Quasigroups and Related Systems 19 (2011), 23 — 68

Steiner triple systems and their close relatives

Terry S. Griggs

Abstract. This paper is intended to be a gentle and self-contained introduction to
Steiner triple systems and other important designs of triples. Topics covered include
existence proofs, isomorphism testing, and important techniques which have wide appli-

cation. Links to the algebraic theory of quasigroups and loops are also discussed.

1. Introduction

This paper accompanies talks given at the Loopsll workshop in Ttest,
Czech Republic, from 21st to 23rd July (Cervenec), 2011. Knowledge of
Steiner triple systems and other designs of triples is a vast field as the ref-
erence work, “Triple Systems” by C.J. Colbourn and A. Rosa [17] shows.
This was published in 1999 and has over 450 pages of text and nearly 100
pages of bibliography. Although in the 10+ years since its publication the
subject has inevitably moved on it is still the reference work to consult
and I will refer to it at various points throughout this paper referenced as
just C&R. Another indispensable tool is the “Handbook of Combinatorial
Designs” edited by C.J. Colbourn and J.H. Dinitz [12]. Now in its second
edition I will also refer to this as HB. So within the time and space avail-
able it is possible only to give a very brief glimpse of this interesting and
fascinating area. I have to be selective; indeed very selective. What has
guided my choice are three basic principles. The first of these is to present
basic existence results and questions of isomorphism testing. The second is
to explore certain techniques which seem to have a wide application. Last,
but not least, I want to select topics which I hope will be of most interest
or use to an algebraic audience. In this way perhaps I will achieve the aim
of at least giving a flavour of the subject. So let us begin.
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A Steiner triple system of order v, usually denoted by STS(v), is an
ordered pair (V, B) where V' is a base set of elements or points of cardinality
v and B is a collection of triples also called blocks, which collectively have the
property that every pair of distinct elements of V' is contained in precisely
one triple. The most well-known examples come from geometry. Let Fy be
the finite field of two elements and V = (Fg)™ \ {0}. The set of triples of
vectors {X,y,z} where x +y+2z =0, x #y # z # x, form the blocks of
an STS(2" —1). Thus V and B are respectively the points and lines of the
projective geometry PG(n — 1,2) and the systems are known as projective
Steiner triple systems. For n = 3, and interpreting the vectors as binary
numbers, this gives the following triples 123, 145, 167, 246, 257, 347, 356
as the blocks of an STS(7). Here, and throughout the rest of the paper we
will for clarity omit set brackets and commas from triples when there is no
danger of confusion.

Further examples are the affine triple systems. Let F3 be the field of
three elements and let V = (F3)”. Again B is the set of triples of vectors
{x,y,2} where x +y+2z=0,x #y # z # x, and V and B are respec-
tively the points and lines of the affine geometry AG(n,3). For n = 2, and
interpreting the vectors as ternary numbers, this gives the following triples
012, 345, 678, 036, 147, 258, 048, 372, 615, 057, 138, 246 as the blocks of
an STS(9). A wider class which contains the affine Steiner triple systems
is the Hall triple systems. These were introduces by Hall [51] as Steiner
triple systems in which for each = € V, the automorphism group contains
an automorphism which is an involution with just x as a fixed point. They
can be characterized as Steiner triple systems in which every three points
which do not form a triple generate the affine Steiner triple system AG(2, 3)
of order 9. Hall triple systems have order 3", m > 2, and the smallest such
system which is not affine has order 81. More information is contained on
pages 496 to 499 of HB.

Less well-known are the so-called Netto triple systems. These appear
to have been incorrectly attributed to Netto and are not the systems in-
troduced in his paper of 1893 [74]. Perhaps their most elegant description
is the following taken from [22]. Let p be prime with p = 7 (mod 12).
Let n be odd and ¢ = p". Consider the finite field F, = V and let ¢
and ez be the two primitive sixth roots of unity. Then €; and e satisfy
the equation 22 —z +1 = 0. So €1ea = €1 + € = 1. Both ¢ and e
are quadratic non-residues. The collection B is determined by specifying
the unique triple which contains the pair {a,b}. Define z < y if y — =



Steiner triple systems and their close relatives 25

is a quadratic residue. Either a < b or b < a but not both. Without
loss of generality assume the former. Then the triple containing the pair
is {a,b, f(a,b)} where f(x,y) = we1 + yea. The construction works be-
cause both b < f(a,b) and f(a,b) < a and both f(b, f(a,b)) = a and
f(f(a,b),a) =1b.

The above are very special types of Steiner triple system. It was Pltcker
in 1835 [80] who first asked the question for which v Steiner triple systems
STS(v) exist and stated that a necessary condition is v = 3 (mod 6), later
[81] corrected to v = 1,3 (mod 6). Such values are called admissible and are
easily derived by counting. Each point x € V occurs in r = (v—1)/2 triples.
This is the replication number. Hence v must be odd. The total number of
triples is b = v(v — 1)/6 which disallows v = 5 (mod 6). The name comes
from the fact that Steiner in 1853 [89] asked a series of questions, the first of
which was the existence of what became to be called Steiner triple systems.

Welche Zahl, N, von Elementen hat die Eigenschaft, dass sich die Elemente so zu

dreien ordnen lassen, dass je zwei in einer, aber nur in einer Verbindung vorkommen?

Six years later a solution was given by Reiss [83], but both Steiner and
Reiss had been anticipated by Kirkman [60] in a paper dated 23rd December
1846 and published the next year. There is a remarkable similarity between
the papers of Kirkman and Reiss!

Kirkman’s paper was the first of any significance in Combinatorial De-
sign Theory and was followed by other important contributions. To quote

Biggs [5]

In this series of papers Kirkman has established an incontestable claim to be
regarded as the founding father of the theory of designs. Among his contempo-
raries, only Sylvester attempted anything comparable, and his papers on Tactic
seem to be more concerned with advancing his claims to have discovered the sub-
ject than with advancing the subject itself. Not until the Tactical Memoranda of
E.H. Moore in 1896 is there another contribution to rival Kirkman’s.

In one note [61], Kirkman posed the following problem.

Fifteen young ladies in a school walk out three abreast for seven days in succession:

it is required to arrange them daily, so that no two shall walk twice abreast.

What is required here is an STS(15), but one which has an additional
property, that of resolvability. In an STS(v), (V,B), a parallel class or a
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resolution class is a set of blocks which contain every element precisely once.
If the blocks of B can be partitioned into parallel classes, then the STS(v)
is said to be resolvable. Such an STS(v), together with its parallel classes,
is called a Kirkman triple system and denoted by KTS(v). The STS(9)
given above has this property of resolvability. Although Kirkman himself
always very properly referred to “young ladies” the problem became known
as “Kirkman’s 15 schoolgirls problem”. A solution was given by Cayley [§]
in 1850 and the following year Kirkman [62] gave his own solution. Clearly,
necessary condition for the existence of a KTS(v) is v = 3 (mod 6), but a
proof of its sufficiency, by Ray-Chaudhuri and Wilson [82], did not appear
until 1971, fully 120 years after the proof for Steiner triple systems. The
same result was also established by Lu in 1965 but remained unpublished
until 1990 [66].

Essentially there are two types of construction for Steiner triple systems;
recursive and direct. Kirkman’s solution is recursive and is described in the
next section as well as further later constructions. Direct constructions are
considered in Section 3. However before proceeding it is perhaps appropriate
to give some enumeration results.

Two Steiner triple systems (V,B) and (W, D) are said to be isomor-
phic if there exists a one-one mapping ¢ : V. — W such that every triple
B € B maps to a triple ¢(B) € D. In the case of a Kirkman triple system
the mapping must also preserve the resolution classes. To within isomor-
phism the STS(7) and STS(9) are unique with automorphism groups of
order 168 and 432 respectively. There are two non-isomorphic STS(13)s. In
1897, Zulauf [100] showed that the known STS(13)s fall into two isomor-
phism classes and two years later De Pasquale [24] determined that only
two isomorphism classes are possible. White, Cole and Cummings [94] first
enumerated STS(15)s in 1919; they found 80 non-isomorphic systems. Un-
aware of their work, Fisher [31] repeated the enumeration in 1940 but found
only 79 systems. However the veracity of White, Cole and Cumming’s re-
sult was confirmed in 1955 by Hall and Swift [52] in one of the first uses of
digital computers in Combinatorial Design Theory. Listings and properties,
including details of automorphism groups, of these systems are contained
in the paper by Mathon, Phelps and Rosa [67], see also pages 65 to 69
of C&R. The combinatorial explosion now takes over. The number of non-
isomorphic STS(19)s is 11,084,874,829 published by Kaski and Ostergard in
2004 [59]. A study of the properties of these system is [13]. So enumeration
results have appeared at the rate of one in each of the 19th, 20th and 21st



Steiner triple systems and their close relatives 27

centuries. It is interesting to speculate whether we will have to wait until
the next century or perhaps the general availability of quantum computing
to know the number of non-isomorphic STS(21)s.

There are seven KTS(15)s but these come from only four STS(15)s;
there are two non-isomorphic resolutions of systems #1, #7 and #15 and
one of #61. They can be found, very conveniently, on page 67 of HB. The
solutions mentioned above by Cayley and Kirkman are the two resolutions
of system #1 which is the projective STS(15). In 1860, Peirce [76] also
gave both solutions together with the one from system #61 and all seven
solutions are listed by Mulder |73] and Cole [20]. An early bibliography of
48 papers on “Kirkman’s schoolgirls problem” was published by Eckenstein
[29].

2. Recursive constructions

So, how did Kirkman prove the existence of Steiner triple systems, or as he
called them triad systems? He devised two recursive constructions which
are given below. But first we need some further definitions. A partial
Steiner triple system of order v, denoted by PSTS(v), is defined similarly
to an STS(v) except that every pair of distinct elements of V' is contained
in at most one triple. The set of pairs which are not contained in any triple
is called the leave of the PSTS(v). The constructions also use the concept
of a one-factorization of a complete graph Ks,. A one-factor is a set of
n edges which collectively are incident with every vertex of the graph. A
one-factorization is a partition of all n(2n—1) edges into 2n— 1 one-factors.
Denote by @, an STS(v) and by R,, a PSTS(v) with a leave which consists
of a cycle C,_1. The necessary condition for the existence of the latter is
v =1,5 (mod 6). Kirkman’s two constructions are as follows.

1. Qont1 = Qunt+3 = Rany1-
2. Ropt1 = Qunt1 = Ran—1.

Kirkman’s first construction

Let Q2n+1 be defined on base set V = {zg,x1,x2,...,22,}. Now take the
following one-factorization of the complete graph Ky, 42 on {c0,0,1,...,2n}
and assign all the pairs of each one-factor to points of the base set V' of the
Q2n+1 as shown below.
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zo : (00, 0) (1,2n) (2,2n —1) .. (n=1,n+2) (n,n+1)

1t (00,1) (2,0) (3,2n) (n,n+3) (n+1,n+2)
xn;1 i (oo,m—1) (n,n —2) (n+1,n-3) ... (2n —2,0) (2n —1,2n)
Tn : (o0, m) (n+1,n—-1 ®m+2,n—-2) ... (2n—1,1) (2n,0)
Tpt+1:  (oco,m+1) (n+2,n) (n+3,n—-1) ... (2n,2) (0,1)
332'71 : (00, 2n) (0,2n — 1) (1,2n —2) . (n=2,n+1) (n—1,n)

This gives Q4n+3. To obtain Ry,41 remove all triples containing 0 or 2n.
The Cy, leave is

0, T, 17 Tn+1, 271.17 3,$n+2, 47 Zo, ... ,277, - 27xn—1a 2n — 171.271-

Kirkman’s second construction

Let Rgp+1 be defined on base set V' = {xg,x1,x2,...,2T2,} with Cy, leave
0, X1, L2, - .., Tam—1. Now take the following one-factorization of the com-
plete graph Ky, on set {00,0,1,...,2n — 2} and assign all the pairs of each
one-factor except the pair in the last column to points of the base set V' of
the Ray,41 as shown below.

Tp—1: (00,0) (1,2n —2) (2,2n —3) .. (m=2,n+1) (n—1,n)
Tn : (00,1) (2,0) (3,2n —2) oo n=1,n+2) (n,n+1)
wzn;3: (o0, n —2) (n—1,n—3) (n,n—4) (2n—4,0) (2n—3,2n—2)
Ton : (00,n—1) (n,n —2) (n+1,n—-3) ... (2n —3,1) (2n —2,0)

zo : (o0, n) (n+l,n—-1) (nM+2,n—2) ... (2n—2,2) (0,1)
xn._g : (00,2n —2) (0,2n — 3) (1,2n —4) (n—3,n) (n—2,n—-1)

Further, for pairs in the last column, assign the pair (2n — 2,0) to x2, and
all the other pairs to z9,_2 and z9,_1 alternately starting with the pair
(0,1) assigned to xo,_o. Finally adjoin the triples

{1, z0,21}, {2,21,22}, ..., {2n —2,22n_3, 2202}, {00, 2n—2,22n—1}, {0,22n—1,%0}

This gives Q4n+1. To obtain Ry, remove all triples containing 0 or 2n —2.
The Cyy,—o leave is

o0, Tn—1, 17 T2n—2, L2n—3, 2n — 47 Tn-3, 2n — 57 T2n—4, 2n — 67 Tn—4,---,
x1,3,xn,2,x0,x2n_1,2n - 35$n—2

Kirkman’s work is quite remarkable, made even more so because repeated
application of the two constructions gives STS(v) of all admissible orders
beginning with the trivial Steiner triple system on just one point and con-
sisting of no triples! First note that
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Q1= Q3 = Q7 = Rs = Q9

Then, succesively for all n > 1, use the following schema.

Qon+1 = Ren—1 = Q1203
Qon+3 = Rent1 = Q12n+1
Qon+1 = Q12n+3
Qen+3 = Q12n+7

Kirkman’s one-factorization

The one-factorization used by Kirkman is the one which is now usually
denoted by GKy,. It is easily described. Let Kj, be the complete graph
on vertex set {00,0,1,2,...,2n — 2}. Denote the set of one-factors by
{Fo, F1, ..., Fon_2}. Let Fy be the set of edges {(o0,0), (1,2n—2), (2,2n—3),
...,(n—=1,n)}. The remaining one-factors F;,1 < i < 2n — 2, are obtained
by applying the mapping x — = + ¢ to Fp, arithmetic modulo 2n — 2 with
oo as a fixed point.

But this was not Kirkman’s method. He used instead a greedy algo-
rithm. Representing the vertices of Ky, as above, he considered the pairs
in lexicographical order and assigned them to one factors in cyclic order
without violating the one-factor criterion. The method is best explained by
the following example for Kip.

F, F, F F, F, Fs Fs F, Fy
01 02 03 04 05 06 07 08 0oo
12 13 14 15 16 17 18

1loo 23 24 25 26 27
28 200 34 35 36
37 38 300 45
46 47 48 400

56 57 58
500 67 68

600 78
700 80

It is not immediately obvious that this method works, nor that it gives
GKay,. It is not well-known but possibly should be. More details are con-
tained in the paper by Anderson |2].

Other recursive constructions

The Qon+1 = Qun+3 construction is an STS(v) = STS(2v+1) construc-
tion which can use any one-factorization of K,11. Let (V,B) be an STS(v).
For any one-factorization of K, with vertex set W, assign all the pairs of



30 T. S. Griggs

each one-factor to one of the points of V to form further triples 7. Then
(VUW,BUT) is an STS(2v + 1). In employing this construction we may
use the STS(v) itself to determine the one-factorization. For each point
x € V, let there be a point 2/ € W. Further let co € W. If {x,y,z} € B
then put {z,v,2'},{z',y,2'}, {2/,y/, 2} € T. Finally, for all x € V, put
{z,2/,00} € T.

A further recursive construction is STS(v) = STS(3v — 2). Take three
STS(v)s (Vo U{oo}, By), (Vi U{oo}, Br), (VaU {0}, Bs). Now take a Latin
square of side v — 1 with the rows, columns and entries indexed respectively
by the points of the sets Vp, Vi, Va. Let 7 be the set of {row, column, entry}
triples. Then (VoU Vi UVaU{oo}, BoUB1UB2UT) is an STS(3v —2). The
three initial STS(v)s need not be isomorphic.

An exact tripling construction i.e. STS(v) = STS(3v) is the following.
Let (V,B) be an STS(v). Let W =V x {0,1,2}. If {z,y,2z} € V, then
put {(x,7),(y,4),(z,k)} € Dfori =j =k and i # j # k # i and also
{(z,0),(z,1),(z,2)} € D for all z € V. Then (W, D) is an STS(3v).

The last construction can be generalized into a direct product construc-
tion, i.e., STS(u) & STS(v) = STS(uv). Let (U,.A) be an STS(u) and
(V,B) be an STS(v). Let (a,z),(b,y) € U x V. If a # b define ¢ by
{a,b,c} € A and similarly if x # y define z by {z,y,2} € B. The
block set D is defined by specifying for each distinct pair {(a,x), (b,y)},
the third element of the block. The following is easily seen to be consis-
tent. If @ # b and = # y, then put {(a,z),(b,y),(c,2)} € D. If a # b
and z = y, put {(a,z),(b,z),(c,z)} € D and if @ = b and = # y, put
{(a,2),(a,y),(a,2)} € D. Then (V x W, D) is an STS(uv).

All of the above constructions can be obtained as special cases of a
recursive construction due to Moore [72]. Let (U,.A) be an STS(u) and
(VUW,BUC) be an STS(v) which contains as a subsystem an STS(w),
(W,C). Take u copies of the STS(v) on base sets V; UW,1 < i < u. Index
the u systems by the points of the set U and take a Latin square of side
v —w. Across each set of three systems of the u STS(v)s as determined by
the blocks of the STS(u) adjoin new triples determined by the set of {row,
column, entry} triples as in the 3v — 2 construction above. What results is
an STS(w + u(v —w)). The 3v — 2 construction corresponds to when w =1
and v = 3. A 3v construction is obtained by choosing w = 0 and u = 3
and a direct product construction by choosing w = 0. Finally, the 2v + 1
construction in which the STS(v) is used to produce the one-factorization
is the case where v = 3 and w = 1 (and u renamed as v).
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3. Direct constructions

In 1939, Bose [6] published a landmark paper on Design Theory in which
he gave a direct construction for Steiner triple systems of order v = 3 (mod
6) based on a cyclic group of odd order. The method can be extended and
it is in a more generalized form that we now present it.

Bose construction

Let (@, o) be a commutative idempotent quasigroup of order 2s+ 1 and let
V =@ x {0,1,2}. The blocks of an STS(6s + 3), (V,B), are defined as
follows.

(4) {(,0),(z,1),(2,2)}, 2 €Q
(B1) {(2,0),(y,0),(2,1)}, 2,y € Qv #y,z =m0y
(B2) {(z,1),(y;1),(2,2)}, v,y € Qx#y,z=woy
(B3) {(#,2),(5,2),(2,0)}, ©,y € Q,x #y,z=1x0y

Such quasigroups are easy to construct. Abelian groups of odd order possess
unique square roots, so if G is an Abelian group of order 2541 and we write
roy = z if zy = 22 then (G,0) is a commutative idempotent quasigroup.
Also non-isomorphic quasigroups defined on () may be used to construct
the blocks (B1), (B2), (B3).

A further generalization [48] is the following. Let (W, D) be an STS(6m+3)
which contains a parallel class P. For each block of the system, assign an
arbitrary but fixed order to the points. Call a typical block {a,b,c} and
denote the ordering by a < b < ¢. The blocks of an STS((2s + 1)(6m + 3))
on base set Q x W are defined as follows.

(4) {(x,a),(z,b),(x,0)}, x €Q, {a,b,c} €D

(B1) {(z,a),(y,a),(2,b)}, z,y € G,z #y,z=x0y, {a,b,c} €P

B2) {(z,b), (y,b),(z,0)}, z,y € G,x #y,z=xz oy, {a,b,c} €P

(B3) {(z,0),(y,¢),(2,a)}, v,y € G,x #y,z=zo0y, {a,b,c} €P
() {(z,a),(y,b),(z,0)}, z,y€e G,x #y,z==xovy, {a,b,c} €D\ P

When m = 0 there are no blocks of type (C) and the construction reverts
to the basic Bose construction.

The Bose construction and its variants seem to be a particularly useful
tool in constructing Steiner triple systems having prescribed properties. We
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will meet them again in Section 5 on configurations. The construction also
appears in the work of Ducrocq and Sterboul [28] and Grannell, Griggs and
Siran [45] on biembedding pairs of Steiner triple systems in non-orientable
and orientable surfaces respectively. Further discussion of this falls well
outside the scope of this paper and would take us towards Topological Graph
Theory but the interested reader can consult the recent survey paper [40].
Again the subject has moved on since it was written but it still serves as a
good introduction and overview of the subject.

A parallel construction for STS(6s+1) uses a half-idempotent commuta-
tive quasigroup. A Latin square is half-idempotent if every element appears
either twice or zero times on the diagonal. Clearly such squares can only ex-
ist for even orders and an easy example is given by any cyclic group of even
order. Any half-idempotent Latin square can have its rows and columns
relabelled in such a way that the equation x oz = x is satisfied by precisely
half of the elements. We then have a half-idempotent quasigroup. Note
that the relabelling can be done in such a way that retains commutativity.
In particular, for addition modulo 2s the relabelling can be done so that
2z02y = (2z+1)o(2y+1) = x4y and 2x0(2y+1) = (2z+1)02y = x+y+s,
0<x,y<s—1.

So let (@, o) be a half-idempotent quasigroup of order 2s and let V' =
@ x{0,1,2} U {oo}. The blocks of an STS(6s + 1), (V,B), are defined as
follows.

(A) {(l’,O), (:L‘a 1)7 (l’,Q)}, TEQ, Tor =1
1

(Bl) {x70)7(y70)7(27 )}7 xay€Q>$7éy7zzxoy
(B2> {x71)7<y71)7(z72)}7 x,yEQ,w#y,z:xoy
(B3) {(2,2),(y,2),(2,0)}, 2,y €Q,z #y,z=x0y

zox, 1)}, z€Q, zoxF#ux
zox,2)}, z€Q, roxF#x
(C3) {oo,(z,2),(x0z,0)}, 2€Q, zox #x

A completely different direct construction of Steiner triple systems was given
by Schreiber [86] and Wilson [96], see also [43].

Schreiber-Wilson construction

Let G be an Abelian group of order n = —1,1 (mod 6) with the operation
written additively and v = n + 2. First list all sets of triples {x,y, z} such
that « +y + 2z = 0. These fall into three types.
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1. {xayvz}v x7y7zeG7x7éy7éz7ém
2. {z,x,—2z}, € G\ {0}
3. {0,0,0}

The total number of triples is (n + 2)(n + 1)/6 = v(v — 1)/6, the exact
number of blocks contained in an STS(v). The idea is to leave type 1 triples
as constructed and to replace repeated elements by two new elements, X and
Y. Clearly the type 3 triple becomes XY0. So the efficacy of the construction
depends on the type 2 triples. These fall into orbits under the mapping
i — —2i (mod n) and for the replacement to be done must all have even
length. The condition for this is number theoretic; for every prime divisor
p of n, the order of —2 (mod p) must be even. The following example for
v = 15 illustrates the construction well.

Example 3.1. Let G be the cyclic group of order 13, Z,3, with the elements
10, 11, 12 being denoted by A, B, C respectively. The triples are as follows.

Type 1: 01C, 02B, 03A, 049, 058, 067, 12A, 139, 148, 157, 238, 247,
256, 346, 3BC, 4AC, 59C, 5AB, 68C, 69B, 78B, T9A.
Type 2: 11B, BB4, 445, 553, 337, 77C, CC2, 229, 998, 88A, AA6, 661

Type 3: 000

Here the type 2 triples form a single orbit and so replacing the repeated
elements by X and Y respectively (and the type 3 block by XY0) gives the
triples

X1B,YB4,X45,Y53,X37,Y7C,XC2,Y29,X98,Y8A, XA6,Y61,XY0

The STS(15) constructed is #37 in the standard listing on pages 65 to 69
of C&R. O

However all is not lost when there are odd length orbits under the map-
ping i — —2i (mod n). In that case these orbits occur in pairs, mapped
to one another by ¢ — —i (mod n). Proceed as before as far as possible
with the replacement of repeated elements but with the extra proviso that
if the triple gg(—2¢) in one orbit becomes the block Xg(—2g) then also
(—9)(—9g)2g in the “negative” orbit becomes X(—g)2g. There remain two
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triples, zz(—2x) in one orbit and (—x)(—x)2z in the other orbit, in which
the repeated element cannot be replaced by either X or Y without intro-
ducing a repeated pair. To solve this problem discard the triples 0z(—x)
and 0(2x)(—2z) and include four new triples. The already defined blocks
include X(—2z)(4x) or Y(—2z)(4x). In the former case the four new blocks
are Ox(—2z), 0(—z)(2z), Xz(—=z), Y(22)(—2z). For the latter interchange
X and Y. The procedure is illustrated well by the following example for
v =13.

Example 3.2. Let G be the cyclic group of order 11, Z;;. Denote the
element 10 by A. The type 2 triples fall into two orbits

119, 994, 443, 335, 551 and AA2, 227, 778, 886, 66A
which under replacement become
X19, Y94, X43, Y35, 051 and XA2, Y27, X78, Y86, 06A

The type 1 triples 01A and 056 become Y1A and X56 respectively. The
other (unchanged) type 1 triples are

029, 038, 047, 128, 137, 146, 236, 245, 39A, 48A, 57A, 589, 679

which together with XYO0 give the 26 blocks of an STS(13). O

4. Automorphisms

Further constructions are based on assumed automorphisms. For a Steiner
triple system of order v the obvious candidate is the cyclic group of the same
order. So let (V,B) be an STS(v) where V = Z, and the automorphism
is generated by the mapping ¢ — ¢ + 1 (mod v). Considering the case
v = 6s + 1, the STS(v) will comprise (v — 1)/6 orbits of triples under the
mapping. Suppose that the set {0, a,a+b} is a block of such an orbit. Then
the other blocks in the same orbit which contain the point 0 are {v—a,0, b}
and {v — (a +b),v —b,0}. Since the group acts transitively on the points,
a necessary and sufficient condition for the existence of an STS(v) with a
cyclic automorphism, denoted by CSTS(v), is that there exists a partition of
Z} into (v —1)/6 subsets each of the form {a,b,a+b,v—a,v—b,v—(a+b)}.
Equivalently we seek a partition of the integers {1,2,...,3s} into s triples
{a, b, c} where either a+b = cor a+b+c =0 (mod v). Thus as an example
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for s = 3 such a partition is given by the equations 1 +4 =5, 2+ 6 = 8§,
3+749 = 0 (mod 19) and starter blocks for a CSTS(19) under the action of
the mapping ¢ — i+1 (mod 19) are {0, 1,5} or {0, 4,5}, {0, 2,8} or {0, 6,8},
{0,3,10} or {0,7,10}. Alternative choices for the starter blocks can, and
indeed often do, give non-isomorphic systems. The problem of partitioning
the set {1,2,...,3s} into s triples {a,b,c} witha+b=cora+b+c=0
(mod v) is known as Heffter’s first difference problem, HDP(s) [54].

For v = 6s 4 3, a cyclic system must contain the short orbit generated
from the starter block {0,v/3,2v/3}. By the same argument as in the
previous paragraph, starter blocks for the other orbits can be obtained from
a similar partition of the integers {1,2,...,3s+ 1} \ {2s + 1}. For example
forv=15we have 1 +3=4,246+7 =0 (mod 15) giving starter blocks
{0,1,4} or {0,3,4}, {0,2,8} or {0,6,8}, {0,5,10}. This is Heffter’s second
difference problem, HDPo(s).

Solutions to both of Heffter’s difference problems, except for HDP5(1)
for which no solution exists, were first given by Peltesohn [77], and are
reproduced below in condensed form.

v=18s+1,s > 2

(Bi+1,4s—i+1,45+2i+2) 0<i<s—1
(3 + 2,85 — 1,85 + 2i + 2) 0<i<s—1
(343,652 —1,6s+i+2) 0<i<s—2
(3s,3s+1,6s+1)

v=18s+"7,s > 1
(3i+1,85—i+3,85+2i+4) 0<i<s—1
(3i 42,65 — 2 +i,6s+i+3) 0<i<s—1
(3i+3,4s—i+1,4s+2i+4) 0<i<s—1
(3s+1,4s+2,7s+3)

v=185s+13,s > 1

(Bi+1,4s —i+3,4s+2i+4) 0<i<s
(3i+2,65s—2i+3,6s+i+5) 0<i<s—1
(30 +3,85—i+585+2i+8) 0<i<s—1
(3s+2,7s + 5,85+ 6)

v=185+3,5 > 1
(3i+1,85—i+1,85+2i+2) 0<i<s—1
(30 + 2,45 — i, 45 + 2i + 2) 0<i<s—1
(3i+3,6s—2i —1,6s+i+2) 0<i<s—1
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v=185+9,s >4
(Bi+1,4s—i+3,4s+2i+4) 0<i<s
(3i+2,85—i+2,85+2i+4) 2<i<s—2
(3i4+3,6s—2i+1,6s+i+4) 1<i<s—2
(2,854 3,85+ 5)

(3,854 1,85+ 4)

(5,85 +2,85+7)

(3s—1,3s+2,6s+1)

(3s,7s + 3,85+ 6)

v=18s+155>1
(3i+1,4s—i+3,4s+2i+4) 0<i<s
(3i+2,85—i+6,8+2+8) 0<i<s
(3i+3,65—2i+3,65+i+6) 0<i<s—1

The above leaves the values v = 7,13, 15,19, 27,45, 63 still to be done but
we leave these as exercises for the reader. In case of difficulty see pages 31
and 32 of C&R.

We can therefore state the following theorem.

Theorem 4.3. There exists a cyclic STS (v) for all v = 1,3 (mod 6) except
v=09. O

A restricted form of Heffter’s first difference problem was considered by
Skolem.In [87] he introduced the problem of partitioning the set{1,2,...,2s}
into ordered pairs (a;, b;),i = 1,2, ...s, such that b;—a; = i. An example for
s=41s (6,7), (1,3), (2,5), (4,8) which is usually more succinctly represented
as 23243114 and called a Skolem sequence. Given a Skolem sequence then
the set of triples {(i,s + a;, s +b;) : 1 < i < s} is a solution of HDPq(s).
So the above example yields the solution 1 +10=11,24+5=7,34+6 =9,
448 =12.

Skolem proved that the sequences, which he called 1,+1 systems, exist
if and only if s = 0,1 (mod 4). In a second paper [88] he pointed out that
for s = 2,3 (mod 4), if it could be proved that the set {1,2,...,2s—1,2s+
1} could be similarly partitioned then this too would yield a solution to
HDP;(s). An example for s = 6 is 11345364252*6 and these are known as
hooked Skolem sequences. Their existence was determined by O’Keefe [75].
Details of the construction of both Skolem and hooked Skolem sequences
are given below.
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v=4s

(i,4s — 1 —1) 1<i<s—1
(s+244,35—1—1i) 0<i<s—3
(4s 41,85 — 1) 0<i<2s—1
(s,s+1),(2s,4s — 1), (2s + 1,65)

v=4s+1

i,4s +1—1) 1<i<s
(s+2+4+i,3s+1—1) 1<i<s—-2
(45 +2+1,85+2 — 1) 0<i<2s—1
(s+1,s+2),(25s+ 1,65+ 2)

(25 +2,4s+1)

v=4s+2

i,ds +2 — i) 1<i<2s

(45 +3+1,85 +4 — ) 1<i<s—1
(55 +2 4,75 +3 — i) 1<i<s—1
(2s+1,6s+2),(4s + 2,65 + 3)
(4s 43,85 +5),(7s +3,7s + 4)

v=4s—1

(i,4s — 1 —1) 1<i<s—1
(s+1414,3s—1) 1<i<s—-2
(45 +1,85 — 2 — ) 1<i<2s—2
(s,s+1),(2s,4s — 1)

(2s4+ 1,65 — 1), (45,85 — 1)

Another type of automorphism is 1-rotational. This is an automorphism
which consists of a (v—1)-cycle together with a fixed point. Usually systems
having such an automorphism are represented on a base set V' = Z,_1U{oo}
with the automorphism generated by the mapping i — i + 1 (mod v — 1)
and fixing the point oo. In [79] Phelps and Rosa proved the following.

Theorem 4.4. A 1-rotational STS (v) exists if and only if v = 3,9(mod 24).

Proof. We first prove necessity. Consider orbits of pairs of elements un-
der the automorphism. There is one half-orbit generated from the starter
block {0, (v —1)/2} and (v — 1)/2 full orbits. Now consider the orbit of
triples generated from the starter block {0, 0, a}. It also contains the block
{00, v, 2a}. Thus o = (v — 1)/2 and this is a half-orbit which contains the
half-orbit of pairs and full orbit containing the point co. There are (v—3)/2
orbits of pairs remaining. If v = 1 (mod 6), there is a third-orbit of triples
generated from the starter block {0, (v —1)/3,2(v — 1)/3}. This contains
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the orbit of pairs generated from {0, (v — 1)/3} with the other (v — 5)/2
orbits of pairs appearing in full orbits of triples. But this is impossible since
(v —5)/2 is not divisible by 3. If v = 3 (mod 6), then (v — 3)/6 full orbits
of triples are required to complete the system. Thus v = 3,9,15,21 (mod
24).

Now consider the set of pairs S = {{z,y} : 0 <z < (v—1)/2, (v—1)/2 <
y < v—1}. The cardinality of S is (v—1)%/4 and (v—1)/2 of the pairs occur
in the orbit generated from {oo,0, (v —1)/2}. This leaves (v — 1)(v — 3)/4
pairs. Now every block in the rest of the system contains either none or two
pairs from S. Moreover the blocks occur in pairs: if {a, b, c} is a block then
sois {a+ (v—1)/2,b+ (v—1)/2,c+ (v—1)/2}. Hence (v—1)(v—3)/4
must be divisible by 4 which eliminates the cases v = 15,21 (mod 24).

To prove sufficiency put v = 6t + 3 where t = 4s or 4s + 1. Then there
exists a Skolem sequence of order ¢, (a;,b;),7 = 1,2,...t. The following are
then the starter blocks for a 1-rotational STS(v).

{00,0,(v —1)/2} U{{0,7,t +b;} : 1 <i <t} O

The concept of 1-rotational can be generalized. A Steiner triple system,
STS(v), is k-rotational if it admits an automorphism consisting of k cycles
of length (v — 1)/k together with a fixed point. In the same paper [79] in
which they determined the spectrum of 1-rotational Steiner triple systems,
Phelps and Rosa also proved the following.

Theorem 4.5. A 2-rotational STS (v) exists if and only if v = 1,3,7,9,
15,19 (mod 24). O

Cho [10] then determined the spectrum of 3-rotational and 4-rotational
systems.

Theorem 4.6. A 3-rotational STS(v) exists if and only if v=1,19(mod 24).

Theorem 4.7. A 4-rotational STS (v) exists if and only if v =1,9,13, 21
(mod 24). O

A particularly interesting case is when k& = (v —1)/2, i.e., the automor-
phism consists of an involution fixing one element. Such systems are called
reverse Steiner triple systems and in fact were studied before general rota-
tional systems. The combined work of Doyen [25], Rosa [85], and Teirlinck
|91] gives the following result.

Theorem 4.8. A reverse STS (v) exists if and only if v=1,3,9,19(mod 24).
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However the ultimate result in this area is due to Colbourn & Jiang
[15] who determined the spectrum of k-rotational STS(v) for all k with
1 <k < (v—1)/2. Their result is given in the next theorem.

Theorem 4.9. A k-rotational STS (v) exists if and only if
1. v=3 (mod 6) if k=1, and
2. v=1 (mod k), and
3. v£7,13,15 21 (mod 24) if (v —1)/k is even. O

Various other automorphism types have also been considered which
space does not allow to be discussed here. But particular mention should
be made of the work of Calahan and Gardner, further details of which are
in Section 7.4 on pages 134 to 140 of C&R and the relevant papers in the
Bibliography. Mendelsohn [69], [70] proved that every abstract group is the
automorphism group of some Steiner triple system.

Finally in this section it is probably appropriate to ask about Steiner
triple systems which have only the identity automorphism, so-called auto-
morphism-free systems. There are none of orders 7, 9, and 13 but 36 of
the 80 STS(15)s and all but 164,758 of the 11,084,874,829 STS(19)s are
automorphism-free. The question was considered by Lindner & Rosa [63]
who constructed automorphism-free systems for v = 15,19,21,25,27,33
and then used various “doubling” constructions, including the STS(v) =
STS(2v 4 1) construction with the one-factorization GK,41 described in
Section 2, to complete the spectrum.

Theorem 4.10. An automorphism-free STS (v) exists if and only if v =1,3
(mod 6) and v > 15. O

Babai [3] in fact proved that almost all Steiner triple systems are automor-
phism-free.

5. Configurations

In the context of a Steiner triple system, a configuration is simply a small
number of blocks which may appear in the system. Perhaps the first ques-
tion to ask therefore is for given n, the number of blocks, how many non-
isomorphic configurations are there? Trivially when n = 1 there is just
one, a single block, and when n = 2 there are two, a pair of parallel blocks
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(denoted by A;) and a pair of blocks intersecting in a common point (de-
noted by As). Denoting the number of non-isomorphic configurations with
n blocks by C(n), it is also easy to work out that C(3) = 5 and these are
shown in Figure 5.1.

*~—eo—»
*—o—o

0 —9 o—0—o

By 8; Bg

B“ Bs

Fig. 5.1. 3-block configurations.

A nice exercise for a student is to determine the value of C(4). It is 16
and these are illustrated in Figure 5.2. Beyond this a computer is needed
and the values for 5 < n < 10 are given below. There seems to be no known
formula to determine these values.

n 5 6 7 8 9 10
C(n) 56 282 1865 17100 207697 3180571

Of more interest is counting the number of occurrences of each configu-
ration in an STS(v), a study of which was initiated in [41]. For a sin-
gle block this is v(v — 1)/6 and for Ag, a pair of intersecting blocks, is

v X ; =v(v —1)(v — 3)/8 where r = (v — 1)/2 is the replication num-

ber, i.e. number of blocks through any given point. For Aj, first note that
given any block of an STS(v), there are v(v —1)/6 —3(v —3)/2 — 1 =
(v—3)(v—7)/6 disjoint blocks. The number of occurrences of A; therefore
is (v(v—1)/6 x (v—3)(v—="T7)/6)/2 =v(v—1)(v—3)(v—T7)/72. Without
too much difficulty, by reasoning along the same lines, formulae for the five
3-block configurations can be obtained. These are given below where by is
the number of occurrences of B;.
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by =v(v—1)(v—3)(v—T7)(v? — 19v + 96) /1296
by=v(v—1)(v—=3)(v—T)(v—9)/48

bs =v(v—1)(v—3)(v—4)/48
by=v(v—-1)(v—-3)(v—"17)/8

bs =v(v—1)(v—3)/6

5

oo

-
EL]

*®
.
*»

L 2

O

-
[

Fig. 5.2. 4-block configurations.

So, for any given v = 1,3 (mod 6), the number of occurrences of every 1, 2,
and 3-block configuration is the same in all Steiner triple systems of that or-
der. But at 4-block configurations the situation changes. The configuration
C16 now plays a key role. It is the “tightest” of the 4-block configurations
having only 6 points and is more usually known as a quadrilateral or Pasch
configuration, P. Recall that there are two non-isomorphic STS(13)s. One
of these contains 13 Pasch configurations and the other contains 8. So
the formulae for the number of occurrences of 4-block configurations in an
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STS(v) cannot all be functions of v. This leads to the following definitions.
A configuration will be called constant if the formula for its number of oc-
currences in an STS(v) is a function of v; otherwise it is called variable. In
fact only 5 of the 4-block configurations are constants and 11 are variable.
Formulae for these configurations were first given in [41]. They are repeated
below, where again we adopt the convention that ¢; is the formula for C;.
All can be expressed in terms of the order v of the Steiner triple system and
the number of Pasch configurations p in the particular STS(v). We write
n, for v(v —1)(v — 3).

c1 = ny(v —9)(v — 10)(v — 13)(v? — 22v + 141)/31104 + p
ca = ny(v —9)(v — 10)(v? — 22v + 129) /576 — 6p
c3 = ny(v —9)%(v — 11)/128 + 3p

cs =ny(v—T7)(v—9)(v—11)/288

cs = ny(v — 9)(v? — 200 + 103) /48 + 12p

cg = ny(v—9)(v—10)/36 — 4p

cr =ny(v—5)(v—7)/384

cg =ny(v—"T)(v—9)/16

cg = ny(v—9)2/8 — 12p

c10 = ny(v — 8)/8 + 3p

C11 = nv( — 7)/4

Clg = nv( — 9)/4+ 12p

c13 = Ny (v? — 18v + 85) /48 — 4p
c14 = Ny /4 — 6p

C15 :nv/G

Cl6 =P

Of course the number of occurrences of all of the variable configurations
can be expressed in terms of the order v and the number of occurrences
of any one of them. However the Pasch configuration is the most natural
for a number of reasons which will become clearer later. As well as having
the least number of points of all the 4-block configurations, observe that
it is also the only n-block configuration, 1 < n < 4, in which every point
has degree at least 2. These formulae immediately raise two interesting and
significant areas of investigation.

The first is to identify, for each n, an easily described subset of configu-
rations such that for admissible v the number of occurrences of any n-block
configuration in an STS(v) can be expressed in terms of v and the number
of occurrences of each member of the subset. This idea was considered by
Horak, Phillips, Wallis and Yucas [55]. They make the following definitions.
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Definitions. A generating set M for n-block configurations is a set of m-
block configurations, 1 < m < n, such that the number of occurrences of
any n-block configuration can be expressed as a linear combination of the
number of occurrences of the configurations in M, where the coefficients are
polynomials in v. A basis is a minimal generating set.

So using this terminology, the single block is a basis for 1-, 2-, and 3-
block configurations and the single block and the Pasch configuration form
a basis for 4-block configurations. The main result in [55] is the following
important theorem.

Theorem 5.1. The single block, together with all m-line configurations,
1 < m < n, having all points of degree at least 2, form a generating set for
the n-line configurations in a Steiner triple system. U

The only 5-block configuration having all points of degree at least 2 is
the so-called mitre, shown in Figure 5.3. Formulae for the number of oc-
currences of 5-block configurations are given in [21], with minor corrections
in [39]. Already these are becoming complex. For example, that for 5 non-
intersecting (parallel) blocks, where m is the number of mitres is

v(v—1)(v—3) x (v7 — 9105 4 35880 — 79510v* + 1069873v3 — 874223102 +
40167162v — 80101224) /933120 + (v — 16)(v — 21)p/6 + 2m

There are five 6-block, nineteen 7-block, and 153 8-block configurations
having all points of degree at least 2 and formulae for the number of occur-
rences of the 6-block, 7-block, and 8-block configurations are given on the
website [32]. In all of these cases it is known that the generating set is also
a basis but in general this is not proved. Indeed, Hordk, Phillips, Wallis
and Yucas make the following conjecture.

Conjecture 5.2. The single block, together with all m-line configurations,
1 < m < n, having all points of degree at least 2, form a basis for the n-line
configurations in a Steiner triple system.

The second area is to answer the question: what are the constant config-
urations? There seems to be little doubt what the answer to this is, though
proving it certainly doesn’t appear easy and may in fact be quite difficult.
Define an n-star to be an n-block configuration in which all n blocks inter-
sect at a common point called the centre. The following conjecture is also
made in [55].
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Conjecture 5.3. For n > 4, an n-block configuration in a Steiner triple
system is constant if and only if it can be obtained from the (n — 1)-star by
adjoining a block.

In general this can be done in precisely five ways. The “adjoined block”
can be disjoint from the (n — 1)-star, intersect at the centre or intersect at
one, two, or three points. The proof that these configurations are constant
is straightforward, and formulae are given in [55]. Note that the conjecture
is not true for n < 4. The configuration Bj, three non-intersecting blocks,
is the sole exception.

A third conjecture was also made in [39]. It is easily verified that the four
3-block configurations obtained by removing each of the four blocks in turn
from a 4-block configuration uniquely determine the 4-block configuration,
and the same is true for the five 4-block configurations obtained from a
5-block configuration.

Conjecture 5.4. Every n-block configuration, n > 4, is uniquely charac-
terized by the n configurations on n — 1 blocks, each of which is obtained by
removing a single block from the given n-block configuration.

Again note that the conjecture is not true for the 2-block or 3-block con-
figurations (both B3 and Bs give three pairs of intersecting blocks). Given
that this conjecture is analogous to the graph reconstruction conjecture,
this too may be difficult to prove.

Another important topic is that of avoidance. In 1973, Erdds [30] conjec-
tured that for every integer k > 4, there exists vo(k) such that if v > vy (k)
and if v is admissible, then there exists an STS(v) with the property that it
contains no configuration having n blocks and n + 2 points for any n satis-
fying 4 < n < k. Such an STS(v) is said to be k-sparse. Clearly, a k-sparse
system is also k’-sparse for every k' satisfying 4 < k' < k. The reason why
configurations having two more points than blocks form the focus of the
conjecture lies in the following theorem and its corollary which are formally
proved in [33].

Theorem 5.5. Suppose that n>2 and that v is admissible with v > n+3.
Then any STS (v) contains a configuration havingn blocks and n+3 points.
O

Corollary 5.6. For every integer d > 3 and for every integer n satisfying
n = [d/2] there exists vo(n,d) such that for all admissible v > vo(n,d),
every STS (v) contains a configuration having n blocks and n+d points. [
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So a 4-sparse STS(v) is just one which contains no Pasch configurations.
Such systems are more commonly known as anti-Pasch. But constructing
these systems is not straightforward. The Bose construction gives a good
start. As was observed by Doyen [26], when G is the cyclic group of order
2s + 1, the construction yields an anti-Pasch STS(v), whenever v = 6s + 3
is not divisible by 7. The case when v is divisible by 7 was resolved by
Brouwer [7]. The case where v = 1 (mod 6) seems to be much harder and is
based on work contained in two papers 65| and [46]. The definitive result
is as follows.

Theorem 5.7. There exists an anti-Pasch STS (v) for all v =1,3(mod 6)
except v =7,13. O

There are two configurations with 5 blocks and 7 points. One is the mia
(Fano arrow or Farrow), shown in Figure 5.3, obtained by extending the
Pasch configuration with an extra block through any of the three pairs of
uncovered points. So systems avoiding the mia are the same as anti-Pasch
systems. The other configuration is the mitre. So 5-sparse systems are those
which are both anti-Pasch and anti-mitre. But first, Colbourn, Mendelsohn,
Rosa and Siréit [16] considered systems which were just anti-mitre. They
showed that these exist for all v = 3,7,9,19,21,27 (mod 36). The proof
uses both the Bose construction and the standard “doubling” construction
STS(v) = STS(2v + 1) with the one-factorization based on the STS(v).
They also pointed out that the Netto systems are anti-mitre. Combined
with the result of Robinson [84] that Netto systems STS(p™) are also anti-
Pasch if and only if p = 19 (mod 24), this gives an infinite class of 5-sparse
Steiner triple systems. The spectrum was extended by Ling [64] who proved
that if there exists a transitive anti-mitre (resp. 5-sparse) STS(v), v =1
(mod 6), (and the Netto systems are transitive), and an anti-mitre (resp.
5-sparse) STS(w), (including w = 3), then there exists an anti-mitre (resp.
5-sparse) STS(vw). Further work by Fujiwara [35],[36] and Wolfe [98] finally
established the definitive result for anti-mitre systems.

Theorem 5.8. There exists an anti-mitre STS (v) for all v = 1,3 (mod6)
except v =19. ]

With regard to 5-sparse systems Wolfe has proved that these exist for
“almost all” admissible v (meaning arithmetic set density 1 in the set of all
admissible orders) [97] and for all v = 3 (mod 6) with v > 21 [99]. For 6-
sparse STS(v), as well as the Pasch configuration and the mitre, the systems



46 T. S. Griggs

also have to avoid two further configurations, the crown and the 6-cycle,
also shown in Figure 5.3. In two papers [33], [34], Forbes, Grannell and
Griggs gave constructions for infinite classes of these. In particular they are
are known to exist for all sufficiently large v of the form 3p, p prime and
p =3 (mod 4). There is no known 7-sparse STS(v).

Mia Mitre

Crown 6-cycle

Fig. 5.3 Some 5 and 6-block configurations.

6. Isomorphism testing

Given two Steiner triple systems, (V,B) and (W, D), of the same order v, a
fundamental question is whether they are isomorphic and how to determine
this? Clearly to examine all v! bijections from V to W is not possible.
A different approach is needed. We therefore define an invariant to be
any property of an STS(v), (V,B), which remains fixed under all possible
v! permutations of the base set V. Then if the invariants of two Steiner
triple systems differ they are non-isomorphic though of course if they are
the same no conclusion can be drawn. Trivially, the number of blocks
b = v(v —1)/6 is such an invariant but this would be totally useless in
determining isomorphism as would any constant configuration. However
a variable configuration will be of use. The first candidate is the Pasch
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configuration P and we already noted in the last section that the number
of these in the two STS(13)s differ.

For the 80 STS(15)s, the number of Pasch configurations in each of the
systems is given on pages 65 to 69 of C&R. It varies from 105 for the pro-
jective STS(15) to 0 for the unique anti-Pasch system of this order. In total
there are 27 different values but only 8 of these, 105,73,57,32,15,11, 2,0,
occur as the number of Pasch configurations of just one STS(15). At the
other extreme there are seven systems with both 7 and 6 Pasch configura-
tions and six systems with 10, 9, and 8 Pasch configurations. Nevertheless
some progress has been made and further tests, such as counting the num-
bers of other variable configurations such as the mitre and the crown, can
be applied to try to distinguish the systems further. However, in addition
to simply just counting the number of Pasch configurations, other statistics
can also be compiled. For any STS(v), (V,B), and any variable configu-
ration C, let n(C) be the number of occurrences of the configuration in
the STS(v). Further for each point x € V and block B € B, let n(C,z)
and n(C, B) be the number of configurations C' in which the point x and
the block B respectively, appear. The point-configuration vector is then
defined as the vector (zo,21,...,2,()) where z; is the cardinality of the
set {x € V : n(C,z) = i}, i.e. the number of points in the system which
occur in precisely ¢ configurations. The block-configuration vector is defined
analogously. These two vectors give much more information and in fact are
sufficient to identify individual STS(15)s.

So we have a general strategy. First compute the point-configuration
and block-configuration vectors of variable configurations for the two Steiner
triple systems under consideration. Any difference implies that the systems
are non-isomorphic. If not, so that one suspects that the two systems may
be isomorphic, then the information obtained can be used to determine the
isomorphism. As a simple example there exist STS(19)s containing just
one Pasch configuration, in fact 35,758 of them [13]. Therefore 6 points
occur in one Pasch configuration and 13 points in no Pasch configuration.
So if we wish to test whether two such systems are isomorphic this simple
observation immediately reduces the number of possible bijections from 19!
to 6!x 13!, a saving in the computational effort by a factor of over 25,000. (In
fact, since the automorphism group of the Pasch configuration has order 24,
this can be reduced further to 24 x 13!). Further tests can then be applied
to reduce this number further until all the remaining possibilities can be
tested individually.
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Another very useful invariant is cycle structure. Let (V, B) be an STS(v).
For each pair =,y € V, define a graph G, , with vertex set V' \ {z,y, 2}
where {z,y, 2z} € B with two vertices u,v being joined by an edge if either
{z,u,v} or {y,u,v} € B. The graph G,, is a union of cycles of even
length greater than 2 and these can be recorded as a list of cycle lengths
in ascending order. The cycle structure is the collection of all such cycle
lists. The idea for this invariant goes back to the work of White, Cole and
Cummings |94] on the enumeration of STS(15)s where a cycle list is called
a type of interlacing. It completely distinguishes non-isomorphic STS(15)s.
It is worth noting that the number of Pasch configurations can also be
computed from cycle structure. A Pasch configuration, say with blocks
{a,b,c}, {a,y,z},{z,b, 2}, {z,y,c}, will occur as a 4-cycle in the graphs
Ga,z,Goy, Ge,z. So adding the total number of 4-cycles in the cycle structure
and dividing by 3 will give the number of Pasch configurations.

Before leaving cycle structure it is perhaps appropriate to take a little
detour. Steiner triple systems in which all cycle lists are the same are called
uniform and are of some interest. The projective, Hall, and Netto systems
are uniform but apart from these little is known. In [42], Grannell, Griggs
and Murphy constructed uniform STS(v) for v = 43,13063, and 34303
with all cycle lists 4,v — 7. A further uniform STS(v) with v = 180907
is given in [33] with cycle lists 4,12,180888. Uniform Steiner triple sys-
tems in which each cycle list is v — 3 are called perfect and here only 14
systems are known. The smallest four are the unique STS(7), the uni-
que STS(9), one of the three STS(25)s with automorphism group Z5 x Z5
[92], and a cyclic STS(33). Then in [42|, perfect systems of order, 79,
139,367,811, 1531, 25771, 50923, 61339, 69991 were constructed and a fur-
ther system of order 135859 was given in [33|. Unfortunately it is now
known that the method used cannot yield an infinite class. Having no 4-
cycles, perfect systems are anti-Pasch and those of order 79, 367, 811 are
also 5-sparse whilst that of order 139 is 6-sparse, a very interesting Steiner
triple system indeed.

Another invariant of a Steiner triple system is a directed graph known as
the train. Let (V,B) be an STS(v). Define a mapping f from the set of all
3-subsets of V' to itself by f({z,y,z}) = {a,b,c} where {a,y,z},{z,b, 2},
{z,y,c} € B. The digraph which represents this mapping is the ¢rain of the
STS(v). It comprises a number of components, all of which consist of a single
directed cycle with pendant directed trees that are directed towards the cy-
cle. If {a, b, c} € B then the directed cycle will be a directed loop on the ver-
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tex; the only place where loops will occur. Further if f({z,y,z}) = {a,b,c}
where {a, b, c} € B then the four blocks {a,y, z},{z,b, 2z}, {x,y,c},{a, b, c}
are a Pasch configuration. So by computing the sum of the indegrees of
all the vertices which represent blocks of the STS(v) and dividing by 4, the
number of Pasch configurations can again be obtained. The idea of the train
was developed by White [93] but is rather cumbersome to represent since the
digraph has v(v—1)(v—2)/6 vertices. Accordingly, Colbourn, Colbourn and
Rosenbaum [19] suggested using a summary of the information contained
in the digraph. This is called the compact train and is defined as a set of
ordered triples (m, n,p) where such a triple means that the train contains p
components with m vertices, n of which have indegree zero (after discount-
ing the directed cycle from each component). Trains also completely distin-
guish non-isomorphic STS(15)s and compact trains nearly do except that
systems #6 and #7 both have compact train (13,12,1)(13, 10, 18)(13,9, 16).
However the former has 37 Pasch configurations and the latter has 33.

The information in the train can also be summarized by the tricolour
vector. This was introduced in [50] primarily as an invariant for one-
factorizations of the complete graph but is applicable to Steiner triple sys-
tems. In the train, define v; to be the number of vertices having indegree
equal to i. The tricolour vector is then (vp,vi,ve,...,vy) where m is the
maximum indegree, and the tricolour number is the value of vg. The tri-
colour number varies from 420 for the projective STS(15) to 60 for the
anti-Pasch STS(15). There are 62 different values occurring with 47 ap-
pearing once, 12 appearing twice and 3 appearing thrice. It is therefore
a more discriminating invariant than counting Pasch configurations. The
tricolour vectors do distinguish the STS(15)s completely; in fact the first
three components are sufficient.

7. Group divisible designs

A natural generalization of a Steiner triple system is a group divisible de-
sign. Let S be a set of positive integers. A 3-group divisible design, usually
denoted by 3-GDD, is an ordered triple (V, G, B) where V is a base set of car-
dinality v, G is a partition of V into parts, called groups, whose cardinality
belongs to S, and B is a collection of triples or blocks which collectively have
the property that every pair of elements from different groups is contained
in precisely one triple and no pair of distinct elements from the same group
occur in any triple. Alternatively, every pair of distinct elements occur in
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either a group or a block but not both. If the partition of V' is into ¢; groups
of cardinality g;, ¢ = 1,2,...,n so that v = X?_,¢,¢;, the 3-GDD is said to
be of type g? g? ...gln. The use of the word “group” in this definition is
perhaps misleading; it has nothing to do with Group Theory.

Example 7.1. Let V ={1,2,3,4, A, B,C, D, E, F'} and G be the partition
{1,2,3,4},{A, B},{C, D}, {E, F'}. Take the triples B to be 1AC, 1BE, 1CF,
9AD, 2BF, 2CE, 3AE, 3BD, 3CF, 4AF, 4BC, 4DE. Then (V,G, B) is a 3-
GDD of type 423 O

A Steiner triple system of order v is a 3-GDD of type 1Y. Further, by
defining the sets of pairs through any chosen point as the groups and then
deleting that point from the design, gives a 3-GDD of type 2(v=1)/2 For an
STS(6s+ 3) with a parallel class, by defining each block of the parallel class
as a group, a 3-GDD of type 32**! is obtained. A Latin square of side v is
a 3-GDD of type v3.

More generally, necessary and sufficient conditions for the existence of
3-GDDs in which every group has the same cardinality, i.e. of type g, are
(1)t >=3,(2) (t—1)g =0 (mod 2), (3) t(t —1)g> = 0 (mod 3), [53] or in
tabular form as below.

Value of ¢ Value of ¢
lor5 (mod6) | 1or3 (mod6)
2 or4 (mod 6) | 0orl (mod 3)
3 (mod 6) 1 (mod 2)

0 (mod 6) no constraint

Also of particular note are 3-GDDs in which all groups except one are of
the same cardinality, i.e. of type g'u!. Necessary and sufficient conditions
are the following [14].

l.ifg>0thent>3,ort=2andu=g,ort=1and u=0, or t =0,
2. u<g(t—1)or gt =0,

3. gt—1)4+u=0 (mod 2) or gt =0,

4. gt =0 (mod 2) or u =0,

5. g*t(t —1)/2+ gtu =0 (mod 3).
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The importance of group divisible designs is their use in a construction of
Wilson [95]. The construction is applicable to group divisible designs having
any block size but is presented here just in the context of 3-GDDs.

Wilson’s fundamental construction

Let (V,G,B) be a 3-GDD (called the master GDD), and the partition G
of V be G1,Gs,...,G;. Further let w be a function (called a weight func-
tion) from the base set V to the set Z; of non-negative integers which
has the property that if {z,y,z} € B then there exists a 3-GDD of type
w(z)w(y)w(z) (called a slave GDD). Then there exists a 3-GDD of type
Yeeq,w(T) Laeg,w(T) ... Ypeq,w().

Wilson’s construction has wide application throughout Design Theory
and has been used in many creative ways. Below is just one example which,
although quite straightforward, will hopefully give some idea of the power
of the technique. In Section we introduced the Pasch configuration and dis-
cussed the existence of anti-Pasch STS(v); systems which contain no Pasch
configurations. At another extreme it is perhaps appropriate to ask whether
there exist ST'S(v) in which the blocks of the system can be partitioned into
Pasch configurations. This is one of the questions considered in [49] and
the relevant material, together with explanatory comments, are reproduced
in the proof of the following theorem.

Theorem 7.2. There exists an STS (v) which is decomposable into copies
of the Pasch configuration if and only if v =1,9 (mod 24).

Proof. We first prove necessity. In order for an STS(v) to be decomposable
into Pasch configurations, the number of blocks b = v(v — 1)/6 must be
divisible by 4. Hence v = 1,9 (mod 24).

The first possible value of v is therefore 25. If we choose V' = Zo5 then
a cyclic STS(25) will consist of 4 orbits under the mapping i — ¢+ 1 (mod
25). We seek such a system which contains a Pasch configuration with one
block from each orbit. Then the action of the mapping will guarantee that
the system decomposes into Pasch configurations. It is not too difficult
to construct a system by hand. The one given in [49] has starter blocks
{0,1,6}, {0,2,16}, {0, 3,10}, {0,4, 12} and a Pasch configuration with one
block from each orbit is {0,1,6}, {1,3,17}, {3,6,13}, {13,17,0}.

The second possible value of v is 33. We use the same approach as
for v = 25, seeking a system with V' = Zj; x {1,2,3} with automorphism
i — i+ 1 (mod 11) acting on the first co-ordinate and leaving the second
co-ordinate fixed. There are 16 orbits in all and starter blocks both for the
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system and the decomposition into Pasch configurations are

010203, 0162103, 3102103, 316203; 011131, 8111102, 813163, 0110263;
021242, 621233, 6242101, 02331071; 037353, 857361, 8353102, 0361102.
This system was found by computer.

The above are two of the ingredients needed in applying Wilson’s con-
struction. The third is a 3-GDD of type 4% which is also decomposable
into Pasch configurations. This will be the slave GDD. Let K4 be the
Klein 4-group with elements {e, z,y, 2z} where e is the identity. Let V =
K4 x {1,2,3}, with GDD partition G; = Ky x {i}, ¢ = 1,2,3. The
3-GDD has 16 blocks which are generated from the Pasch configuration
e1ese3, €1Y223, T1€223, T1y2e3 under the action of Ky.

We can now use the construction. Take as the master GDD, a 3-GDD
of type 6f, t > 3, and weight every point with 4. Replace every block
of the master GDD with the slave 3-GDD of type 4% above which can be
decomposed into Pasch configurations. FEach group of the master GDD
is now expanded and has cardinality 24. Adjoin a further point oo and
on every expanded group together with this point place the Pasch decom-
posable STS(25) constructed above. The result is a Pasch decomposable
STS(24t + 1).

For the case where v = 24t + 9 a different master GDD is needed, one
in which one of the groups has different cardinality from the others. Take
as the master GDD, a 3-GDD of type 6'8!, ¢t > 3. Then just proceed as in
the former case but on the expanded block of 32 points, together with the
point oo, place the Pasch decomposable STS(33). O

The reader will have noticed that in fact we have not quite proved the
theorem. The master GDDs used exist only for ¢ > 3. We already have
Pasch decomposable STS(25) and STS(33) but this still leaves the two val-
ues v = 49 and v = 81. This is a common feature of GDD constructions;
often small values “fall through the net” and have to be considered indi-
vidually. Nevertheless we have proved the existence of Pasch decomposable
STS(v) for all v = 1,9 (mod 24) with only two exceptions and we have done
this by building the systems from just three basic ingredients. Using Wil-
son’s construction has enabled us to assemble these ingredients to obtain
what we require. A Pasch decomposable STS(49) was also given in [49] but
no such system for v = 81. So the theorem was proved for all v = 1,9 (mod
24) except possibly v = 81. Of course the authors of the paper did not
believe that this was a genuine exception; just that the method used was
unable to deal with this value. Sometimes filling in the “missing” values to
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complete the spectrum can be the most difficult part of the proof. Often it is
necessary to embark on a lengthy computer search which can present a sig-
nificant challenge. To complete this story, a Pasch decomposable STS(81)
does exist; it was found later by Adams, Billington and Rodger [1].

Before leaving this topic, it is worth noting that with little extra work
we can prove that the systems constructed in the above theorem not only
partition into Pasch configurations, they also partition into sets of four
parallel blocks, i.e. configurations C; in Figure 5.2. All that is needed to do
is to partition the three ingredients used, STS(25), STS(33), and 3-GDD of
type 42 into configurations Cy. It is completely straightforward and is left
as an exercise for the reader. More information about decomposing Steiner
triple systems into configurations can be found in the papers [1], [47], [49],
[56].

8. Mendelsohn and directed triple systems

The blocks of a Steiner triple system are unordered. In this section we
consider the situation where order is introduced. There are two possibilities.
A cyclic triple, which will be denoted by (z,y, z), contains the ordered pairs
(z,v), (y,2), (z,x) and a transitive triple, denoted by [x,y, z] contains the
ordered pairs (z,y), (y,2), (x,z). Systems of cyclic triples were the first
to be considered, by Mendelsohn [71]|, and very appropriately are named
after him. Thus a Mendelsohn triple system of order v, usually denoted by
MTS(v), is an ordered pair (V, B) where V' is a base set of cardinality v and
B is a collection of cyclic triples which collectively have the property that
every ordered pair of distinct elements of V' is contained in precisely one
cyclic triple. An elementary counting argument establishes that a necessary
condition for the existence of an MTS(v) is v = 0,1 (mod 3) and systems
do exist for all of these orders except that there is no MTS(6).

An MTS(3) on base set {a,b, c} consists of the two triples (a,b,c) and
(¢,b,a). An MTS(4) on base set {a,b,c,d} has triples (a,b,c), (d,b,a),
(¢,d,a), (d,c,b). They are the unique Mendelsohn triple systems of these
orders. There are three non-isomorphic Mendelsohn triple systems of order
7 detailed in the example below.

Example 8.1. All three systems will be defined on base set V = Z~.
SYSTEM #1: Develop the triples (0,1,3) and (0,3,1) under the action of
the mapping i — i+ 1 (mod 7).

SYSTEM #2: Develop the triples (0,1,3) and (0,3,2) under the action of
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the mapping i — i + 1 (mod 7).

SYSTEM #3: The triples are (0,1,2), (0,2,1), (0,
(0,6,5), (1,3,5), (1,4,6), (1,5,4), (1,6,3), (23,6
(2,6,4). O

The numbers of non-isomorphic MTS(v) for v = 9,10, 12 are 18 [68], 143
[37] [38], 4,905,693 [23]. The Mendelsohn triple systems of order 9 are listed
on pages 533 and 534 of HB. A further isomorphism invariant is available
for Mendelsohn triple systems. For a Steiner triple system, (V,B), the
neighbourhood of a point x € V' is the set N(z) = {{u,v} : {z,u,v} € B}.
Cycle structure can then be thought of as the graphs obtained from all
double neighbourhoods, i.e. N(z)U N(y), z,y,€ V, x # y. However for
a Mendelsohn triple system, the neighbourhood of a point will be a set of
ordered pairs, which form a collection of directed cycles. The set of all these
single neighbourhoods is an invariant of an MTS(v).

Two recursive constructions for Mendelsohn triple systems are given on
pages 442 and 443 of C&R.

Theorem 8.2. If there exists an MTS (v) then there exists an MTS (2v+1).

Proof. Let (V,B) be an MTS(v) and W be a set of cardinality v+ 1, disjoint
from V. Let L be a Latin square of side v + 1 with rows and columns
indexed by W and entries from V U {oco}, where L(i,i) = 0o, i € W. Now
put D = {(i,L(i,7),7) : i,5,€ W,i # j}. Then (VUW,BUD) is an
MTS(2v + 1). O

Theorem 8.3. If there exists an MTS (v) then there exists an MTS (2v+4).

Proof. Let (V,B) be an MTS(v) where V' is disjoint from Z,4. Let 7 be
the set of triples obtained by the action of the mapping ¢ — i + 1 (mod
v +4) on the starter triple (0,1, 3). For each d € 2,44\ {0,1,2,v + 1}, let
D = {(xq4,1,i+d) : 0 < i < v+3,24 € V} where the elements x4 run through
all elements of V and addition is modulo v+4. Then (V UZy,14, BUT UD)
is an MTS(2v +4). O

Given Mendelsohn triple systems of orders 3,4,13,16 the above two
theorems are sufficient to give the entire spectrum of MTS(v). Systems for
the latter two values are given in the next two examples.

Example 8.4. For an MTS(13), let V' = Z;3. The blocks are obtained by
the action of the mapping i — i+ 1 (mod 13) on the starter triples (0,1,4),
(4,3,0), (0,2,7), (7,5,0). O
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Example 8.5. For an MTS(16), let V' = Z;3 U {001, 002, 003}. The blocks
are obtained by the action of the mapping i — i + 1 (mod 13) on the
starter triples (c01,0,7), (002,0,9), (o03,0,10), (0,1,5), (0,2,7), (0,3,1),
with the points 0oy, 0092, 003 as fixed points, together with the two blocks
(001, 009, 003) and (003, 002, 001). O

Given an MTS(v), if every cyclic triple (z,y, ) is replaced by the corre-
sponding unordered triple {x,y, z} a twofold triple system, usually denoted
by TTS(v), is obtained. This is a collection of triples in which every pair
occurs precisely twice. The TTS(v) so obtained is called the underlying
TTS(v) of the MTS(v) and may contain repeated triples. If it does not
then it is called simple and the MTS(v) is said to be pure. Bennett and
Mendelsohn [4] proved the following theorem.

Theorem 8.6. There exists a pure MTS (v) for allv =0,1 (mod 3) except
v =3,6. ]

In fact, the results presented in this section are a good start in proving
this. The construction given in the proof of Theorem 8.2 does not introduce
repeated triples provided that the Latin square used is anti-symmetric. Nor
does that in the proof of Theorem 8.3 if v is odd. If v is even, replace the
starter triple (0,1,3) with (0,1, (v +4)/2) and let d € Z,14 \ {0,1, (v +
2)/2,(v+4)/2}. Of the initial systems used in these constructions those
of orders 4 and 13 are pure. So what is required is a pure MTS(7) (one is
given in the example above) and a pure MTS(10) to replace the MTS(3),
and a pure MTS(16).

Also given an MTS(v), if every cyclic triple (z,y,z) is replaced by
(z,y,x), another MTS(v), called the converse of the original MTS(v), is
obtained. The converse is not necessarily isomorphic to the original but a
system where this is the case is said to be self-converse. Chang, Yang and
Kang [9] proved the following theorem.

Theorem 8.7. There ezists a self-converse MTS (v) for allv = 0,1 (mod 3)
except v = 6. ]

We now turn our attention to directed triple systems. These were intro-
duced by Hung and Mendelsohn [57] and the formal definition is as follows.
A directed triple system of order v, usually denoted by DTS(v), is an or-
dered pair (V, B) where V is a base set of cardinality v and B is a collection
of transitive triples which collectively have the property that every ordered
pair of distinct elements of V' is contained in precisely one transitive triple.
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Again a necessary condition for existence is v = 0,1 (mod 3) and this is
also sufficient with no exceptions.

Directed triple systems exist in greater numbers than their Mendel-
sohn counterparts. Enumeration results for v < 7 were obtained by Col-
bourn and Colbourn [18]. The DTS(3) is of course unique: on base set
{a,b,c}, it consists of the transitive triples [a, b, ] and [c, b, a]. But there
are 3 non-isomorphic DTS(4)s. On base set {a, b, ¢, d}, they are (1) [a, b, c],
b,a,d], [c,d,a], [d,c,b], (2) [a,b,c], [b,a,d], [c,d,b], [d,c,a], (3) [a,b,c],
[c,a,d], [b,d,al], [d,c,b]. There are 32 non-isomorphic DTS(6)s and 2,368
non-isomorphic DTS(7)s (compared to no MTS(6) and just 3 MTS(7)s).

In respect of pure directed triple systems, there is a stronger result than
for Mendelsohn triple systems. Colbourn and Colbourn [11] proved the
following theorem.

Theorem 8.8. Every twofold triple system is the underlying system of some
directed triple system. U

This is certainly not true for Mendelsohn triple systems. There are 36
non-isomorphic TTS(9)s but only 16 of them are underlying systems of the
18 MTS(9)s.

As with MTS(v), the converse of a DTS(v) is also a DTS(v), not nec-
essarily isomorphic to the original. Kang, Chang and Yang [58] established
the spectrum of self-converse DTS(v).

Theorem 8.9. There exists a self-converse DTS (v) for all v = 0,1 (mod 3)
except v = 6. U

An existence proof for directed triple systems can be adapted from and
follows closely Theorems 8.2 and 8.3 for Mendelsohn triple systems. But
to finish this section an alternative proof is given; one which uses Wilson’s
fundamental construction. We will need certain ingredients to implement
this and we give these first as examples.

Example 8.10. For clarity brackets and commas are omitted from directed
triples.
DTS(6): 013, 124, 230, 341, 402, 054, 150, 251, 352, 453.
DTS(9): 012, 345, 678, 036, 147, 258, 048, 156, 237, 057, 138, 246, 310,
872, 654, 520, 761, 843, 740, 851, 632, 860, 421, 753.
DTS(10): 021, 203, 130, 312, 054, 506, 460, 645, 087, 809, 790, 978, 347,
158, 269, 593, 671, 482, 836, 914, 725, 274, 385, 196, 952, 763,
841, 628, 439, 517.
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This latter example is taken from [44]. Note that the DTS(10) contains
a subsystem DTS(4) on the set {0,1,2,3}, a feature which will be crucial
in the proof below. The triples also have the interesting property that if
they are interpreted as cyclic triples instead of transitive triples they form
an MTS(10).

3-GDD of type 23: Let V = {a,b,c, z,y, 2} with partition {a,z}, {b,y},
{¢, z}. The directed triples are abc, ayz, xbz, xyc, zyz, cbzr, cya, zba. O

Theorem 8.11. There exists a DTS (v) for all v = 0,1 (mod 3).

Proof. The proof is divided into different residue classes.

(1) v=6s+1, s > 1. Let {{0,a;,a; +b;} : 1 < i < s} be a set of orbit
starters under the mapping ¢ +— i + 1 (mod 6s + 1). For a DTS(v), choose
orbit starters [0, a;, a; + b;] and [a; + b;, a;, 0] under the same mapping or,
for a pure system, [0, a;, a; + b;] and [a; + b;, b;, 0].

(2) v="6s+3, s>0. Asin case (1), for s # 1 take a set of cyclic orbit
starters. It will not be possible in this case to construct a pure DTS(v)
because of the short orbit starter {0,2s + 1,4s + 2}. A DTS(9) is given in
the above example.

(3) v=125+6, s > 0. For s =0, a DTS(6) is given above. Otherwise
take a 3-GDD of type 32! and weight every point with 2. Replace every
block of the GDD by the slave directed 3-GDD of type 23 given in the above
example and every expanded group by the DTS(6).

(4) v =125+ 4, s > 0. The three non-isomorphic DTS(4)s are given
above. For s > 1, Take a 3-GDD of type 237! weight every point with 2,
and proceed as in case (3), using the slave directed 3-GDD and a DTS(4).

(5) v = 12s, s > 1. This is exactly the same as the previous case
starting with a 3-GDD of type 23°.

(6) v = 125 + 10, s > 0. This is a slightly more difficult case and
illustrates a further extension of the use of Wilson’s construction. For s = 0,
a DTS(10) is given above. Otherwise take a 3-GDD of type 3%7%! weight
every point with 2, and replace every block of the GDD by the slave directed
3-GDD as before. The expanded groups of the master GDD have cardinality
6 so adjoin four further points, say a,b,c,d. On every expanded block,
together with a,b, ¢, d, place a DT'S(10) containing a DTS(4) subsystem so
that this subsystem is on the four adjoined points. Recall that we remarked
that the DTS(10) in the example above had such a subsystem. O
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9. Quasigroups and loops

A Steiner quasigroup or squag is a pair (Q,-) where @ is a set and - is an
operation on () satisfying the identities

T =2, y-(z-y) ==, ToyY=1y-T.

If (V,B) is an STS(v), then a Steiner quasigroup (@), -) is obtained by letting
@@ = V and defining x-y = z where {x,y, z} € B. The process is reversible; if
@ is a Steiner quasigroup, then a Steiner triple system is obtained by letting
V =Q and {z,y,z} € B where -y = z for all z,y € Q, x # y. Thus
there is a one-one correspondence between all Steiner triple systems and
all Steiner quasigroups, see for example Theorem V.1.11 of [78]. A Steiner
quasigroup is also known as an idempotent totally symmetric quasigroup,
see Remark 2.12 on page 153 of HB. In a similar vein, a Steiner loop or
sloop is a pair (L,-) where L is a set containing an identity element, say e,
and - is an operation on L satisfying the identities

e-r=r, T-T=e¢, y-(z-y) ==, T-Yy=1vy-x.

If (V,B) is an STS(n), then a Steiner loop (L,-) is obtained by letting
L =V U{e} and defining x - y = z where {x,y,z} € B. Again the process
is reversible. All of the above is well-known in both the algebraic and the
combinatorial communities.

For a Steiner loop, a natural question is whether it can ever be a group
and if so to identify both the group and the Steiner triple system from which
it comes? The answer, which is also well-known, is in the affirmative and is
easy to determine. Let (L,-) be a Steiner loop. Then if it is also a group,
since every non-identity element has order 2, it is elementary Abelian of
order 2", n > 2. The corresponding Steiner triple system thus has order
2™ —1 and is the projective Steiner triple system of that order introduced in
the Introduction and obtained by suitably identifying elements of the group
with vectors in (Fg)".

A further question which now arises is whether there are any other
algebraic identities which a Steiner loop may satisfy which lead to other
interesting classes of Steiner triple system? However, before considering this
question, it is instructive to present a different proof of the above result that
if a Steiner loop is associative then it comes from a projective Steiner triple
system. This alternative proof is not group-theoretic but combinatorial,
relying on results from Design Theory. Let (V,B) be an STS(v) and (L, -),
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where L = V' U {e}, the associated Steiner loop. If any of z,y, z are equal
to e or to one another then associativity is satisfied. If {x,y, 2} € B then
(x-y)-z=x-(y-z) = e Now suppose that {z,y,z} ¢ B. Then the
block, say b, containing x,y also contains the element z - y. Similarly,
the block, say bo, containing y,z also contains the element y - z. Now
consider the block b3 containing z - y and z. The third point is (x - y) - z.
Similarly the third point in the block b4 containing z and y - z is x - (y - 2).
If the associative law holds then these two third points are the same and
the four blocks b1, bo, b3, by contain six points, x,y,z,2 - y,y - 2,T - Y - 2,
i.e. they form a Pasch configuration. The number of sets {z,y,z} ¢ B is
v(v—1)(v—2)/6—v(v—1)/6 = v(v—1)(v—3)/6, so the STS(v) must contain
at least v(v — 1)(v — 3)/24 Pasch configurations. But this is the maximum
number that can occur and does so only in the projective systems [90]. In
fact the cycle structure of the projective systems contains only 4-cycles.
We now introduce a concept which we call fractional associativity. In
order to do this we express associativity in a different notation. By in-
troducing left and right translations, = -y can be written as either L, (y)
or Ry(z). The associative law can then be expressed as LR, = R,L,.
Then 1/nth associativity is defined by (LyR.)" = (R,L;)". Clearly if an
operation is 1/nth associative then it is 1/mth associative for all m > n
with associativity being the case where n = 1. Now counsider a Steiner
loop (L, -) where the operation is 1/2-associative, in conventional notation,
z-((x-(y-2))-2z) =(x-((x-y)-z)) 2. Then a straightforward, but somewhat
tedious, analysis shows that the cycle structure of the corresponding Steiner
triple system must contain only 4-cycles and 8-cycles. This class of STS(v)
is wider than just the projective systems. It contains the STS(15) #2 in
the standard listing in [67] for example. But none of the 11,084,874,829
STS(19)s have this property. The situation merits further investigation.

The Hall triple systems have an elegant characterization in terms of
Steiner quasigroups.

Theorem 9.1. Let (Q,-) be the Steiner quasigroup corresponding to an
STS (v), (V,B). Then (Q,-) satisfies the distributive law, i.e., - (y - z) =
(x-y)-(z-2), z,y,2 € Q, if and only if (V,B) is a Hall triple system.

Proof. To prove necessity, we need to show that every three points which
do not form a triple generate the unique STS(9).

So let a,b,p € V where {a,b,p} ¢ B. Then there exists ¢, z, such that
{a,b,c},{a,p,z} € B. (It is to be understood that when a new letter is
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introduced it represents a new point.) There also exist z,r, such that
{b,p,z},{b,z,1r} € B.

Now a-(b-p) = (a-b)-(a-p), i.e. a-z = c:x = q. Thus {a, 2, ¢}, {c, z,q} € B.
Alsoa-(b-xz) = (a-b)-(a-z),i.e.,a-r =c-p=y. Thus{a,r,y}, {c,p,y} € B.

We now have nine points, a, b, ¢, p, q,r, x,y, z and eight blocks. To com-
plete the STS(9) and also the proof we need to show that {b, q,y},{c, 7, 2z},
{p.q,r} {z,y, 2} € B.

Sob-q=(c-a)-(c-x) =c-(a-x) =c-p=y. Further c-r = (b-a)-(b-x
b-(a-x)=b-p=z Nextp-gq=(x-a)-(x-¢c)=x-(a-¢c)=x-b=r.
Finally x-y=(p-a)-(p-¢)=p-(a-¢)=p-b=z.

To prove sufficiency, suppose first that {z,y,2} € B. Then = - (y - z) =
z-x==xand (z-y) - (v-2) =2y =z If {z,y,2z} ¢ B, then the three
points x,y, z generate an STS(9). There exists a, b, ¢ such that {a,y, 2z},
{z,b,z},{x,y,c} € B. But {a,b,c} ¢ B, because the unique STS(9) is anti-
Pasch. Therefore there exists [, m, n such that{l, b, ¢}, {a,m, c},{a,b,n} € B,
and by considering blocks containing the point a, {a,z,l} € B. Now we
obtainz-(y-2z)=xz-a=land (x-y) - (z-2)=c-b=1 O

~—

Another method of obtaining a loop from a Steiner triple system (V, B) is
to choose a point a € V and define an operation o by the rule xoy = (x-y)-«
where x -y is defined as in the Steiner quasigroup, i.e. z-z =rand z-y = 2
where {z,y,z} € B. The point « is the identity and every other element
has order 3. Different values of a can lead to different loops. If (V,B) is a
Hall triple system then the loop obtained is a Moufang loop and different
values of « then lead to isomorphic loops. The relationship between Hall
triple systems and exponent 3 commutative Moufang loops is one-one.

Less well known seems to be the fact that quasigroups and loops can be
obtained from Mendelsohn triple systems by precisely the same procedures
as described above for constructing Steiner quasigroups and Steiner loops
from Steiner triple systems. The law y - (- y) = x is usually called semi-
symmetric and the quasigroups are known as idempotent semisymmetric
quasigroups, see again Remark 2.12 on page 153 of HB. However the alge-
braic structures might also appropriately be called Mendelsohn quasigroups
and Mendelsohn loops; they satisfy the same properties as their Steiner
counterparts with the exception of commutativity. Similarly there is a
one-one correspondence between Mendelsohn triple systems, Mendelsohn
quasigroups and Mendelsohn loops.

For a directed triple system, an algebraic structure can also be obtained
as above by defining x-x =z and x-y = z for all z,y € V, z # y where z is
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the third element in the transitive triple containing the ordered pair (z,y).
However the structure obtained is not necessarily a quasigroup. If [u,z,y]
and [y,v,x] are transitive triples then w -z = v-z = y. But in fact some
DTS(v)s do yield quasigroups and these are the subject of a recent paper by
Drépal, Kozlik and the present author [27]. Such a DTS(v) is called a Latin
directed triple system, and denoted by LDTS(v), to reflect the fact that
in this case the operation table forms a Latin square. The quasigroup so
obtained is called a DT'S-quasigroup. In an analogous way to that described
above for Steiner triple systems a loop may also be constructed from an
LDTS(n); called a DTS-loop.

A necessary and sufficient condition for a directed triple system to be
Latin is given in the following theorem, proved in [27].

Theorem 9.2. Let D = (V,B) be a DTS (v). Then D is an LDTS (v) if
and only if [x,y,z] € B = [w,y,z] € B for some w € V. O

Latin directed triple systems differ from their Steiner and Mendelsohn
counterparts in fundamental ways. One of these is that they are not a va-
riety. Another is that, unlike Steiner and Mendelsohn triple systems, there
is not a one-one correspondence between the Latin directed triple systems
and the associated quasigroups or loops. A further difference concerns flex-
ibility. The flezible law states that z-(y-x) = (z-y)-x. Asis easily verified,
both Steiner quasigroups and loops and Mendelsohn quasigroups and loops
all satisfy this law. But this is not the case for D'T'S-quasigroups and loops.
A flexible DTS-quasigroup or loop has an interesting geometric structure
and a necessary and sufficient condition is as follows.

Theorem 9.3. A DTS-quasigroup or DTS-loop obtained from a Latin di-
rected triple system LDTS (v), D = (V,B), satisfies the flexible law if and
only if [x,y,2] € B=[z,z-z,y-z]| € B. O

DTS-quasigroups exist for all v =0, 1 (mod 3) except v = 4,6, 10. More
details are in [27].

Finally we remark that the isomorphism invariants, cycle lists and trains,
used to distinguish non-isomorphic Steiner and Mendelsohn triple systems,
and hence also their associated quasigroups and loops, might also be used
more widely. Let (@, -) be a quasigroup (including a loop). For z € @) define
the neighbourhood N(x) as the set of ordered pairs {(u,v) : u-v =x}. The
cycles induced by double neighbourhoods and, if ) is not commutative,
the directed cycles induced by single neighbourhoods can be used to help
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determine isomorphism. Trains can be obtained by defining the mapping f
from the set of all cyclic triples of @ to itself by f((z,y,2)) = (a,b, c) where
y-z=a,z-x=>b,x-y=c. Ifthe quasigroup is commutative then the
cyclic triples can be replaced by 3-subsets.
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