A note on M-hypersystems and N-hypersystems in Γ-semihypergroups

Saleem Abdullah, Muhammad Aslam and Tariq Anwar

Abstract. In this paper, we have introduced the notions of M-hypersystem and N-hypersystem in Γ-semihypergroups, and some related properties are investigated. We have also proved that left Γ-hyperideal P of a Γ-semihypergroup S is quasi-prime if and only if $S\setminus P$ is an M-hypersystem.

1. Introduction

In 1986, Sen and Saha [3] defined the notion of a $Γ$-semigroup as a generalization of a semigroup. Recently, Davvaz, Hila and et. al. [1, 2] introduced the notion of $Γ$-semihypergroup as a generalization of a semigroup, a generalization of a semihypergroup and a generalization of a $Γ$-semigroup. The notion of a $Γ$-hyperideal of a $Γ$-semihypergroup was introduced in [1].

Let S and $Γ$ be two non-empty sets. Then S is called a $Γ$-semihypergroup if every $γ \in Γ$ is a hyperoperation on S, i.e., $xγy \subseteq S$ for every $x, y \in S$, and for every $α, β \in Γ$ and $x, y, z \in S$ we have $xα(yβz) = (xαy)βz$. Let S be a $Γ$-semihypergroup and $γ \in Γ$. A non-empty subset A of S is called a sub-$Γ$-semihypergroup of S if $xγy \subseteq A$ for every $x, y \in A$. A $Γ$-semihypergroup S is called commutative if for all $x, y \in S$ and $γ \in Γ$, we have $xγy = yγx$.

Example 1.1. Let $S = [0, 1]$ and $Γ = \mathbb{N}$. For every $x, y \in S$ and $γ \in Γ$, we define $γ : S^2 \rightarrow P^\ast(S)$ by $xγy = \left[0, \frac{xy}{γ}\right]$. Then $γ$ is a hyperoperation.

For every $x, y, z \in S$ and $α, β \in Γ$, we have $(xαy)βz = \left[0, \frac{xyz}{αβ}\right] = xα(yβz)$. Thus S is a $Γ$-semihypergroup.

Example 1.2. Let $(S, ◦)$ be a semihypergroup and $Γ$ be a non-empty subset of S. We define $xγy = x ◦ y$ for every $x, y \in S$ and $γ \in Γ$. Thus S is a $Γ$-semihypergroup.

2010 Mathematics Subject Classification: 20N20, 20M17
Keywords: $Γ$-semihypergroups, quasi-semiprime, M-hypersystem, N-hypersystem.
Example 1.3. Let $S = (0, 1)$, $\Gamma = \{\gamma_n \mid n \in \mathbb{N}\}$ and for every $n \in \mathbb{N}$ we define hyperoperation γ_n on S as follows

$$x\gamma_n y = \left\{ \frac{xy}{2^k} \mid 0 \leq k \leq n \right\}.$$

Then $x\gamma_n y \subset S$ and for every $m, n \in \mathbb{N}$ and $x, y, z \in S$

$$ (x\gamma_n y)\gamma_m z = \left\{ \frac{xyz}{2^k} \mid 0 \leq k \leq n + m \right\} = x\gamma_n (y\gamma_m z). $$

So, S is a Γ-semihypergroup.

A Γ-semihypergroup S is called regular if for all $a \in S$ and $\alpha, \beta \in \Gamma$ there exists $x \in S$ such that $a \in ax\beta a$.

A non-empty subset A of S is a left (right) Γ-hyperideal of S if $A\Gamma S \subseteq A$ ($S\Gamma A \subseteq A$). A Γ-hyperideal is both a left and right Γ-hyperideal.

A left Γ-hyperideal P is quasi-prime if for any left Γ-hyperideals A and B such that $A\Gamma B \subseteq P$ it follows $A \subseteq P$ or $B \subseteq P$.

A left Γ-hyperideal P is quasi-semiprime if any left Γ-hyperideal A from $A\Gamma A \subseteq P$ it follows $A \subseteq P$.

2. M-hypersystem and N-hypersystem

A Γ-semihypergroup S is called fully Γ-hyperidempotent if every Γ-hyperideal is idempotent.

Proposition 2.1. If S is Γ-semihypergroup and A, B are Γ-hyperideal of S, then the following are equivalent:

(a) S is fully Γ-hyperidempotent,
(b) $A \cap B = \langle A\Gamma B \rangle$,
(c) the set of all Γ-hyperideals of S form a semilattice (L_S, \land), where $A \land B = \langle A\Gamma B \rangle$.

Proof. (a) \Rightarrow (b) Always hold $A\Gamma B \subseteq A \cap B$, for any Γ-hyperideals A and B of S. Hence $(A\Gamma B) \subseteq A \cap B$.

Converse let $x \in A \cap B$. If $\langle x \rangle$ denote the principle left Γ-hyperideal generated by x, then $x \in \langle x \rangle \Gamma \langle x \rangle \subseteq \langle A\Gamma B \rangle$. Thus $x \in \langle A\Gamma B \rangle$. Therefore $A \cap B \subseteq \langle A\Gamma B \rangle$, which proves (b).

(b) \Rightarrow (c) $A \land B = \langle A\Gamma B \rangle = A \cap B = B \cap A = \langle B\Gamma A \rangle = B \land A$.

(c) \Rightarrow (b) Let (L_S, \land) be a semilattice. Then $A = A \land A = \langle A\Gamma A \rangle = A\Gamma A$. Hence S is fully Γ-hyperidempotent.
Corollary 2.2. If Γ-semihypergroup S is regular, then $S = STS$.

A subset M of Γ-semihypergroup S is called an M-hypersystem if for all $a, b \in M$, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a \alpha x \beta b \subseteq M$.

A subset N of Γ-semihypergroup S is called an N-hypersystem if for all $a \in N$, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a \alpha x \beta a \subseteq N$.

Obviously, each M-hypersystem is an N-hypersystem.

Example 2.3. The set $S_i = (0, 2^{-i})$, where $i \in \mathbb{N}$, is an M-hypersystem of a Γ-semihypergroup S defined in Example 1.3. The set $T_i = (0, 4^{-i})$, where $i \in \mathbb{N}$, is its an N-hypersystem of S.

Example 2.4. The set $T = [0, t]$, where $t \in [0, 1]$, is an M-hypersystem and an N-hypersystem of a Γ-semihypergroup defined in Example 1.1.

Theorem 2.5. Let P be a left Γ-hyperideal of Γ-semihypergroup S. Then the following are equivalent:

1. P is a quasi-prime,
2. $A \Gamma B = (A \Gamma B) \subseteq P \Rightarrow A \subseteq P$ or $B \subseteq P$ for all left Γ-hyperideals,
3. $A \notin P$ or $B \notin P \Rightarrow A \Gamma B \notin P$ for all left Γ-hyperideals,
4. $a \notin P$ or $b \notin P \Rightarrow a \Gamma b \notin P$ for all $a, b \in S$,
5. $a \Gamma b \subseteq P \Rightarrow a \in P$ or $b \in P$ for all $a, b \in S$.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) is straightforward.

(1) \Rightarrow (4) Let $\langle a \rangle \Gamma \langle b \rangle \subseteq P$. Then by (1) either $\langle a \rangle \subseteq P$ or $\langle b \rangle \subseteq P$, which implies that either $a \in P$ or $b \in P$.

(4) \Rightarrow (2) Let $A \Gamma B \subseteq P$. If $a \in A$ and $b \in B$, then $\langle a \rangle \Gamma \langle b \rangle \subseteq P$, now by (4) either $a \in P$ or $b \in P$, which implies that either $A \subseteq P$ or $B \subseteq P$.

(1) \Rightarrow (5) Let P be a left Γ-hyperideal of Γ-semihypergroup S and $a \Gamma S \Gamma b \subseteq P$. Then, by (2), (3) and (1), we get $STa \Gamma (a \Gamma S \Gamma b) \subseteq STP \subseteq P$, that is, $STa \Gamma (a \Gamma S \Gamma b) = (STa \Gamma a) \Gamma (STb)$. Thus, $(STa) \Gamma (STb) \subseteq P$ implies either $STa \Gamma a \subseteq P$ or $STb \subseteq P$.

Since STa and STb are left Γ-hyperideals, for $L(a) = (a \cup STa)$ we have

\[
L(a) \Gamma L(a) \Gamma L(a) = (a \cup STa) \Gamma (a \cup STa) \Gamma (a \cup STa) \\
\subseteq a \Gamma a \cup a \Gamma STa \cup STa \Gamma a \cup STa \Gamma STa \Gamma a \cup STa \\
\subseteq STa \subseteq P.
\]

Hence $L(a) \Gamma L(a) \Gamma L(a) = (L(a) \Gamma L(a)) \Gamma L(a) \subseteq P$. Since P is quasi-prime and $L(a) \Gamma L(a)$ is a left Γ-hyperideal of S we have $L(a) \Gamma L(a) \subseteq P$.

□
or \(L(a) \subseteq P \). If \(L(a) \subseteq P \), then \(a \in L(a) \subseteq P \). Let \(L(a) \Gamma L(a) \subseteq P \). Since \(P \) is quasi-prime, \(L(a) \subseteq P \). Thus, \(a \in L(a) \subseteq P \), i.e., \(a \in P \).

(5) \(\Rightarrow \) (1) Assume that \(AB \subseteq P \), where \(A \) and \(B \) are left \(\Gamma \)-hyperideals of \(S \) such that \(A \not\subseteq P \). Then there exist \(x \in A \) such that \(x \notin P \). Hence \(x \Gamma y \subseteq AB \subseteq \Gamma B \subseteq P \) for all \(y \in B \). Then, by (5), \(y \in P \).

Proposition 2.6. A left \(\Gamma \)-hyperideal \(P \) of \(\Gamma \)-semihypergroup \(S \) is quasi-prime if and only if \(S \setminus P \) is an \(M \)-hypersystem.

Proof. Let \(S \setminus P \) be an \(M \)-hypersystem and \(a \Gamma ST \subseteq P \) for some \(a, b \in S \setminus P \). Then there exist \(x \in S \) and \(\alpha, \beta \in \Gamma \) such that \(aax \beta b \subseteq S \setminus P \). This implies that \(aax \beta b \not\subseteq P \), which is a contradiction. Hence either \(a \in P \) or \(b \in P \).

Conversely, if \(P \) is quasi-prime and \(x, y \in S \setminus P \), then for \(z \in S \) and \(\alpha, \beta \in \Gamma \) such that \(x \alpha z \beta y \not\subseteq P \) we have \(x \alpha z \beta y \subseteq P \), i.e., either \(x \in P \) or \(y \in P \). So, \(S \setminus P \) is an \(M \)-hypersystem.

Proposition 2.7. A left \(\Gamma \)-hyperideal \(P \) of \(\Gamma \)-semihypergroup \(S \) is quasi-semiprime if and only if \(S \setminus P \) is an \(N \)-hypersystem.

Proof. Let \(S \setminus P \) be an \(N \)-hypersystem and \(a \Gamma ST \subseteq P \) with \(a \notin P \). Then \(aax \beta b \subseteq S \setminus P \) for some \(x \in S \) and \(\alpha, \beta \in \Gamma \). Thus \(aax \beta a \not\subseteq P \), which is a contradiction. Hence \(a \in P \). The converse statement is obvious.

Theorem 2.8. Let \(S \) be \(\Gamma \)-semihypergroup and \(P \) a proper left \(\Gamma \)-hyperideal of \(S \). Then the following are equivalent:

1. \(P \) is quasi-prime,
2. \(a \Gamma M \Gamma b \subseteq P \) implies \(a \in P \) or \(b \in P \),
3. \(S \setminus P \) is an \(M \)-system,
4. \(S \setminus P \) is an \(N \)-system.

\(\square \)

References

