A^* = (A^{-1})^{-1}$, we have $A^{(i)} \perp^{-1}(A^{-1})$ for any $i = 0, 1, 2, \ldots, r - 1$.

Let $A^{(r+1)} = F$, then by Corollary 1, $A^{(r+1)} = (A^{(r)})^* \circ A = F$ for $r \geq 0$,
so $(A^{(r)})^* = A^*$ since $A_1(0)$ is a group with the identity F and the quasigroup
A^* is inverse for A in this group. Thus, $A^{(r)} = (A^{-1})^{-1}$. In this case we have
$A^{(r+2)} = A^{(r)} \circ A^{(r+1)} = A^{(r)} = A^* \circ F = A^* \circ A^* = A^* \circ (-1) (A^{-1}) = E$
because $A^* = (A^{-1})^{-1}$. $A_1(1)$ is a group with the identity E and A^* is the
inverse quasigroup for $^{-1}(A^{-1})$ in this group.

Let $A^{(r+2)} = E$, $r \geq 0$, then $(A^{(r+2)})^* = F$ and according to Corollary 1,
$A^{(r+3)} = (A^{(r+2)})^* \circ A = F \circ A = A$ since $A_1(0)$ is a group with the identity F.
But then

$A^{(r+3)} = A(A^{(r+1)}, A^{(r+2)}) = A(A^{(r+1)} \circ E) = A \circ A^{(r+1)} = A$

and so $A^{(r+1)} = F$.

Definition 1. A quasigroup (Q, A) is called strongly recursively r-differentiable
if it is r-differentiable and $A^{(r+1)} = F$ (or $A^{(r+2)} = E$). A quasigroup (Q, A) is
strongly recursively 0-differentiable if $A^{(1)} = E$.

Note that a quasigroup not always is strongly recursively 0-differentiable, although any quasigroup
is recursively 0-differentiable. In contrast to recursively
r-differentiable quasigroups, a strongly recursively r-differentiable quasigroup
is not strongly recursively r_1-differentiable if $r_1 < r$.

Recall that a quasigroup (Q, A) is called semisymmetric if in (Q, A) the identity
$A(x, A(y, x)) = y$ holds.

Corollary 2. Let (Q, A) be a strongly recursively r-differentiable quasigroup, then
$A^{(r)} = A^{-1} (A^{-1})$, $A^{(r+2)} = E$ for any $r \geq 0$. A quasigroup (Q, A) is strongly
recursively 0-differentiable (1-differentiable) if and only if it is semisymmetric
$(A^{(1)} = A^{-1} (A^{-1})$ respectively).

Proof. The first statement follows from Proposition 1. It is easy to see that a quasigroup
(Q, A) is semisymmetric if and only if $A^* = A^{-1}$ (or $A = A^{-1} (A^{-1})$), so for a
semisymmetric quasigroup $A^{(1)} = A^* \circ^{-1}(A^{-1}) = A^{-1} \circ^{-1}(A^{-1}) = E$.
If $A^{(1)} = F$, then by Proposition 1, $A = A^{(0)} = -1 (A^{-1})$, that is (Q, A) is semisymmetric.

Let $A^{(1)} = -1 (A^{-1})$, then $A^{(2)} = (A^{(1)})^* \circ A = (-1 (A^{-1}))^* \circ A = -1 A \circ A = F$.
If $A^{(2)} = F$, then, by Proposition 1, $A^{(1)} = A^{-1} (A^{-1})$.

Proposition 2. A recursively r-differentiable quasigroup (Q, A) is strongly recursively
r-differentiable if and only if the permutation $\theta = (E, A)$ has order $r + 3$.

4. Strongly recursively \(r \)-differentiable quasigroups

In the theory of binary quasigroups the notion of a Stein system (shortly, an \(S \)-system) is known. This system can be defined in the following way [2].

Definition 2. [2] A system \(Q(\Sigma) \) of operations given on a finite set \(Q \) is called an \(S \)-system if

1) \(\Sigma \) contains the operation \(F, E \), the rest operations are quasigroup operations;
2) if \(A, B \in \Sigma' \), where \(\Sigma' = \Sigma \setminus F \), then \(A \cdot B \in \Sigma' \);
3) if \(A \in \Sigma \), then \(A^* \in \Sigma \).

In this case, \(\Sigma'(\cdot), \Sigma''(\cdot) \), where \(\Sigma' = \Sigma \setminus F \) and \(\Sigma'' = \Sigma \setminus E \), are isomorphic groups.

We recall some necessary information about \(S \)-systems. Let \(s \) be the number of operations in an \(S \)-system \(Q(\Sigma) \), \(n \) be the order of the set \(Q \). Then, by Theorem 4.3 of [2], the number \(s - 1 \) divides \(n - 1 \) and \(k = (n - 1)/(s - 1) \geq s \) or \(k = 1 \).

The number \(k \) is called the index of an \(S \)-system \(Q(\Sigma) \). In the case \(k = 1 \) we say that \(Q(\Sigma) \) is a complete \(S \)-system.

Complete \(S \)-systems are described by V. Belousov in [2]. Incomplete \(S \)-systems are described by G. Belyavskaya and A. Cheban in [3, 5, 6].

All operations of an \(S \)-system \(Q(\Sigma) \) are orthogonal and by Theorem 4.2 [2], are idempotent if \(s \geq 4 \), that is \(A(x,x) = x \) for all \(x \in Q \) and \(A \in \Sigma \).

If \(Q(\Sigma) \) is an \(S \)-system, then according to Theorem 4.1 [2], for any \(A, B, C \in \Sigma \) the operation \(C(A,B) \):

\[
C(A,B)(x,y) = C(A(x,y), B(x,y))
\]
belongs to Σ and the set Δ of all mappings $\theta = (B, C)$, where $B, C \in \Sigma, B \neq C$, is a group.

Recall that an algebra $(Q, +, \cdot)$ with two operations is called a near-field if $(Q, +)$ is an abelian group with the identity 0, (Q', \cdot) is a group, where $Q' = Q \setminus \{0\}$ and the right distributive law: $(x + y)z = xz + yz$ holds [10].

By Theorem 4.6 of [2], any complete S-system $Q(\Sigma)$ is a system over some near-field $Q(+, \cdot)$, that is any its operation has the form

$$A_a(x, y) = a(y - x) + x$$

for a fixed element $a \in Q$.

Thus, for a complete S-system $Q(\Sigma)$ containing s quasigroups of order q we have $s = q = p^\alpha$ for some primary number since any near-field has such order, and for any prime power there exists a near-field of this order [10]. If a near-field is a field, then the quasigroups are linear over the group $(Q, +)$ and have the form

$$A_a(x, y) = (1 - a)x + ay.$$

All S-systems that are not complete are described in the article [5] by means of near-fields (by means of complete S-systems) and balanced incomplete block designs $BIB(v, b, r, k, 1)$.

A balanced incomplete block design $BIB(v, b, r, k, 1)$ is an arrangement of v elements by b blocks such that

- every block contains exactly k different elements;
- every element appears in exactly r different blocks;
- every pair of different elements appears in exactly one block.

The parameters r and k of a $BIB(v, b, r, k, 1)$ define the number v and b [11]. By Theorem 1 of [5], an S-system with operations of order q, of index k containing s operations exists if and only if there exists a $BIB(q, b, k, p^\alpha, 1)$ with a prime p. In this case,

$$q = ks - k + 1, \quad b = (ks - k + 1)/s, \quad s = p^\alpha.$$

Below S-systems will be used to finding of strongly recursively r-differentiable idempotent quasigroups. Since we consider only recursively r-differentiable quasigroups sometimes the word "recursively" will be omitted.

Theorem 2. A quasigroup (Q, A) of an S-system $Q(\Sigma)$ is (strongly) recursively r-differentiable if and only if r is the least number such that $A^{(r+1)} = F$ (the permutation $\theta = (E, A)$ has order $r + 3$).

Proof. If a quasigroup (Q, A) of an S-system $Q(\Sigma)$ is strongly r-differentiable, then by the definition, $A^{(r+1)} = F$ and $A^{(1)}, A^{(2)}, \ldots, A^{(r)}$ are quasigroups.

For the proof of the converse statement we first note that from the properties of S-systems $Q(\Sigma)$ pointed above it follows that all recursive derivatives of any
quasigroup \((Q, A)\), where \(A \in \Sigma\), are in \(\Sigma\). So, they can be quasigroup operations or the identity operations \(F, E\).

Let a quasigroup operation \(A\) be in \(\Sigma\), \(r\) be the least number such that \(A^{(r+1)} = F\), then the recursive derivatives \(A^{(i)}\), \(1 \leq i \leq r\), of \(A\) either all are quasigroup operations or \(A^{(i_0)} = E\) for some \(i_0 \leq r\), and all operations \(A^{(i)}\), \(i < i_0\), are quasigroup operations.

In the first case, \(A\) is a strongly \(r\)-differentiable quasigroup. In the second case, the quasigroup \(A\) is \((i_0 - 1)\)-differentiable. On the other hand, by Proposition 1, we have \(A^{(i_0-1)} = F\) since \(A^{(i_0)} = E\). But \(A^{(i_0-1)}\) is a quasigroup, that is we obtain the contradiction.

Let the permutation \(\theta = (E, A)\) have order \(r + 3\), then \(\theta^{(r+3)} = (A^{(r+1)}, A^{(r+2)})\) = \((F, E)\) whence \(A^{(r+1)} = F\), \(A^{(r+2)} = E\). Moreover, this number \(r\) is the least one with such property. In this case, as has been shown above, the quasigroup \((Q, A)\) is strongly \(r\)-differentiable. The converse follows from Proposition 2. \(\square\)

Theorem 3. Let \(Q(\Sigma)\) be an \(S\)-system containing \(p^\alpha \geq 3\) operations, \(A\) be a quasigroup operation of \(\Sigma\), and the permutations \(\theta_A = (E, A)\) have order \(r + 3\) for some \(r \geq 0\). Then

\[(r + 3) \mid p^\alpha(p^\alpha - 1).\]

Proof. Let \(\Sigma = \{F, E, A_1, A_2, \ldots, A_{s-2}\}\) be an \(S\)-system containing \(s = p^\alpha\) operations of order \(q = p^\alpha\) if the system \(\Sigma\) is complete, and of order \(q = ks - k + 1\) if \(\Sigma\) is an \(S\)-system of index \(k\).

By Theorem 4.1 of [2], the set \(\Delta\) of all mappings \(\theta = (B, C)\), \(B, C \in \Sigma\), \(B \neq C\), of any \(S\)-system is a group. The order of the group \(\Delta\) is \(s(s - 1) = p^\alpha(p^\alpha - 1)\).

The permutation \(\theta_A = (E, A)\) is \(\Delta\) for any operation \(A\) of \(\Sigma\), \(A \neq E\).

If for \(A \in \Omega\) the permutation \(\theta_A\) has order \(r + 3\), then \(\theta_A^{r+3} = (F, E)\). Thus \((r + 3) \mid p^\alpha(p^\alpha - 1)\). \(\square\)

Theorem 4. Let \(p^\alpha \geq 5\) be an odd prime power, \(Q(\Sigma)\) be an \(S\)-system containing \(p^\alpha\) operations. Then in \(\Sigma\) there exists a quasigroup operation \(A\) such that the permutation \(\theta_A = (E, A)\) has order \(r + 3\) for some \(r + 3 = p^\alpha\), \(a_1 \leq a\), and \(A\) is a strongly recursively idempotent \(r\)-differentiable quasigroup operation of order \(q = p^\alpha\). If there exists a \(BIB(q, b, k, p^\alpha, 1)\), then \(A\) has order \(q = kp^\alpha - k + 1\).

Proof. Let \(p^\alpha \geq 5\) be an odd prime power, \(Q(\Sigma)\) be an \(S\)-system containing \(s = p^\alpha\) operations. Then by Theorem 4.1 of [2] the set \(\Delta\) of all mappings \(\theta = (B, C)\), \(B, C \in \Sigma\), \(B \neq C\) is a group. Moreover, from the proof of Theorem 4.6 in [2] it follows that this group is twice transitive on \(\Sigma\) and contains a strongly transitive on \(\Sigma\) invariant abelian subgroup \(\Delta_0\). It is obvious that the group \(\Delta_0\) has order \(s = p^\alpha\).

Let \(\theta_C\) be the permutation of \(\Delta_0\) such that \(F\theta_C = C\). Then \(F\theta_E = E\) and \(\theta_E = (E, A) = \theta_A\) for a unique operation \(A\) of \(\Sigma\). Moreover, \(A \neq F\). Indeed, if \(A = F\), then \(\theta_E^2 = (E, F)(E, F) = (F, E)\), so \(p^\alpha = 2^\alpha\) and the subgroup \(\Delta_0\) has even order.
Suppose that the permutation $\overline{\theta_E}$ has order $r + 3$. Then $r + 3 = p^{\alpha_1}$ for $\alpha_1 \leq \alpha$ since $(r + 3) \mid p^\alpha$. Hence, $\overline{\theta_E} = \theta_A^{r + 3} = (F, E)$. By Theorem 2, (Q, A) is strongly r-differentiable quasigroup of order $q = p^s$ if the S-system $Q(\Sigma)$ is complete, and has order $q = kp^s - k + 1$ if it is incomplete with index k. Recall that by Theorem 4.2 of [2] any operation of an S-system is idempotent if $s \geq 4$.

According to Corollary 2, $A^r = (A^{-1})$, $A^{(r + 1)} = F$, $A^{(r + 2)} = E$. Thus, we have the subsystem
$$\Sigma_3 = \{A, A^{(1)}, A^{(2)}, \ldots, A^{(r)} = (A^{-1}), A^{(r + 1)} = F, A^{(r + 2)} = E\} \subset \Sigma$$
for $r = p^{\alpha_1} - 3$.

Corollary 3. For any prime p, $p \geq 5$, there exists a strongly recursively $(p - 3)$-differentiable idempotent quasigroup of order $q = p$ (of order $q = kp - k + 1$ if there exists a BIB($q, b, k, p, 1$)).

Proof. In this case the subgroup \triangle_0 of the group \triangle of an S-system has odd order p, that is, \triangle_0 is a cyclic group and so the permutation $\overline{\theta_E} = (E, A)$ of \triangle_0 has order p. Now the statements of the corollary follow from Theorem 4 by $q = p$.

Proposition 4. For any prime power p^s, $p \geq 5$, there exists a strongly recursively idempotent $(p - 3)$-differentiable quasigroup of order $q = p^s$ (respectively, of order $q = (kp - k + 1)^s$ if there exists a BIB($q, b, k, p, 1$)).

Proof. By Corollary 3 there exists a strongly $(p - 3)$-differentiable quasigroup of order p. Using Proposition 3 and taking the direct product of α copies of this quasigroup, we get a strongly $(p - 3)$-differentiable idempotent quasigroup of order p^α. It is obvious that the direct product of idempotent quasigroups is an idempotent quasigroup.

Remark. Note that the direct product of two strongly recursively r-differentiable idempotent quasigroups of order $p_1^{\alpha_1}$ and $p_2^{\alpha_2}$, $p_1 \neq p_2$, over near-fields of the respective orders already is not a quasigroup over some near-field since has order $p_1^{\alpha_1} p_2^{\alpha_2}$ which is not a prime power.

Corollary 4. There exist strongly recursively 2-differentiable idempotent quasigroups of order $q = 21, 25, 41, 45, 61$; strongly recursively 4-differentiable idempotent quasigroups of order $q = 49, 91$ and strongly recursively 8-differentiable idempotent quasigroups of order $q = 121$.

Proof. These statements follow from Corollary 3 and the existence of the following designs:

$BIB(21, 21, 5, 5, 1)$ (N7), $BIB(25, 30, 6, 5, 1)$ (N11), $BIB(41, 82, 10, 5, 1)$ (N42), $BIB(45, 99, 11, 5, 1)$ (N51), $BIB(61, 183, 15, 5, 1)$ (N108) (for these designs we have $(2 = 5 - 3)$-differentiable idempotent quasigroups of order $q = 21, 25, 41, 45, 61$ respectively.

The designs $BIB(49, 56, 8, 7, 1)$ (N24) and $BIB(91, 195, 15, 7, 1)$ (N111) give a strongly $(4 = 7 - 3)$-differentiable idempotent quasigroups of order $q = 49, 91$.

The design $BIB(121, 132, 12, 11, 1)$ (N68) corresponds to a strongly $(8 = 11-3)$-differentiable idempotent quasigroup of order $q = 121$.

All these BIB-designs exist (near with each design we point its number in Table of Application I of [11].

Definition 3. An MDS-code $K(n, A)$ is said to be strongly recursive if the quasigroup (Q, A) is strongly recursively $(n-3)$-differentiable.

Corollary 5. For any prime power p^α, $p \geq 5$, there exists an idempotent strongly 2-recursive code $K(p, A)$, where A is a quasigroup of order p^α.

Proof. By Theorem 4 of [7], a quasigroup A is r-differentiable if and only if the code $K(r+3, A)$ is an MDS-code. Next use Corollary 3 for $r = p - 3$ and Proposition 4.

Denote by $K_1(n, A)$ the idempotent strongly 2-recursive MDS-code corresponding to a quasigroup (Q, A) and let $n_{ir}(2, q)$ denote the maximal number n such that there exists a (complete) idempotent strongly 2-recursive MDS-code $K_1(n, A)$ over an alphabet of q elements.

From Corollary 5 it follows

Corollary 6. $n_{ir}(2, p^\alpha) \geq p$ for any prime p, $p \geq 5$ and $\alpha \in \mathbb{N}$.

Corollary 7. If there exist strongly recursively r-differentiable quasigroups of order q_1 and q_2, then

$$n_{ir}(2, q_1, q_2) \geq r + 3.$$

Proof. That follows from Proposition 3 and Theorem 4 of [7].

Below, we give some illustrative examples of strongly recursively r-differentiable idempotent quasigroups over fields.

Example 1. Consider the following quasigroup operation A_2 of the S-system of quasigroups over the field $GF(5)$: $A_2(x, y) = 2(y - x) + x = 4x + 2y$. The recursive derivatives of this quasigroup are:

- $A_2^{(1)}(x, y) = A_2(y, A_2(x, y)) = 4y + 2(4x + 2y) = 3x + 3y$;
- $A_2^{(2)}(x, y) = A_2(A_2(x, y), A_2^{(1)}(x, y)) = 4(4x + 2y) + 2(3x + 3y) = 2x + 4y$;
- $A_2^{(3)}(x, y) = A_2(A_2^{(1)}(x, y), A_2^{(2)}(x, y)) = 4(3x + 3y) + 2(2x + 4y) = x$.

Hence, A_2 is a strongly 2-differentiable quasigroup operation of the S-system over the field $GF(5)$, and the orthogonal system $\Sigma = \{F, E, A_2, A_2^{(1)}, A_2^{(2)}\}$ corresponds to the code $K_1(5, A_2)$.

Example 2. Consider the quasigroup operation of the same form over the field $GF(7)$:

- $A_2(x, y) = 2(y - x) + x = 6x + 2y$; $A_2^{(1)}(x, y) = 5x + 3y$; $A_2^{(2)}(x, y) = 4x + 4y$;
- $A_2^{(3)}(x, y) = 3x + 5y$; $A_2^{(4)}(x, y) = 2x + 6y$; $A_2^{(5)}(x, y) = x$.

Thus, this quasigroup is strongly \((7 - 3 = 4)\)-differentiable. The orthogonal system \(\Sigma = \{F, E, A_2, A_2^{(1)}, A_2^{(2)}, A_2^{(3)}, A_2^{(4)}\}\) corresponds to the code \(K_3^i(7, A_2)\).

Note that for a quasigroup operation \(A\) over \(GF(7)\) the group \(\Delta\) (see the proof of Theorem 3) has order \(7 \cdot 6\), so a permutation \(\theta = (E, A)\) for \(A \in \Sigma\) can have only order 3 or 7 \(((E, A)^2 \neq (F, E)\) if \(A\) is a quasigroup operation).

For the quasigroup operation \(A_3(x, y) = 3(y - x) + x = 5x + 3y\) over \(GF(7)\) the permutation \(\theta = (E, A_3)\) has order 3 since \(A_3^{(1)}(x, y) = A_3(y, A_3(x, y)) = 5y + 3(5x + 3y) = x\). In this case, the quasigroup operation \(A_3\) is strongly 0-different, \(\theta \in \Delta \Delta_0\) since \(|\Delta_0| = 7\).

The subsystem \(\Sigma_1 = \{F, E, A_3\}\) of the complete \(S\)-system over \(GF(7)\) corresponds to the code \(K_3^i(3, A_3)\).

Example 3. Among of quasigroups over the field \(GF(11)\) necessarily there are strongly \((11 - 3 = 8)\)-differentiable quasigroups (by Corollary 3) and a priori can be strongly \((5 - 3 = 2)\)- or \((10 - 3 = 7)\)-differentiable quasigroups since the group \(\Delta\) has order \(11 \cdot 10\). Show that all these cases are possible.

The quasigroup operation \(A_2(x, y) = 2(y - x) + x = 10x + 2y\) is strongly 8-differentiable with the following recursive derivatives:

\[
A_2^{(1)}(x, y) = 6x + 3y; \quad A_2^{(2)}(x, y) = 8x + 4y; \quad A_2^{(3)}(x, y) = 7x + 5y;
\]

\[
A_2^{(4)}(x, y) = 6x + 6y; \quad A_2^{(5)}(x, y) = 5x + 7y; \quad A_2^{(6)}(x, y) = 4x + 8y;
\]

\[
A_2^{(7)}(x, y) = 3x + 9y; \quad A_2^{(8)}(x, y) = 2x + 10y; \quad A_2^{(9)}(x, y) = x.
\]

The system \(\Sigma = \{F, E, A_2, A_2^{(1)}, A_2^{(2)}, \ldots, A_2^{(8)}\}\) corresponds to \(K_3^i(11, A_2)\).

The commutative quasigroup operation \(A_0(x, y) = 6(y - x) + x = 6x + 6y\) over the field \(GF(11)\) is strongly 2-differentiable: \(A_0^{(1)}(x, y) = 3x + 9y; \quad A_0^{(2)}(x, y) = 10x + 2y; \quad A_0^{(3)}(x, y) = x\), corresponds to the subsystem \(\Sigma_1 = \{F, E, A_0, A_0^{(1)}, A_0^{(2)}\}\) and to the code \(K_3^i(5, A_0)\). The permutation \(\theta = (E, A_0)\) has order 5 and is in the subset \(\Delta \Delta_0\).

Finally, consider the quasigroup operation \(A_9(x, y) = 9(y - x) + x = 3x + 9y\) over \(GF(11)\):

\[
A_9^{(1)}(x, y) = 5x + 7y; \quad A_9^{(2)}(x, y) = 10x + 2y; \quad A_9^{(3)}(x, y) = 6x + 6y;
\]

\[
A_9^{(4)}(x, y) = 7x + 5y; \quad A_9^{(5)}(x, y) = 4x + 8y; \quad A_9^{(6)}(x, y) = 2x + 10y;
\]

\[
A_9^{(7)}(x, y) = 8x + 4y; \quad A_9^{(8)}(x, y) = x.
\]

Thus, the quasigroup operation \(A_9\) is strongly \(7\)-differentiable and corresponds to the subsystem \(\Sigma_1\) of 10 from (11) operations and to the code \(K_3^i(10, A_9)\).

Note that the direct product of the strongly 2-differentiable quasigroups \(A_2 = 4x + 2y\) over \(GF(5)\) (Example 1) and \(A_6(x, y) = 6x + 6y\) over the field \(GF(11)\) (Example 3) is a strongly 2-differentiable quasigroup of order 55 and corresponds to the code \(K_3^i(5, A_2 \times A_6)\) by Proposition 3 and Theorem 4 of [7].
References

Received March 1, 2012

Institute of Mathematics and Computer Science Academy of Sciences of Moldova
str. Academiei 5, MD-2028 Chișinău, Moldova
E-mail: gbel10@rambler.ru