
Quasigroups and Related Systems 19 (2011), 23 − 68Steiner triple systems and their 
lose relativesTerry S. GriggsAbstra
t. This paper is intended to be a gentle and self-
ontained introdu
tion toSteiner triple systems and other important designs of triples. Topi
s 
overed in
ludeexisten
e proofs, isomorphism testing, and important te
hniques whi
h have wide appli-
ation. Links to the algebrai
 theory of quasigroups and loops are also dis
ussed.
1. Introdu
tionThis paper a

ompanies talks given at the Loops11 workshop in T°e²´,Cze
h Republi
, from 21st to 23rd July (�ervene
), 2011. Knowledge ofSteiner triple systems and other designs of triples is a vast �eld as the ref-eren
e work, �Triple Systems� by C.J. Colbourn and A. Rosa [17℄ shows.This was published in 1999 and has over 450 pages of text and nearly 100pages of bibliography. Although in the 10+ years sin
e its publi
ation thesubje
t has inevitably moved on it is still the referen
e work to 
onsultand I will refer to it at various points throughout this paper referen
ed asjust C&R. Another indispensable tool is the �Handbook of CombinatorialDesigns� edited by C.J. Colbourn and J.H. Dinitz [12℄. Now in its se
ondedition I will also refer to this as HB. So within the time and spa
e avail-able it is possible only to give a very brief glimpse of this interesting andfas
inating area. I have to be sele
tive; indeed very sele
tive. What hasguided my 
hoi
e are three basi
 prin
iples. The �rst of these is to presentbasi
 existen
e results and questions of isomorphism testing. The se
ond isto explore 
ertain te
hniques whi
h seem to have a wide appli
ation. Last,but not least, I want to sele
t topi
s whi
h I hope will be of most interestor use to an algebrai
 audien
e. In this way perhaps I will a
hieve the aimof at least giving a �avour of the subje
t. So let us begin.2010 Mathemati
s Subje
t Classi�
ation: 05B07Keywords: triple system, 
onstru
tion, automorphism, 
on�guration, isomorphism,group divisible design, quasigroup, loop.



24 T. S. GriggsA Steiner triple system of order v, usually denoted by STS(v), is anordered pair (V,B) where V is a base set of elements or points of 
ardinality
v and B is a 
olle
tion of triples also 
alled blo
ks, whi
h 
olle
tively have theproperty that every pair of distin
t elements of V is 
ontained in pre
iselyone triple. The most well-known examples 
ome from geometry. Let F2 bethe �nite �eld of two elements and V = (F2)

n \ {0}. The set of triples ofve
tors {x,y, z} where x + y + z = 0, x 6= y 6= z 6= x, form the blo
ks ofan STS(2n − 1). Thus V and B are respe
tively the points and lines of theproje
tive geometry PG(n − 1, 2) and the systems are known as proje
tiveSteiner triple systems. For n = 3, and interpreting the ve
tors as binarynumbers, this gives the following triples 123, 145, 167, 246, 257, 347, 356as the blo
ks of an STS(7). Here, and throughout the rest of the paper wewill for 
larity omit set bra
kets and 
ommas from triples when there is nodanger of 
onfusion.Further examples are the a�ne triple systems. Let F3 be the �eld ofthree elements and let V = (F3)
n. Again B is the set of triples of ve
tors

{x,y, z} where x + y + z = 0, x 6= y 6= z 6= x, and V and B are respe
-tively the points and lines of the a�ne geometry AG(n, 3). For n = 2, andinterpreting the ve
tors as ternary numbers, this gives the following triples012, 345, 678, 036, 147, 258, 048, 372, 615, 057, 138, 246 as the blo
ks ofan STS(9). A wider 
lass whi
h 
ontains the a�ne Steiner triple systemsis the Hall triple systems. These were introdu
es by Hall [51℄ as Steinertriple systems in whi
h for ea
h x ∈ V , the automorphism group 
ontainsan automorphism whi
h is an involution with just x as a �xed point. They
an be 
hara
terized as Steiner triple systems in whi
h every three pointswhi
h do not form a triple generate the a�ne Steiner triple system AG(2, 3)of order 9. Hall triple systems have order 3m, m ≥ 2, and the smallest su
hsystem whi
h is not a�ne has order 81. More information is 
ontained onpages 496 to 499 of HB.Less well-known are the so-
alled Netto triple systems. These appearto have been in
orre
tly attributed to Netto and are not the systems in-trodu
ed in his paper of 1893 [74℄. Perhaps their most elegant des
riptionis the following taken from [22℄. Let p be prime with p ≡ 7 (mod 12).Let n be odd and q = pn. Consider the �nite �eld Fq = V and let ǫ1and ǫ2 be the two primitive sixth roots of unity. Then ǫ1 and ǫ2 satisfythe equation x2 − x + 1 = 0. So ǫ1ǫ2 = ǫ1 + ǫ2 = 1. Both ǫ1 and ǫ2are quadrati
 non-residues. The 
olle
tion B is determined by spe
ifyingthe unique triple whi
h 
ontains the pair {a, b}. De�ne x < y if y − x
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 residue. Either a < b or b < a but not both. Withoutloss of generality assume the former. Then the triple 
ontaining the pairis {a, b, f(a, b)} where f(x, y) = xǫ1 + yǫ2. The 
onstru
tion works be-
ause both b < f(a, b) and f(a, b) < a and both f(b, f(a, b)) = a and
f(f(a, b), a) = b.The above are very spe
ial types of Steiner triple system. It was Pl¶
kerin 1835 [80℄ who �rst asked the question for whi
h v Steiner triple systemsSTS(v) exist and stated that a ne
essary 
ondition is v ≡ 3 (mod 6), later[81℄ 
orre
ted to v ≡ 1, 3 (mod 6). Su
h values are 
alled admissible and areeasily derived by 
ounting. Ea
h point x ∈ V o

urs in r = (v−1)/2 triples.This is the repli
ation number. Hen
e v must be odd. The total number oftriples is b = v(v − 1)/6 whi
h disallows v ≡ 5 (mod 6). The name 
omesfrom the fa
t that Steiner in 1853 [89℄ asked a series of questions, the �rst ofwhi
h was the existen
e of what be
ame to be 
alled Steiner triple systems.Wel
he Zahl, N , von Elementen hat die Eigens
haft, dass si
h die Elemente so zudreien ordnen lassen, dass je zwei in einer, aber nur in einer Verbindung vorkommen?Six years later a solution was given by Reiss [83℄, but both Steiner andReiss had been anti
ipated by Kirkman [60℄ in a paper dated 23rd De
ember1846 and published the next year. There is a remarkable similarity betweenthe papers of Kirkman and Reiss!Kirkman's paper was the �rst of any signi�
an
e in Combinatorial De-sign Theory and was followed by other important 
ontributions. To quoteBiggs [5℄In this series of papers Kirkman has established an in
ontestable 
laim to beregarded as the founding father of the theory of designs. Among his 
ontempo-raries, only Sylvester attempted anything 
omparable, and his papers on Ta
ti
seem to be more 
on
erned with advan
ing his 
laims to have dis
overed the sub-je
t than with advan
ing the subje
t itself. Not until the Ta
ti
al Memoranda ofE.H. Moore in 1896 is there another 
ontribution to rival Kirkman's.In one note [61℄, Kirkman posed the following problem.Fifteen young ladies in a s
hool walk out three abreast for seven days in su

ession:it is required to arrange them daily, so that no two shall walk twi
e abreast.What is required here is an STS(15), but one whi
h has an additionalproperty, that of resolvability. In an STS(v), (V,B), a parallel 
lass or a



26 T. S. Griggsresolution 
lass is a set of blo
ks whi
h 
ontain every element pre
isely on
e.If the blo
ks of B 
an be partitioned into parallel 
lasses, then the STS(v)is said to be resolvable. Su
h an STS(v), together with its parallel 
lasses,is 
alled a Kirkman triple system and denoted by KTS(v). The STS(9)given above has this property of resolvability. Although Kirkman himselfalways very properly referred to �young ladies� the problem be
ame knownas �Kirkman's 15 s
hoolgirls problem�. A solution was given by Cayley [8℄in 1850 and the following year Kirkman [62℄ gave his own solution. Clearly,ne
essary 
ondition for the existen
e of a KTS(v) is v ≡ 3 (mod 6), but aproof of its su�
ien
y, by Ray-Chaudhuri and Wilson [82℄, did not appearuntil 1971, fully 120 years after the proof for Steiner triple systems. Thesame result was also established by Lu in 1965 but remained unpublisheduntil 1990 [66℄.Essentially there are two types of 
onstru
tion for Steiner triple systems;re
ursive and dire
t. Kirkman's solution is re
ursive and is des
ribed in thenext se
tion as well as further later 
onstru
tions. Dire
t 
onstru
tions are
onsidered in Se
tion 3. However before pro
eeding it is perhaps appropriateto give some enumeration results.Two Steiner triple systems (V,B) and (W,D) are said to be isomor-phi
 if there exists a one-one mapping φ : V → W su
h that every triple
B ∈ B maps to a triple φ(B) ∈ D. In the 
ase of a Kirkman triple systemthe mapping must also preserve the resolution 
lasses. To within isomor-phism the STS(7) and STS(9) are unique with automorphism groups oforder 168 and 432 respe
tively. There are two non-isomorphi
 STS(13)s. In1897, Zulauf [100℄ showed that the known STS(13)s fall into two isomor-phism 
lasses and two years later De Pasquale [24℄ determined that onlytwo isomorphism 
lasses are possible. White, Cole and Cummings [94℄ �rstenumerated STS(15)s in 1919; they found 80 non-isomorphi
 systems. Un-aware of their work, Fisher [31℄ repeated the enumeration in 1940 but foundonly 79 systems. However the vera
ity of White, Cole and Cumming's re-sult was 
on�rmed in 1955 by Hall and Swift [52℄ in one of the �rst uses ofdigital 
omputers in Combinatorial Design Theory. Listings and properties,in
luding details of automorphism groups, of these systems are 
ontainedin the paper by Mathon, Phelps and Rosa [67℄, see also pages 65 to 69of C&R. The 
ombinatorial explosion now takes over. The number of non-isomorphi
 STS(19)s is 11,084,874,829 published by Kaski and �stergård in2004 [59℄. A study of the properties of these system is [13℄. So enumerationresults have appeared at the rate of one in ea
h of the 19th, 20th and 21st
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enturies. It is interesting to spe
ulate whether we will have to wait untilthe next 
entury or perhaps the general availability of quantum 
omputingto know the number of non-isomorphi
 STS(21)s.There are seven KTS(15)s but these 
ome from only four STS(15)s;there are two non-isomorphi
 resolutions of systems #1, #7 and #15 andone of #61. They 
an be found, very 
onveniently, on page 67 of HB. Thesolutions mentioned above by Cayley and Kirkman are the two resolutionsof system #1 whi
h is the proje
tive STS(15). In 1860, Peir
e [76℄ alsogave both solutions together with the one from system #61 and all sevensolutions are listed by Mulder [73℄ and Cole [20℄. An early bibliography of48 papers on �Kirkman's s
hoolgirls problem� was published by E
kenstein[29℄. 2. Re
ursive 
onstru
tionsSo, how did Kirkman prove the existen
e of Steiner triple systems, or as he
alled them triad systems? He devised two re
ursive 
onstru
tions whi
hare given below. But �rst we need some further de�nitions. A partialSteiner triple system of order v, denoted by PSTS(v), is de�ned similarlyto an STS(v) ex
ept that every pair of distin
t elements of V is 
ontainedin at most one triple. The set of pairs whi
h are not 
ontained in any tripleis 
alled the leave of the PSTS(v). The 
onstru
tions also use the 
on
eptof a one-fa
torization of a 
omplete graph K2n. A one-fa
tor is a set of
n edges whi
h 
olle
tively are in
ident with every vertex of the graph. Aone-fa
torization is a partition of all n(2n−1) edges into 2n−1 one-fa
tors.Denote by Qv, an STS(v) and by Rv, a PSTS(v) with a leave whi
h 
onsistsof a 
y
le Cv−1. The ne
essary 
ondition for the existen
e of the latter is
v ≡ 1, 5 (mod 6). Kirkman's two 
onstru
tions are as follows.1. Q2n+1 =⇒ Q4n+3 =⇒ R4n+1.2. R2n+1 =⇒ Q4n+1 =⇒ R4n−1.Kirkman's �rst 
onstru
tionLet Q2n+1 be de�ned on base set V = {x0, x1, x2, . . . , x2n}. Now take thefollowing one-fa
torization of the 
omplete graph K2n+2 on {∞, 0, 1, . . . , 2n}and assign all the pairs of ea
h one-fa
tor to points of the base set V of the
Q2n+1 as shown below.
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x0 : (∞, 0) (1, 2n) (2, 2n − 1) . . . (n − 1, n + 2) (n, n + 1)
x1 : (∞, 1) (2, 0) (3, 2n) . . . (n, n + 3) (n + 1, n + 2)
·
·

xn−1 : (∞, n − 1) (n, n − 2) (n + 1, n − 3) . . . (2n − 2, 0) (2n − 1, 2n)
xn : (∞, n) (n + 1, n − 1) (n + 2, n − 2) . . . (2n − 1, 1) (2n, 0)

xn+1 : (∞, n + 1) (n + 2, n) (n + 3, n − 1) . . . (2n, 2) (0, 1)
·
·

x2n : (∞, 2n) (0, 2n − 1) (1, 2n − 2) . . . (n − 2, n + 1) (n − 1, n)This gives Q4n+3. To obtain R4n+1 remove all triples 
ontaining 0 or 2n.The C4n leave is
∞, x0, 1, xn+1, 2, x1, 3, xn+2, 4, x2, . . . , 2n − 2, xn−1, 2n − 1, x2n.Kirkman's se
ond 
onstru
tionLet R2n+1 be de�ned on base set V = {x0, x1, x2, . . . , x2n} with C2n leave

x0, x1, x2, . . . , x2n−1. Now take the following one-fa
torization of the 
om-plete graph K2n on set {∞, 0, 1, . . . , 2n− 2} and assign all the pairs of ea
hone-fa
tor ex
ept the pair in the last 
olumn to points of the base set V ofthe R2n+1 as shown below.
xn−1 : (∞, 0) (1, 2n − 2) (2, 2n − 3) . . . (n − 2, n + 1) (n − 1, n)
xn : (∞, 1) (2, 0) (3, 2n − 2) . . . (n − 1, n + 2) (n, n + 1)
·
·

x2n−3 : (∞, n − 2) (n − 1, n − 3) (n, n − 4) . . . (2n − 4, 0) (2n − 3, 2n − 2)
x2n : (∞, n − 1) (n, n − 2) (n + 1, n − 3) . . . (2n − 3, 1) (2n − 2, 0)
x0 : (∞, n) (n + 1, n − 1) (n + 2, n − 2) . . . (2n − 2, 2) (0, 1)
·
·

xn−2 : (∞, 2n − 2) (0, 2n − 3) (1, 2n − 4) . . . (n − 3, n) (n − 2, n − 1)Further, for pairs in the last 
olumn, assign the pair (2n − 2, 0) to x2n andall the other pairs to x2n−2 and x2n−1 alternately starting with the pair
(0, 1) assigned to x2n−2. Finally adjoin the triples

{1, x0, x1}, {2, x1, x2}, . . . , {2n − 2, x2n−3, x2n−2}, {∞, x2n−2, x2n−1}, {0, x2n−1, x0}This gives Q4n+1. To obtain R4n−1 remove all triples 
ontaining 0 or 2n−2.The C4n−2 leave is
∞, xn−1, 1, x2n−2, x2n−3, 2n − 4, xn−3, 2n − 5, x2n−4, 2n − 6, xn−4, . . . ,

x1, 3, xn, 2, x0, x2n−1, 2n − 3, xn−2Kirkman's work is quite remarkable, made even more so be
ause repeatedappli
ation of the two 
onstru
tions gives STS(v) of all admissible ordersbeginning with the trivial Steiner triple system on just one point and 
on-sisting of no triples! First note that
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Q1 =⇒ Q3 =⇒ Q7 =⇒ R5 =⇒ Q9Then, su

esively for all n > 1, use the following s
hema.

Q6n+1 =⇒ R6n−1 =⇒ Q12n−3

Q6n+3 =⇒ R6n+1 =⇒ Q12n+1

Q6n+1 =⇒ Q12n+3

Q6n+3 =⇒ Q12n+7Kirkman's one-fa
torizationThe one-fa
torization used by Kirkman is the one whi
h is now usuallydenoted by GK2n. It is easily des
ribed. Let K2n be the 
omplete graphon vertex set {∞, 0, 1, 2, . . . , 2n − 2}. Denote the set of one-fa
tors by
{F0, F1, . . . , F2n−2}. Let F0 be the set of edges {(∞, 0), (1, 2n−2), (2, 2n−3),
. . . , (n− 1, n)}. The remaining one-fa
tors Fi, 1 6 i 6 2n− 2, are obtainedby applying the mapping x 7→ x + i to F0, arithmeti
 modulo 2n − 2 with
∞ as a �xed point.But this was not Kirkman's method. He used instead a greedy algo-rithm. Representing the verti
es of K2n as above, he 
onsidered the pairsin lexi
ographi
al order and assigned them to one fa
tors in 
y
li
 orderwithout violating the one-fa
tor 
riterion. The method is best explained bythe following example for K10.

F0 F1 F2 F3 F4 F5 F6 F7 F801 02 03 04 05 06 07 08 0∞12 13 14 15 16 17 181∞ 23 24 25 26 2728 2∞ 34 35 3637 38 3∞ 4546 47 48 4∞56 57 585∞ 67 686∞ 787∞ 8∞It is not immediately obvious that this method works, nor that it gives
GK2n. It is not well-known but possibly should be. More details are 
on-tained in the paper by Anderson [2℄.Other re
ursive 
onstru
tionsThe Q2n+1 =⇒ Q4n+3 
onstru
tion is an STS(v) =⇒ STS(2v+1) 
onstru
-tion whi
h 
an use any one-fa
torization of Kv+1. Let (V,B) be an STS(v).For any one-fa
torization of Kv+1 with vertex set W , assign all the pairs of
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h one-fa
tor to one of the points of V to form further triples T . Then
(V ∪ W,B ∪ T ) is an STS(2v + 1). In employing this 
onstru
tion we mayuse the STS(v) itself to determine the one-fa
torization. For ea
h point
x ∈ V , let there be a point x′ ∈ W . Further let ∞ ∈ W . If {x, y, z} ∈ Bthen put {x, y′, z′}, {x′, y, z′}, {x′, y′, z} ∈ T . Finally, for all x ∈ V , put
{x, x′,∞} ∈ T .A further re
ursive 
onstru
tion is STS(v) =⇒ STS(3v− 2). Take threeSTS(v)s (V0 ∪ {∞},B0), (V1 ∪ {∞},B1), (V2 ∪ {∞},B2). Now take a Latinsquare of side v−1 with the rows, 
olumns and entries indexed respe
tivelyby the points of the sets V0, V1, V2. Let T be the set of {row, 
olumn, entry}triples. Then (V0 ∪V1 ∪V2 ∪{∞},B0 ∪B1 ∪B2 ∪T ) is an STS(3v− 2). Thethree initial STS(v)s need not be isomorphi
.An exa
t tripling 
onstru
tion i.e. STS(v) =⇒ STS(3v) is the following.Let (V,B) be an STS(v). Let W = V × {0, 1, 2}. If {x, y, z} ∈ V , thenput {(x, i), (y, j), (z, k)} ∈ D for i = j = k and i 6= j 6= k 6= i and also
{(x, 0), (x, 1), (x, 2)} ∈ D for all x ∈ V . Then (W,D) is an STS(3v).The last 
onstru
tion 
an be generalized into a dire
t produ
t 
onstru
-tion, i.e., STS(u) & STS(v) =⇒ STS(uv). Let (U,A) be an STS(u) and
(V,B) be an STS(v). Let (a, x), (b, y) ∈ U × V . If a 6= b de�ne c by
{a, b, c} ∈ A and similarly if x 6= y de�ne z by {x, y, z} ∈ B. Theblo
k set D is de�ned by spe
ifying for ea
h distin
t pair {(a, x), (b, y)},the third element of the blo
k. The following is easily seen to be 
onsis-tent. If a 6= b and x 6= y, then put {(a, x), (b, y), (c, z)} ∈ D. If a 6= band x = y, put {(a, x), (b, x), (c, x)} ∈ D and if a = b and x 6= y, put
{(a, x), (a, y), (a, z)} ∈ D. Then (V × W,D) is an STS(uv).All of the above 
onstru
tions 
an be obtained as spe
ial 
ases of are
ursive 
onstru
tion due to Moore [72℄. Let (U,A) be an STS(u) and
(V ∪ W,B ∪ C) be an STS(v) whi
h 
ontains as a subsystem an STS(w),
(W, C). Take u 
opies of the STS(v) on base sets Vi ∪ W, 1 6 i 6 u. Indexthe u systems by the points of the set U and take a Latin square of side
v − w. A
ross ea
h set of three systems of the u STS(v)s as determined bythe blo
ks of the STS(u) adjoin new triples determined by the set of {row,
olumn, entry} triples as in the 3v − 2 
onstru
tion above. What results isan STS(w +u(v−w)). The 3v− 2 
onstru
tion 
orresponds to when w = 1and u = 3. A 3v 
onstru
tion is obtained by 
hoosing w = 0 and u = 3and a dire
t produ
t 
onstru
tion by 
hoosing w = 0. Finally, the 2v + 1
onstru
tion in whi
h the STS(v) is used to produ
e the one-fa
torizationis the 
ase where v = 3 and w = 1 (and u renamed as v).
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t 
onstru
tionsIn 1939, Bose [6℄ published a landmark paper on Design Theory in whi
hhe gave a dire
t 
onstru
tion for Steiner triple systems of order v ≡ 3 (mod6) based on a 
y
li
 group of odd order. The method 
an be extended andit is in a more generalized form that we now present it.Bose 
onstru
tionLet (Q, ◦) be a 
ommutative idempotent quasigroup of order 2s + 1 and let
V = Q × {0, 1, 2}. The blo
ks of an STS(6s + 3), (V,B), are de�ned asfollows.

(A) {(x, 0), (x, 1), (x, 2)}, x ∈ Q

(B1) {(x, 0), (y, 0), (z, 1)}, x, y ∈ Q, x 6= y, z = x ◦ y

(B2) {(x, 1), (y, 1), (z, 2)}, x, y ∈ Q, x 6= y, z = x ◦ y

(B3) {(x, 2), (y, 2), (z, 0)}, x, y ∈ Q, x 6= y, z = x ◦ ySu
h quasigroups are easy to 
onstru
t. Abelian groups of odd order possessunique square roots, so if G is an Abelian group of order 2s+1 and we write
x ◦ y = z if xy = z2 then (G, ◦) is a 
ommutative idempotent quasigroup.Also non-isomorphi
 quasigroups de�ned on Q may be used to 
onstru
tthe blo
ks (B1), (B2), (B3).A further generalization [48℄ is the following. Let (W,D) be an STS(6m+3)whi
h 
ontains a parallel 
lass P. For ea
h blo
k of the system, assign anarbitrary but �xed order to the points. Call a typi
al blo
k {a, b, c} anddenote the ordering by a < b < c. The blo
ks of an STS((2s + 1)(6m + 3))on base set Q × W are de�ned as follows.

(A) {(x, a), (x, b), (x, c)}, x ∈ Q, {a, b, c} ∈ D

(B1) {(x, a), (y, a), (z, b)}, x, y ∈ G, x 6= y, z = x ◦ y, {a, b, c} ∈ P

(B2) {(x, b), (y, b), (z, c)}, x, y ∈ G, x 6= y, z = x ◦ y, {a, b, c} ∈ P

(B3) {(x, c), (y, c), (z, a)}, x, y ∈ G, x 6= y, z = x ◦ y, {a, b, c} ∈ P

(C) {(x, a), (y, b), (z, c)}, x, y ∈ G, x 6= y, z = x ◦ y, {a, b, c} ∈ D \ PWhen m = 0 there are no blo
ks of type (C) and the 
onstru
tion revertsto the basi
 Bose 
onstru
tion.The Bose 
onstru
tion and its variants seem to be a parti
ularly usefultool in 
onstru
ting Steiner triple systems having pres
ribed properties. We



32 T. S. Griggswill meet them again in Se
tion 5 on 
on�gurations. The 
onstru
tion alsoappears in the work of Du
ro
q and Sterboul [28℄ and Grannell, Griggs and�irá¬ [45℄ on biembedding pairs of Steiner triple systems in non-orientableand orientable surfa
es respe
tively. Further dis
ussion of this falls welloutside the s
ope of this paper and would take us towards Topologi
al GraphTheory but the interested reader 
an 
onsult the re
ent survey paper [40℄.Again the subje
t has moved on sin
e it was written but it still serves as agood introdu
tion and overview of the subje
t.A parallel 
onstru
tion for STS(6s+1) uses a half-idempotent 
ommuta-tive quasigroup. A Latin square is half-idempotent if every element appearseither twi
e or zero times on the diagonal. Clearly su
h squares 
an only ex-ist for even orders and an easy example is given by any 
y
li
 group of evenorder. Any half-idempotent Latin square 
an have its rows and 
olumnsrelabelled in su
h a way that the equation x ◦x = x is satis�ed by pre
iselyhalf of the elements. We then have a half-idempotent quasigroup. Notethat the relabelling 
an be done in su
h a way that retains 
ommutativity.In parti
ular, for addition modulo 2s the relabelling 
an be done so that
2x◦2y = (2x+1)◦(2y+1) = x+y and 2x◦(2y+1) = (2x+1)◦2y = x+y+s,
0 6 x, y 6 s − 1.So let (Q, ◦) be a half-idempotent quasigroup of order 2s and let V =
Q × {0, 1, 2} ∪ {∞}. The blo
ks of an STS(6s + 1), (V,B), are de�ned asfollows.

(A) {(x, 0), (x, 1), (x, 2)}, x ∈ Q, x ◦ x = x

(B1) {(x, 0), (y, 0), (z, 1)}, x, y ∈ Q, x 6= y, z = x ◦ y

(B2) {(x, 1), (y, 1), (z, 2)}, x, y ∈ Q, x 6= y, z = x ◦ y

(B3) {(x, 2), (y, 2), (z, 0)}, x, y ∈ Q, x 6= y, z = x ◦ y

(C1) {∞, (x, 0), (x ◦ x, 1)}, x ∈ Q, x ◦ x 6= x

(C2) {∞, (x, 1), (x ◦ x, 2)}, x ∈ Q, x ◦ x 6= x

(C3) {∞, (x, 2), (x ◦ x, 0)}, x ∈ Q, x ◦ x 6= xA 
ompletely di�erent dire
t 
onstru
tion of Steiner triple systems was givenby S
hreiber [86℄ and Wilson [96℄, see also [43℄.S
hreiber-Wilson 
onstru
tionLet G be an Abelian group of order n ≡ −1, 1 (mod 6) with the operationwritten additively and v = n + 2. First list all sets of triples {x, y, z} su
hthat x + y + z = 0. These fall into three types.
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lose relatives 331. {x, y, z}, x, y, z ∈ G, x 6= y 6= z 6= x2. {x, x,−2x}, x ∈ G \ {0}3. {0, 0, 0}The total number of triples is (n + 2)(n + 1)/6 = v(v − 1)/6, the exa
tnumber of blo
ks 
ontained in an STS(v). The idea is to leave type 1 triplesas 
onstru
ted and to repla
e repeated elements by two new elements, X andY. Clearly the type 3 triple be
omes XY0. So the e�
a
y of the 
onstru
tiondepends on the type 2 triples. These fall into orbits under the mapping
i 7→ −2i (mod n) and for the repla
ement to be done must all have evenlength. The 
ondition for this is number theoreti
; for every prime divisor
p of n, the order of −2 (mod p) must be even. The following example for
v = 15 illustrates the 
onstru
tion well.Example 3.1. Let G be the 
y
li
 group of order 13, Z13, with the elements10, 11, 12 being denoted by A, B, C respe
tively. The triples are as follows.Type 1: 01C, 02B, 03A, 049, 058, 067, 12A, 139, 148, 157, 238, 247,256, 346, 3BC, 4AC, 59C, 5AB, 68C, 69B, 78B, 79A.Type 2: 11B, BB4, 445, 553, 337, 77C, CC2, 229, 998, 88A, AA6, 661Type 3: 000Here the type 2 triples form a single orbit and so repla
ing the repeatedelements by X and Y respe
tively (and the type 3 blo
k by XY0) gives thetriplesX1B,YB4,X45,Y53,X37,Y7C,XC2,Y29,X98,Y8A,XA6,Y61,XY0The STS(15) 
onstru
ted is #37 in the standard listing on pages 65 to 69of C&R.However all is not lost when there are odd length orbits under the map-ping i 7→ −2i (mod n). In that 
ase these orbits o

ur in pairs, mappedto one another by i 7→ −i (mod n). Pro
eed as before as far as possiblewith the repla
ement of repeated elements but with the extra proviso thatif the triple gg(−2g) in one orbit be
omes the blo
k Xg(−2g) then also
(−g)(−g)2g in the �negative� orbit be
omes X(−g)2g. There remain two



34 T. S. Griggstriples, xx(−2x) in one orbit and (−x)(−x)2x in the other orbit, in whi
hthe repeated element 
annot be repla
ed by either X or Y without intro-du
ing a repeated pair. To solve this problem dis
ard the triples 0x(−x)and 0(2x)(−2x) and in
lude four new triples. The already de�ned blo
ksin
lude X(−2x)(4x) or Y(−2x)(4x). In the former 
ase the four new blo
ksare 0x(−2x), 0(−x)(2x), Xx(−x), Y(2x)(−2x). For the latter inter
hangeX and Y. The pro
edure is illustrated well by the following example for
v = 13.Example 3.2. Let G be the 
y
li
 group of order 11, Z11. Denote theelement 10 by A. The type 2 triples fall into two orbits119, 994, 443, 335, 551 and AA2, 227, 778, 886, 66Awhi
h under repla
ement be
omeX19, Y94, X43, Y35, 051 and XA2, Y27, X78, Y86, 06AThe type 1 triples 01A and 056 be
ome Y1A and X56 respe
tively. Theother (un
hanged) type 1 triples are029, 038, 047, 128, 137, 146, 236, 245, 39A, 48A, 57A, 589, 679whi
h together with XY0 give the 26 blo
ks of an STS(13).4. AutomorphismsFurther 
onstru
tions are based on assumed automorphisms. For a Steinertriple system of order v the obvious 
andidate is the 
y
li
 group of the sameorder. So let (V,B) be an STS(v) where V = Zv and the automorphismis generated by the mapping i 7→ i + 1 (mod v). Considering the 
ase
v = 6s + 1, the STS(v) will 
omprise (v − 1)/6 orbits of triples under themapping. Suppose that the set {0, a, a+b} is a blo
k of su
h an orbit. Thenthe other blo
ks in the same orbit whi
h 
ontain the point 0 are {v−a, 0, b}and {v − (a + b), v − b, 0}. Sin
e the group a
ts transitively on the points,a ne
essary and su�
ient 
ondition for the existen
e of an STS(v) with a
y
li
 automorphism, denoted by CSTS(v), is that there exists a partition of
Z
∗
v into (v−1)/6 subsets ea
h of the form {a, b, a+b, v−a, v−b, v−(a+b)}.Equivalently we seek a partition of the integers {1, 2, . . . , 3s} into s triples

{a, b, c} where either a+b = c or a+b+c ≡ 0 (mod v). Thus as an example
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lose relatives 35for s = 3 su
h a partition is given by the equations 1 + 4 = 5, 2 + 6 = 8,
3+7+9 ≡ 0 (mod 19) and starter blo
ks for a CSTS(19) under the a
tion ofthe mapping i 7→ i+1 (mod 19) are {0, 1, 5} or {0, 4, 5}, {0, 2, 8} or {0, 6, 8},
{0, 3, 10} or {0, 7, 10}. Alternative 
hoi
es for the starter blo
ks 
an, andindeed often do, give non-isomorphi
 systems. The problem of partitioningthe set {1, 2, . . . , 3s} into s triples {a, b, c} with a + b = c or a + b + c ≡ 0(mod v) is known as He�ter's �rst di�eren
e problem, HDP1(s) [54℄.For v = 6s + 3, a 
y
li
 system must 
ontain the short orbit generatedfrom the starter blo
k {0, v/3, 2v/3}. By the same argument as in theprevious paragraph, starter blo
ks for the other orbits 
an be obtained froma similar partition of the integers {1, 2, . . . , 3s + 1} \ {2s + 1}. For examplefor v = 15 we have 1 + 3 = 4, 2 + 6 + 7 ≡ 0 (mod 15) giving starter blo
ks
{0, 1, 4} or {0, 3, 4}, {0, 2, 8} or {0, 6, 8}, {0, 5, 10}. This is He�ter's se
onddi�eren
e problem, HDP2(s).Solutions to both of He�ter's di�eren
e problems, ex
ept for HDP2(1)for whi
h no solution exists, were �rst given by Peltesohn [77℄, and arereprodu
ed below in 
ondensed form.

v = 18s + 1, s > 2
(3i + 1, 4s − i + 1, 4s + 2i + 2) 0 6 i 6 s − 1
(3i + 2, 8s − i, 8s + 2i + 2) 0 6 i 6 s − 1
(3i + 3, 6s − 2i − 1, 6s + i + 2) 0 6 i 6 s − 2
(3s, 3s + 1, 6s + 1)

v = 18s + 7, s > 1
(3i + 1, 8s − i + 3, 8s + 2i + 4) 0 6 i 6 s − 1
(3i + 2, 6s − 2i + i, 6s + i + 3) 0 6 i 6 s − 1
(3i + 3, 4s − i + 1, 4s + 2i + 4) 0 6 i 6 s − 1
(3s + 1, 4s + 2, 7s + 3)

v = 18s + 13, s > 1
(3i + 1, 4s − i + 3, 4s + 2i + 4) 0 6 i 6 s
(3i + 2, 6s − 2i + 3, 6s + i + 5) 0 6 i 6 s − 1
(3i + 3, 8s − i + 5, 8s + 2i + 8) 0 6 i 6 s − 1
(3s + 2, 7s + 5, 8s + 6)

v = 18s + 3, s > 1
(3i + 1, 8s − i + 1, 8s + 2i + 2) 0 6 i 6 s − 1
(3i + 2, 4s − i, 4s + 2i + 2) 0 6 i 6 s − 1
(3i + 3, 6s − 2i − 1, 6s + i + 2) 0 6 i 6 s − 1
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v = 18s + 9, s > 4
(3i + 1, 4s − i + 3, 4s + 2i + 4) 0 6 i 6 s
(3i + 2, 8s − i + 2, 8s + 2i + 4) 2 6 i 6 s − 2
(3i + 3, 6s − 2i + 1, 6s + i + 4) 1 6 i 6 s − 2
(2, 8s + 3, 8s + 5)
(3, 8s + 1, 8s + 4)
(5, 8s + 2, 8s + 7)
(3s − 1, 3s + 2, 6s + 1)
(3s, 7s + 3, 8s + 6)

v = 18s + 15, s > 1
(3i + 1, 4s − i + 3, 4s + 2i + 4) 0 6 i 6 s
(3i + 2, 8s − i + 6, 8s + 2i + 8) 0 6 i 6 s
(3i + 3, 6s − 2i + 3, 6s + i + 6) 0 6 i 6 s − 1The above leaves the values v = 7, 13, 15, 19, 27, 45, 63 still to be done butwe leave these as exer
ises for the reader. In 
ase of di�
ulty see pages 31and 32 of C&R.We 
an therefore state the following theorem.Theorem 4.3. There exists a 
y
li
 STS (v) for all v ≡ 1, 3 (mod 6) ex
ept

v = 9.A restri
ted form of He�ter's �rst di�eren
e problem was 
onsidered bySkolem.In [87℄ he introdu
ed the problem of partitioning the set{1, 2, . . . , 2s}into ordered pairs (ai, bi), i = 1, 2, . . . s, su
h that bi−ai = i. An example fors=4 is (6, 7), (1, 3), (2, 5), (4, 8) whi
h is usually more su

in
tly representedas 23243114 and 
alled a Skolem sequen
e. Given a Skolem sequen
e thenthe set of triples {(i, s + ai, s + bi) : 1 6 i 6 s} is a solution of HDP1(s).So the above example yields the solution 1 + 10 = 11, 2 + 5 = 7, 3 + 6 = 9,
4 + 8 = 12.Skolem proved that the sequen
es, whi
h he 
alled 1, +1 systems, existif and only if s ≡ 0, 1 (mod 4). In a se
ond paper [88℄ he pointed out thatfor s ≡ 2, 3 (mod 4), if it 
ould be proved that the set {1, 2, . . . , 2s− 1, 2s+
1} 
ould be similarly partitioned then this too would yield a solution toHDP1(s). An example for s = 6 is 11345364252*6 and these are known ashooked Skolem sequen
es. Their existen
e was determined by O'Keefe [75℄.Details of the 
onstru
tion of both Skolem and hooked Skolem sequen
esare given below.
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v = 4s
(i, 4s − 1 − i) 1 6 i 6 s − 1
(s + 2 + i, 3s − 1 − i) 0 6 i 6 s − 3
(4s + i, 8s − i) 0 6 i 6 2s − 1
(s, s + 1), (2s, 4s − 1), (2s + 1, 6s)

v = 4s + 1
(i, 4s + 1 − i) 1 6 i 6 s
(s + 2 + i, 3s + 1 − i) 1 6 i 6 s − 2
(4s + 2 + i, 8s + 2 − i) 0 6 i 6 2s − 1
(s + 1, s + 2), (2s + 1, 6s + 2)
(2s + 2, 4s + 1)

v = 4s + 2
(i, 4s + 2 − i) 1 6 i 6 2s
(4s + 3 + i, 8s + 4 − i) 1 6 i 6 s − 1
(5s + 2 − i, 7s + 3 − i) 1 6 i 6 s − 1
(2s + 1, 6s + 2), (4s + 2, 6s + 3)
(4s + 3, 8s + 5), (7s + 3, 7s + 4)

v = 4s − 1
(i, 4s − 1 − i) 1 6 i 6 s − 1
(s + 1 + i, 3s − i) 1 6 i 6 s − 2
(4s + i, 8s − 2 − i) 1 6 i 6 2s − 2
(s, s + 1), (2s, 4s − 1)
(2s + 1, 6s − 1), (4s, 8s − 1)Another type of automorphism is 1-rotational. This is an automorphismwhi
h 
onsists of a (v−1)-
y
le together with a �xed point. Usually systemshaving su
h an automorphism are represented on a base set V = Zv−1∪{∞}with the automorphism generated by the mapping i 7→ i + 1 (mod v − 1)and �xing the point ∞. In [79℄ Phelps and Rosa proved the following.Theorem 4.4. A 1-rotational STS (v) exists if and only if v ≡ 3, 9(mod 24).Proof. We �rst prove ne
essity. Consider orbits of pairs of elements un-der the automorphism. There is one half-orbit generated from the starterblo
k {0, (v − 1)/2} and (v − 1)/2 full orbits. Now 
onsider the orbit oftriples generated from the starter blo
k {∞, 0, α}. It also 
ontains the blo
k

{∞, α, 2α}. Thus α = (v − 1)/2 and this is a half-orbit whi
h 
ontains thehalf-orbit of pairs and full orbit 
ontaining the point ∞. There are (v−3)/2orbits of pairs remaining. If v ≡ 1 (mod 6), there is a third-orbit of triplesgenerated from the starter blo
k {0, (v − 1)/3, 2(v − 1)/3}. This 
ontains



38 T. S. Griggsthe orbit of pairs generated from {0, (v − 1)/3} with the other (v − 5)/2orbits of pairs appearing in full orbits of triples. But this is impossible sin
e
(v − 5)/2 is not divisible by 3. If v ≡ 3 (mod 6), then (v − 3)/6 full orbitsof triples are required to 
omplete the system. Thus v ≡ 3, 9, 15, 21 (mod24).Now 
onsider the set of pairs S = {{x, y} : 0 6 x < (v−1)/2, (v−1)/2 6

y < v−1}. The 
ardinality of S is (v−1)2/4 and (v−1)/2 of the pairs o

urin the orbit generated from {∞, 0, (v − 1)/2}. This leaves (v − 1)(v − 3)/4pairs. Now every blo
k in the rest of the system 
ontains either none or twopairs from S. Moreover the blo
ks o

ur in pairs: if {a, b, c} is a blo
k thenso is {a + (v − 1)/2, b + (v − 1)/2, c + (v − 1)/2}. Hen
e (v − 1)(v − 3)/4must be divisible by 4 whi
h eliminates the 
ases v ≡ 15, 21 (mod 24).To prove su�
ien
y put v = 6t + 3 where t = 4s or 4s + 1. Then thereexists a Skolem sequen
e of order t, (ai, bi), i = 1, 2, . . . t. The following arethen the starter blo
ks for a 1-rotational STS(v).
{∞, 0, (v − 1)/2} ∪ {{0, i, t + bi} : 1 6 i 6 t}.The 
on
ept of 1-rotational 
an be generalized. A Steiner triple system,STS(v), is k-rotational if it admits an automorphism 
onsisting of k 
y
lesof length (v − 1)/k together with a �xed point. In the same paper [79℄ inwhi
h they determined the spe
trum of 1-rotational Steiner triple systems,Phelps and Rosa also proved the following.Theorem 4.5. A 2-rotational STS (v) exists if and only if v ≡ 1, 3, 7, 9,

15, 19 (mod 24).Cho [10℄ then determined the spe
trum of 3-rotational and 4-rotationalsystems.Theorem 4.6. A 3-rotational STS(v) exists if and only if v≡1, 19(mod 24).Theorem 4.7. A 4-rotational STS (v) exists if and only if v ≡ 1, 9, 13, 21(mod 24).A parti
ularly interesting 
ase is when k = (v − 1)/2, i.e., the automor-phism 
onsists of an involution �xing one element. Su
h systems are 
alledreverse Steiner triple systems and in fa
t were studied before general rota-tional systems. The 
ombined work of Doyen [25℄, Rosa [85℄, and Teirlin
k[91℄ gives the following result.Theorem 4.8. A reverse STS (v) exists if and only if v≡1, 3, 9, 19(mod 24).
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lose relatives 39However the ultimate result in this area is due to Colbourn & Jiang[15℄ who determined the spe
trum of k-rotational STS(v) for all k with
1 6 k 6 (v − 1)/2. Their result is given in the next theorem.Theorem 4.9. A k-rotational STS (v) exists if and only if

1. v ≡ 3 (mod 6) if k = 1, and
2. v ≡ 1 (mod k), and
3. v 6= 7, 13, 15, 21 (mod 24) if (v − 1)/k is even.Various other automorphism types have also been 
onsidered whi
hspa
e does not allow to be dis
ussed here. But parti
ular mention shouldbe made of the work of Calahan and Gardner, further details of whi
h arein Se
tion 7.4 on pages 134 to 140 of C&R and the relevant papers in theBibliography. Mendelsohn [69℄, [70℄ proved that every abstra
t group is theautomorphism group of some Steiner triple system.Finally in this se
tion it is probably appropriate to ask about Steinertriple systems whi
h have only the identity automorphism, so-
alled auto-morphism-free systems. There are none of orders 7, 9, and 13 but 36 ofthe 80 STS(15)s and all but 164,758 of the 11,084,874,829 STS(19)s areautomorphism-free. The question was 
onsidered by Lindner & Rosa [63℄who 
onstru
ted automorphism-free systems for v = 15, 19, 21, 25, 27, 33and then used various �doubling� 
onstru
tions, in
luding the STS(v) =⇒STS(2v + 1) 
onstru
tion with the one-fa
torization GKv+1 des
ribed inSe
tion 2, to 
omplete the spe
trum.Theorem 4.10. An automorphism-free STS (v) exists if and only if v ≡ 1, 3(mod 6) and v > 15.Babai [3℄ in fa
t proved that almost all Steiner triple systems are automor-phism-free. 5. Con�gurationsIn the 
ontext of a Steiner triple system, a 
on�guration is simply a smallnumber of blo
ks whi
h may appear in the system. Perhaps the �rst ques-tion to ask therefore is for given n, the number of blo
ks, how many non-isomorphi
 
on�gurations are there? Trivially when n = 1 there is justone, a single blo
k, and when n = 2 there are two, a pair of parallel blo
ks



40 T. S. Griggs(denoted by A1) and a pair of blo
ks interse
ting in a 
ommon point (de-noted by A2). Denoting the number of non-isomorphi
 
on�gurations with
n blo
ks by C(n), it is also easy to work out that C(3) = 5 and these areshown in Figure 5.1.

Fig. 5.1. 3-blo
k 
on�gurations.A ni
e exer
ise for a student is to determine the value of C(4). It is 16and these are illustrated in Figure 5.2. Beyond this a 
omputer is neededand the values for 5 6 n 6 10 are given below. There seems to be no knownformula to determine these values.
n 5 6 7 8 9 10C(n) 56 282 1865 17100 207697 3180571Of more interest is 
ounting the number of o

urren
es of ea
h 
on�gu-ration in an STS(v), a study of whi
h was initiated in [41℄. For a sin-gle blo
k this is v(v − 1)/6 and for A2, a pair of interse
ting blo
ks, is

v ×

(

r

2

)

= v(v − 1)(v − 3)/8 where r = (v − 1)/2 is the repli
ation num-ber, i.e. number of blo
ks through any given point. For A1, �rst note thatgiven any blo
k of an STS(v), there are v(v − 1)/6 − 3(v − 3)/2 − 1 =
(v− 3)(v− 7)/6 disjoint blo
ks. The number of o

urren
es of A1 thereforeis (v(v − 1)/6 × (v − 3)(v − 7)/6)/2 = v(v − 1)(v − 3)(v − 7)/72. Withouttoo mu
h di�
ulty, by reasoning along the same lines, formulae for the �ve3-blo
k 
on�gurations 
an be obtained. These are given below where b1 isthe number of o

urren
es of Bi.
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b1 = v(v − 1)(v − 3)(v − 7)(v2 − 19v + 96)/1296
b2 = v(v − 1)(v − 3)(v − 7)(v − 9)/48
b3 = v(v − 1)(v − 3)(v − 4)/48
b4 = v(v − 1)(v − 3)(v − 7)/8
b5 = v(v − 1)(v − 3)/6

Fig. 5.2. 4-blo
k 
on�gurations.So, for any given v ≡ 1, 3 (mod 6), the number of o

urren
es of every 1, 2,and 3-blo
k 
on�guration is the same in all Steiner triple systems of that or-der. But at 4-blo
k 
on�gurations the situation 
hanges. The 
on�guration
C16 now plays a key role. It is the �tightest� of the 4-blo
k 
on�gurationshaving only 6 points and is more usually known as a quadrilateral or Pas
h
on�guration, P . Re
all that there are two non-isomorphi
 STS(13)s. Oneof these 
ontains 13 Pas
h 
on�gurations and the other 
ontains 8. Sothe formulae for the number of o

urren
es of 4-blo
k 
on�gurations in an
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annot all be fun
tions of v. This leads to the following de�nitions.A 
on�guration will be 
alled 
onstant if the formula for its number of o
-
urren
es in an STS(v) is a fun
tion of v; otherwise it is 
alled variable. Infa
t only 5 of the 4-blo
k 
on�gurations are 
onstants and 11 are variable.Formulae for these 
on�gurations were �rst given in [41℄. They are repeatedbelow, where again we adopt the 
onvention that ci is the formula for Ci.All 
an be expressed in terms of the order v of the Steiner triple system andthe number of Pas
h 
on�gurations p in the parti
ular STS(v). We write
nv for v(v − 1)(v − 3).

c1 = nv(v − 9)(v − 10)(v − 13)(v2 − 22v + 141)/31104 + p
c2 = nv(v − 9)(v − 10)(v2 − 22v + 129)/576 − 6p
c3 = nv(v − 9)2(v − 11)/128 + 3p
c4 = nv(v − 7)(v − 9)(v − 11)/288
c5 = nv(v − 9)(v2 − 20v + 103)/48 + 12p
c6 = nv(v − 9)(v − 10)/36 − 4p
c7 = nv(v − 5)(v − 7)/384
c8 = nv(v − 7)(v − 9)/16
c9 = nv(v − 9)2/8 − 12p
c10 = nv(v − 8)/8 + 3p
c11 = nv(v − 7)/4
c12 = nv(v − 9)/4 + 12p
c13 = nv(v

2 − 18v + 85)/48 − 4p
c14 = nv/4 − 6p
c15 = nv/6
c16 = pOf 
ourse the number of o

urren
es of all of the variable 
on�gurations
an be expressed in terms of the order v and the number of o

urren
esof any one of them. However the Pas
h 
on�guration is the most naturalfor a number of reasons whi
h will be
ome 
learer later. As well as havingthe least number of points of all the 4-blo
k 
on�gurations, observe thatit is also the only n-blo
k 
on�guration, 1 6 n 6 4, in whi
h every pointhas degree at least 2. These formulae immediately raise two interesting andsigni�
ant areas of investigation.The �rst is to identify, for ea
h n, an easily des
ribed subset of 
on�gu-rations su
h that for admissible v the number of o

urren
es of any n-blo
k
on�guration in an STS(v) 
an be expressed in terms of v and the numberof o

urren
es of ea
h member of the subset. This idea was 
onsidered byHorák, Phillips, Wallis and Yu
as [55℄. They make the following de�nitions.
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lose relatives 43De�nitions. A generating set M for n-blo
k 
on�gurations is a set of m-blo
k 
on�gurations, 1 6 m 6 n, su
h that the number of o

urren
es ofany n-blo
k 
on�guration 
an be expressed as a linear 
ombination of thenumber of o

urren
es of the 
on�gurations in M , where the 
oe�
ients arepolynomials in v. A basis is a minimal generating set.So using this terminology, the single blo
k is a basis for 1-, 2-, and 3-blo
k 
on�gurations and the single blo
k and the Pas
h 
on�guration forma basis for 4-blo
k 
on�gurations. The main result in [55℄ is the followingimportant theorem.Theorem 5.1. The single blo
k, together with all m-line 
on�gurations,
1 6 m 6 n, having all points of degree at least 2, form a generating set forthe n-line 
on�gurations in a Steiner triple system.The only 5-blo
k 
on�guration having all points of degree at least 2 isthe so-
alled mitre, shown in Figure 5.3. Formulae for the number of o
-
urren
es of 5-blo
k 
on�gurations are given in [21℄, with minor 
orre
tionsin [39℄. Already these are be
oming 
omplex. For example, that for 5 non-interse
ting (parallel) blo
ks, where m is the number of mitres is
v(v− 1)(v− 3)× (v7 − 91v6 +3588v5 − 79510v4 +1069873v3 − 8742231v2 +
40167162v − 80101224)/933120 + (v − 16)(v − 21)p/6 + 2mThere are �ve 6-blo
k, nineteen 7-blo
k, and 153 8-blo
k 
on�gurationshaving all points of degree at least 2 and formulae for the number of o

ur-ren
es of the 6-blo
k, 7-blo
k, and 8-blo
k 
on�gurations are given on thewebsite [32℄. In all of these 
ases it is known that the generating set is alsoa basis but in general this is not proved. Indeed, Horák, Phillips, Wallisand Yu
as make the following 
onje
ture.Conje
ture 5.2. The single blo
k, together with all m-line 
on�gurations,
1 6 m 6 n, having all points of degree at least 2, form a basis for the n-line
on�gurations in a Steiner triple system.The se
ond area is to answer the question: what are the 
onstant 
on�g-urations? There seems to be little doubt what the answer to this is, thoughproving it 
ertainly doesn't appear easy and may in fa
t be quite di�
ult.De�ne an n-star to be an n-blo
k 
on�guration in whi
h all n blo
ks inter-se
t at a 
ommon point 
alled the 
entre. The following 
onje
ture is alsomade in [55℄.



44 T. S. GriggsConje
ture 5.3. For n > 4, an n-blo
k 
on�guration in a Steiner triplesystem is 
onstant if and only if it 
an be obtained from the (n− 1)-star byadjoining a blo
k.In general this 
an be done in pre
isely �ve ways. The �adjoined blo
k�
an be disjoint from the (n − 1)-star, interse
t at the 
entre or interse
t atone, two, or three points. The proof that these 
on�gurations are 
onstantis straightforward, and formulae are given in [55℄. Note that the 
onje
tureis not true for n < 4. The 
on�guration B1, three non-interse
ting blo
ks,is the sole ex
eption.A third 
onje
ture was also made in [39℄. It is easily veri�ed that the four3-blo
k 
on�gurations obtained by removing ea
h of the four blo
ks in turnfrom a 4-blo
k 
on�guration uniquely determine the 4-blo
k 
on�guration,and the same is true for the �ve 4-blo
k 
on�gurations obtained from a5-blo
k 
on�guration.Conje
ture 5.4. Every n-blo
k 
on�guration, n > 4, is uniquely 
hara
-terized by the n 
on�gurations on n− 1 blo
ks, ea
h of whi
h is obtained byremoving a single blo
k from the given n-blo
k 
on�guration.Again note that the 
onje
ture is not true for the 2-blo
k or 3-blo
k 
on-�gurations (both B3 and B5 give three pairs of interse
ting blo
ks). Giventhat this 
onje
ture is analogous to the graph re
onstru
tion 
onje
ture,this too may be di�
ult to prove.Another important topi
 is that of avoidan
e. In 1973, Erd®s [30℄ 
onje
-tured that for every integer k > 4, there exists v0(k) su
h that if v > v0(k)and if v is admissible, then there exists an STS(v) with the property that it
ontains no 
on�guration having n blo
ks and n + 2 points for any n satis-fying 4 6 n 6 k. Su
h an STS(v) is said to be k-sparse. Clearly, a k-sparsesystem is also k′-sparse for every k′ satisfying 4 6 k′ 6 k. The reason why
on�gurations having two more points than blo
ks form the fo
us of the
onje
ture lies in the following theorem and its 
orollary whi
h are formallyproved in [33℄.Theorem 5.5. Suppose that n>2 and that v is admissible with v > n+3.Then any STS (v) 
ontains a 
on�guration having n blo
ks and n+3 points.Corollary 5.6. For every integer d > 3 and for every integer n satisfying
n > ⌈d/2⌉ there exists v0(n, d) su
h that for all admissible v > v0(n, d),every STS (v) 
ontains a 
on�guration having n blo
ks and n+d points.



Steiner triple systems and their 
lose relatives 45So a 4-sparse STS(v) is just one whi
h 
ontains no Pas
h 
on�gurations.Su
h systems are more 
ommonly known as anti-Pas
h. But 
onstru
tingthese systems is not straightforward. The Bose 
onstru
tion gives a goodstart. As was observed by Doyen [26℄, when G is the 
y
li
 group of order
2s + 1, the 
onstru
tion yields an anti-Pas
h STS(v), whenever v = 6s + 3is not divisible by 7. The 
ase when v is divisible by 7 was resolved byBrouwer [7℄. The 
ase where v ≡ 1 (mod 6) seems to be mu
h harder and isbased on work 
ontained in two papers [65℄ and [46℄. The de�nitive resultis as follows.Theorem 5.7. There exists an anti-Pas
h STS (v) for all v ≡ 1, 3(mod 6)ex
ept v = 7, 13.There are two 
on�gurations with 5 blo
ks and 7 points. One is the mia(Fano arrow or Farrow), shown in Figure 5.3, obtained by extending thePas
h 
on�guration with an extra blo
k through any of the three pairs ofun
overed points. So systems avoiding the mia are the same as anti-Pas
hsystems. The other 
on�guration is the mitre. So 5-sparse systems are thosewhi
h are both anti-Pas
h and anti-mitre. But �rst, Colbourn, Mendelsohn,Rosa and �irá¬ [16℄ 
onsidered systems whi
h were just anti-mitre. Theyshowed that these exist for all v ≡ 3, 7, 9, 19, 21, 27 (mod 36). The proofuses both the Bose 
onstru
tion and the standard �doubling� 
onstru
tionSTS(v) =⇒ STS(2v + 1) with the one-fa
torization based on the STS(v).They also pointed out that the Netto systems are anti-mitre. Combinedwith the result of Robinson [84℄ that Netto systems STS(pn) are also anti-Pas
h if and only if p ≡ 19 (mod 24), this gives an in�nite 
lass of 5-sparseSteiner triple systems. The spe
trum was extended by Ling [64℄ who provedthat if there exists a transitive anti-mitre (resp. 5-sparse) STS(v), v ≡ 1(mod 6), (and the Netto systems are transitive), and an anti-mitre (resp.5-sparse) STS(w), (in
luding w = 3), then there exists an anti-mitre (resp.5-sparse) STS(vw). Further work by Fujiwara [35℄,[36℄ and Wolfe [98℄ �nallyestablished the de�nitive result for anti-mitre systems.Theorem 5.8. There exists an anti-mitre STS (v) for all v ≡ 1, 3 (mod 6)ex
ept v = 9.With regard to 5-sparse systems Wolfe has proved that these exist for�almost all� admissible v (meaning arithmeti
 set density 1 in the set of alladmissible orders) [97℄ and for all v ≡ 3 (mod 6) with v > 21 [99℄. For 6-sparse STS(v), as well as the Pas
h 
on�guration and the mitre, the systems



46 T. S. Griggsalso have to avoid two further 
on�gurations, the 
rown and the 6-
y
le,also shown in Figure 5.3. In two papers [33℄, [34℄, Forbes, Grannell andGriggs gave 
onstru
tions for in�nite 
lasses of these. In parti
ular they areare known to exist for all su�
iently large v of the form 3p, p prime and
p ≡ 3 (mod 4). There is no known 7-sparse STS(v).
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leFig. 5.3 Some 5 and 6-blo
k 
on�gurations.6. Isomorphism testingGiven two Steiner triple systems, (V,B) and (W,D), of the same order v, afundamental question is whether they are isomorphi
 and how to determinethis? Clearly to examine all v! bije
tions from V to W is not possible.A di�erent approa
h is needed. We therefore de�ne an invariant to beany property of an STS(v), (V,B), whi
h remains �xed under all possible
v! permutations of the base set V . Then if the invariants of two Steinertriple systems di�er they are non-isomorphi
 though of 
ourse if they arethe same no 
on
lusion 
an be drawn. Trivially, the number of blo
ks
b = v(v − 1)/6 is su
h an invariant but this would be totally useless indetermining isomorphism as would any 
onstant 
on�guration. Howevera variable 
on�guration will be of use. The �rst 
andidate is the Pas
h
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on�guration P and we already noted in the last se
tion that the numberof these in the two STS(13)s di�er.For the 80 STS(15)s, the number of Pas
h 
on�gurations in ea
h of thesystems is given on pages 65 to 69 of C&R. It varies from 105 for the pro-je
tive STS(15) to 0 for the unique anti-Pas
h system of this order. In totalthere are 27 di�erent values but only 8 of these, 105, 73, 57, 32, 15, 11, 2, 0,o

ur as the number of Pas
h 
on�gurations of just one STS(15). At theother extreme there are seven systems with both 7 and 6 Pas
h 
on�gura-tions and six systems with 10, 9, and 8 Pas
h 
on�gurations. Neverthelesssome progress has been made and further tests, su
h as 
ounting the num-bers of other variable 
on�gurations su
h as the mitre and the 
rown, 
anbe applied to try to distinguish the systems further. However, in additionto simply just 
ounting the number of Pas
h 
on�gurations, other statisti
s
an also be 
ompiled. For any STS(v), (V,B), and any variable 
on�gu-ration C, let n(C) be the number of o

urren
es of the 
on�guration inthe STS(v). Further for ea
h point x ∈ V and blo
k B ∈ B, let n(C, x)and n(C, B) be the number of 
on�gurations C in whi
h the point x andthe blo
k B respe
tively, appear. The point-
on�guration ve
tor is thende�ned as the ve
tor (x0, x1, . . . , xn(C)) where xi is the 
ardinality of theset {x ∈ V : n(C, x) = i}, i.e. the number of points in the system whi
ho

ur in pre
isely i 
on�gurations. The blo
k-
on�guration ve
tor is de�nedanalogously. These two ve
tors give mu
h more information and in fa
t aresu�
ient to identify individual STS(15)s.So we have a general strategy. First 
ompute the point-
on�gurationand blo
k-
on�guration ve
tors of variable 
on�gurations for the two Steinertriple systems under 
onsideration. Any di�eren
e implies that the systemsare non-isomorphi
. If not, so that one suspe
ts that the two systems maybe isomorphi
, then the information obtained 
an be used to determine theisomorphism. As a simple example there exist STS(19)s 
ontaining justone Pas
h 
on�guration, in fa
t 35,758 of them [13℄. Therefore 6 pointso

ur in one Pas
h 
on�guration and 13 points in no Pas
h 
on�guration.So if we wish to test whether two su
h systems are isomorphi
 this simpleobservation immediately redu
es the number of possible bije
tions from 19!to 6!×13!, a saving in the 
omputational e�ort by a fa
tor of over 25,000. (Infa
t, sin
e the automorphism group of the Pas
h 
on�guration has order 24,this 
an be redu
ed further to 24 × 13!). Further tests 
an then be appliedto redu
e this number further until all the remaining possibilities 
an betested individually.



48 T. S. GriggsAnother very useful invariant is 
y
le stru
ture. Let (V,B) be an STS(v).For ea
h pair x, y ∈ V , de�ne a graph Gx,y with vertex set V \ {x, y, z}where {x, y, z} ∈ B with two verti
es u, v being joined by an edge if either
{x, u, v} or {y, u, v} ∈ B. The graph Gx,y is a union of 
y
les of evenlength greater than 2 and these 
an be re
orded as a list of 
y
le lengthsin as
ending order. The 
y
le stru
ture is the 
olle
tion of all su
h 
y
lelists. The idea for this invariant goes ba
k to the work of White, Cole andCummings [94℄ on the enumeration of STS(15)s where a 
y
le list is 
alleda type of interla
ing. It 
ompletely distinguishes non-isomorphi
 STS(15)s.It is worth noting that the number of Pas
h 
on�gurations 
an also be
omputed from 
y
le stru
ture. A Pas
h 
on�guration, say with blo
ks
{a, b, c}, {a, y, z}, {x, b, z}, {x, y, c}, will o

ur as a 4-
y
le in the graphs
Ga,x, Gb,y, Gc,z. So adding the total number of 4-
y
les in the 
y
le stru
tureand dividing by 3 will give the number of Pas
h 
on�gurations.Before leaving 
y
le stru
ture it is perhaps appropriate to take a littledetour. Steiner triple systems in whi
h all 
y
le lists are the same are 
alleduniform and are of some interest. The proje
tive, Hall, and Netto systemsare uniform but apart from these little is known. In [42℄, Grannell, Griggsand Murphy 
onstru
ted uniform STS(v) for v = 43, 13063, and 34303with all 
y
le lists 4, v − 7. A further uniform STS(v) with v = 180907is given in [33℄ with 
y
le lists 4, 12, 180888. Uniform Steiner triple sys-tems in whi
h ea
h 
y
le list is v − 3 are 
alled perfe
t and here only 14systems are known. The smallest four are the unique STS(7), the uni-que STS(9), one of the three STS(25)s with automorphism group Z5 × Z5[92℄, and a 
y
li
 STS(33). Then in [42℄, perfe
t systems of order, 79,
139, 367, 811, 1531, 25771, 50923, 61339, 69991 were 
onstru
ted and a fur-ther system of order 135859 was given in [33℄. Unfortunately it is nowknown that the method used 
annot yield an in�nite 
lass. Having no 4-
y
les, perfe
t systems are anti-Pas
h and those of order 79, 367, 811 arealso 5-sparse whilst that of order 139 is 6-sparse, a very interesting Steinertriple system indeed.Another invariant of a Steiner triple system is a dire
ted graph known asthe train. Let (V,B) be an STS(v). De�ne a mapping f from the set of all3-subsets of V to itself by f({x, y, z}) = {a, b, c} where {a, y, z}, {x, b, z},
{x, y, c} ∈ B. The digraph whi
h represents this mapping is the train of theSTS(v). It 
omprises a number of 
omponents, all of whi
h 
onsist of a singledire
ted 
y
le with pendant dire
ted trees that are dire
ted towards the 
y-
le. If {a, b, c} ∈ B then the dire
ted 
y
le will be a dire
ted loop on the ver-



Steiner triple systems and their 
lose relatives 49tex; the only pla
e where loops will o

ur. Further if f({x, y, z}) = {a, b, c}where {a, b, c} ∈ B then the four blo
ks {a, y, z}, {x, b, z}, {x, y, c}, {a, b, c}are a Pas
h 
on�guration. So by 
omputing the sum of the indegrees ofall the verti
es whi
h represent blo
ks of the STS(v) and dividing by 4, thenumber of Pas
h 
on�gurations 
an again be obtained. The idea of the trainwas developed by White [93℄ but is rather 
umbersome to represent sin
e thedigraph has v(v−1)(v−2)/6 verti
es. A

ordingly, Colbourn, Colbourn andRosenbaum [19℄ suggested using a summary of the information 
ontainedin the digraph. This is 
alled the 
ompa
t train and is de�ned as a set ofordered triples (m, n, p) where su
h a triple means that the train 
ontains p
omponents with m verti
es, n of whi
h have indegree zero (after dis
ount-ing the dire
ted 
y
le from ea
h 
omponent). Trains also 
ompletely distin-guish non-isomorphi
 STS(15)s and 
ompa
t trains nearly do ex
ept thatsystems #6 and #7 both have 
ompa
t train (13, 12, 1)(13, 10, 18)(13, 9, 16).However the former has 37 Pas
h 
on�gurations and the latter has 33.The information in the train 
an also be summarized by the tri
olourve
tor. This was introdu
ed in [50℄ primarily as an invariant for one-fa
torizations of the 
omplete graph but is appli
able to Steiner triple sys-tems. In the train, de�ne vi to be the number of verti
es having indegreeequal to i. The tri
olour ve
tor is then (v0, v1, v2, . . . , vm) where m is themaximum indegree, and the tri
olour number is the value of v0. The tri-
olour number varies from 420 for the proje
tive STS(15) to 60 for theanti-Pas
h STS(15). There are 62 di�erent values o

urring with 47 ap-pearing on
e, 12 appearing twi
e and 3 appearing thri
e. It is thereforea more dis
riminating invariant than 
ounting Pas
h 
on�gurations. Thetri
olour ve
tors do distinguish the STS(15)s 
ompletely; in fa
t the �rstthree 
omponents are su�
ient.7. Group divisible designsA natural generalization of a Steiner triple system is a group divisible de-sign. Let S be a set of positive integers. A 3-group divisible design, usuallydenoted by 3-GDD, is an ordered triple (V,G,B) where V is a base set of 
ar-dinality v, G is a partition of V into parts, 
alled groups, whose 
ardinalitybelongs to S, and B is a 
olle
tion of triples or blo
ks whi
h 
olle
tively havethe property that every pair of elements from di�erent groups is 
ontainedin pre
isely one triple and no pair of distin
t elements from the same groupo

ur in any triple. Alternatively, every pair of distin
t elements o

ur in



50 T. S. Griggseither a group or a blo
k but not both. If the partition of V is into ti groupsof 
ardinality gi, i = 1, 2, . . . , n so that v = Σn
i=1tigi, the 3-GDD is said tobe of type gt1

1 gt2
2 . . . gtn

n . The use of the word �group� in this de�nition isperhaps misleading; it has nothing to do with Group Theory.Example 7.1. Let V = {1, 2, 3, 4, A, B, C, D, E, F} and G be the partition
{1, 2, 3, 4}, {A, B}, {C, D}, {E, F}. Take the triples B to be 1AC, 1BE, 1CF,2AD, 2BF, 2CE, 3AE, 3BD, 3CF, 4AF, 4BC, 4DE. Then (V,G,B) is a 3-GDD of type 4123.A Steiner triple system of order v is a 3-GDD of type 1v. Further, byde�ning the sets of pairs through any 
hosen point as the groups and thendeleting that point from the design, gives a 3-GDD of type 2(v−1)/2. For anSTS(6s+3) with a parallel 
lass, by de�ning ea
h blo
k of the parallel 
lassas a group, a 3-GDD of type 32s+1 is obtained. A Latin square of side v isa 3-GDD of type v3.More generally, ne
essary and su�
ient 
onditions for the existen
e of3-GDDs in whi
h every group has the same 
ardinality, i.e. of type gt, are(1) t > 3, (2) (t − 1)g ≡ 0 (mod 2), (3) t(t − 1)g2 ≡ 0 (mod 3), [53℄ or intabular form as below.Value of g Value of t1 or 5 (mod 6) 1 or 3 (mod 6)2 or 4 (mod 6) 0 or 1 (mod 3)3 (mod 6) 1 (mod 2)0 (mod 6) no 
onstraintAlso of parti
ular note are 3-GDDs in whi
h all groups ex
ept one are ofthe same 
ardinality, i.e. of type gtu1. Ne
essary and su�
ient 
onditionsare the following [14℄.1. if g > 0 then t > 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0,2. u 6 g(t − 1) or gt = 0,3. g(t − 1) + u ≡ 0 (mod 2) or gt = 0,4. gt ≡ 0 (mod 2) or u = 0,5. g2t(t − 1)/2 + gtu ≡ 0 (mod 3).



Steiner triple systems and their 
lose relatives 51The importan
e of group divisible designs is their use in a 
onstru
tion ofWilson [95℄. The 
onstru
tion is appli
able to group divisible designs havingany blo
k size but is presented here just in the 
ontext of 3-GDDs.Wilson's fundamental 
onstru
tionLet (V,G,B) be a 3-GDD (
alled the master GDD), and the partition Gof V be G1, G2, . . . , Gt. Further let w be a fun
tion (
alled a weight fun
-tion) from the base set V to the set Z
+
0 of non-negative integers whi
hhas the property that if {x, y, z} ∈ B then there exists a 3-GDD of type

w(x)w(y)w(z) (
alled a slave GDD). Then there exists a 3-GDD of type
Σx∈G1

w(x) Σx∈G2
w(x) . . .Σx∈Gt

w(x).Wilson's 
onstru
tion has wide appli
ation throughout Design Theoryand has been used in many 
reative ways. Below is just one example whi
h,although quite straightforward, will hopefully give some idea of the powerof the te
hnique. In Se
tion we introdu
ed the Pas
h 
on�guration and dis-
ussed the existen
e of anti-Pas
h STS(v); systems whi
h 
ontain no Pas
h
on�gurations. At another extreme it is perhaps appropriate to ask whetherthere exist STS(v) in whi
h the blo
ks of the system 
an be partitioned intoPas
h 
on�gurations. This is one of the questions 
onsidered in [49℄ andthe relevant material, together with explanatory 
omments, are reprodu
edin the proof of the following theorem.Theorem 7.2. There exists an STS (v) whi
h is de
omposable into 
opiesof the Pas
h 
on�guration if and only if v ≡ 1, 9 (mod 24).Proof. We �rst prove ne
essity. In order for an STS(v) to be de
omposableinto Pas
h 
on�gurations, the number of blo
ks b = v(v − 1)/6 must bedivisible by 4. Hen
e v ≡ 1, 9 (mod 24).The �rst possible value of v is therefore 25. If we 
hoose V = Z25 thena 
y
li
 STS(25) will 
onsist of 4 orbits under the mapping i 7→ i + 1 (mod25). We seek su
h a system whi
h 
ontains a Pas
h 
on�guration with oneblo
k from ea
h orbit. Then the a
tion of the mapping will guarantee thatthe system de
omposes into Pas
h 
on�gurations. It is not too di�
ultto 
onstru
t a system by hand. The one given in [49℄ has starter blo
ks
{0, 1, 6}, {0, 2, 16}, {0, 3, 10}, {0, 4, 12} and a Pas
h 
on�guration with oneblo
k from ea
h orbit is {0, 1, 6}, {1, 3, 17}, {3, 6, 13}, {13, 17, 0}.The se
ond possible value of v is 33. We use the same approa
h asfor v = 25, seeking a system with V = Z11 × {1, 2, 3} with automorphism
i 7→ i + 1 (mod 11) a
ting on the �rst 
o-ordinate and leaving the se
ond
o-ordinate �xed. There are 16 orbits in all and starter blo
ks both for the



52 T. S. Griggssystem and the de
omposition into Pas
h 
on�gurations are
010203, 0162103, 3102103, 316203; 011131, 8111102, 813163, 0110263;
021242, 621233, 6242101, 0233101; 037353, 837361, 8353102, 0361102.This system was found by 
omputer.The above are two of the ingredients needed in applying Wilson's 
on-stru
tion. The third is a 3-GDD of type 43 whi
h is also de
omposableinto Pas
h 
on�gurations. This will be the slave GDD. Let K4 be theKlein 4-group with elements {e, x, y, z} where e is the identity. Let V =
K4 × {1, 2, 3}, with GDD partition Gi = K4 × {i}, i = 1, 2, 3. The3-GDD has 16 blo
ks whi
h are generated from the Pas
h 
on�guration
e1e2e3, e1y2z3, x1e2z3, x1y2e3 under the a
tion of K4.We 
an now use the 
onstru
tion. Take as the master GDD, a 3-GDDof type 6t, t > 3, and weight every point with 4. Repla
e every blo
kof the master GDD with the slave 3-GDD of type 43 above whi
h 
an bede
omposed into Pas
h 
on�gurations. Ea
h group of the master GDDis now expanded and has 
ardinality 24. Adjoin a further point ∞ andon every expanded group together with this point pla
e the Pas
h de
om-posable STS(25) 
onstru
ted above. The result is a Pas
h de
omposableSTS(24t + 1).For the 
ase where v = 24t + 9 a di�erent master GDD is needed, onein whi
h one of the groups has di�erent 
ardinality from the others. Takeas the master GDD, a 3-GDD of type 6t81, t > 3. Then just pro
eed as inthe former 
ase but on the expanded blo
k of 32 points, together with thepoint ∞, pla
e the Pas
h de
omposable STS(33).The reader will have noti
ed that in fa
t we have not quite proved thetheorem. The master GDDs used exist only for t > 3. We already havePas
h de
omposable STS(25) and STS(33) but this still leaves the two val-ues v = 49 and v = 81. This is a 
ommon feature of GDD 
onstru
tions;often small values �fall through the net� and have to be 
onsidered indi-vidually. Nevertheless we have proved the existen
e of Pas
h de
omposableSTS(v) for all v ≡ 1, 9 (mod 24) with only two ex
eptions and we have donethis by building the systems from just three basi
 ingredients. Using Wil-son's 
onstru
tion has enabled us to assemble these ingredients to obtainwhat we require. A Pas
h de
omposable STS(49) was also given in [49℄ butno su
h system for v = 81. So the theorem was proved for all v ≡ 1, 9 (mod24) ex
ept possibly v = 81. Of 
ourse the authors of the paper did notbelieve that this was a genuine ex
eption; just that the method used wasunable to deal with this value. Sometimes �lling in the �missing� values to
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omplete the spe
trum 
an be the most di�
ult part of the proof. Often it isne
essary to embark on a lengthy 
omputer sear
h whi
h 
an present a sig-ni�
ant 
hallenge. To 
omplete this story, a Pas
h de
omposable STS(81)does exist; it was found later by Adams, Billington and Rodger [1℄.Before leaving this topi
, it is worth noting that with little extra workwe 
an prove that the systems 
onstru
ted in the above theorem not onlypartition into Pas
h 
on�gurations, they also partition into sets of fourparallel blo
ks, i.e. 
on�gurations C1 in Figure 5.2. All that is needed to dois to partition the three ingredients used, STS(25), STS(33), and 3-GDD oftype 43 into 
on�gurations C1. It is 
ompletely straightforward and is leftas an exer
ise for the reader. More information about de
omposing Steinertriple systems into 
on�gurations 
an be found in the papers [1℄, [47℄, [49℄,[56℄. 8. Mendelsohn and dire
ted triple systemsThe blo
ks of a Steiner triple system are unordered. In this se
tion we
onsider the situation where order is introdu
ed. There are two possibilities.A 
y
li
 triple, whi
h will be denoted by (x, y, z), 
ontains the ordered pairs
(x, y), (y, z), (z, x) and a transitive triple, denoted by [x, y, z] 
ontains theordered pairs (x, y), (y, z), (x, z). Systems of 
y
li
 triples were the �rstto be 
onsidered, by Mendelsohn [71℄, and very appropriately are namedafter him. Thus a Mendelsohn triple system of order v, usually denoted byMTS(v), is an ordered pair (V,B) where V is a base set of 
ardinality v and
B is a 
olle
tion of 
y
li
 triples whi
h 
olle
tively have the property thatevery ordered pair of distin
t elements of V is 
ontained in pre
isely one
y
li
 triple. An elementary 
ounting argument establishes that a ne
essary
ondition for the existen
e of an MTS(v) is v ≡ 0, 1 (mod 3) and systemsdo exist for all of these orders ex
ept that there is no MTS(6).An MTS(3) on base set {a, b, c} 
onsists of the two triples (a, b, c) and
(c, b, a). An MTS(4) on base set {a, b, c, d} has triples (a, b, c), (d, b, a),
(c, d, a), (d, c, b). They are the unique Mendelsohn triple systems of theseorders. There are three non-isomorphi
 Mendelsohn triple systems of order7 detailed in the example below.Example 8.1. All three systems will be de�ned on base set V = Z7.System #1: Develop the triples (0, 1, 3) and (0, 3, 1) under the a
tion ofthe mapping i 7→ i + 1 (mod 7).System #2: Develop the triples (0, 1, 3) and (0, 3, 2) under the a
tion of



54 T. S. Griggsthe mapping i 7→ i + 1 (mod 7).System #3: The triples are (0, 1, 2), (0, 2, 1), (0, 3, 4), (0, 4, 3), (0, 5, 6),
(0, 6, 5), (1, 3, 5), (1, 4, 6), (1, 5, 4), (1, 6, 3), (2, 3, 6), (2, 4, 5), (2, 5, 3),
(2, 6, 4).The numbers of non-isomorphi
 MTS(v) for v = 9, 10, 12 are 18 [68℄, 143[37℄ [38℄, 4,905,693 [23℄. The Mendelsohn triple systems of order 9 are listedon pages 533 and 534 of HB. A further isomorphism invariant is availablefor Mendelsohn triple systems. For a Steiner triple system, (V,B), theneighbourhood of a point x ∈ V is the set N(x) = {{u, v} : {x, u, v} ∈ B}.Cy
le stru
ture 
an then be thought of as the graphs obtained from alldouble neighbourhoods, i.e. N(x) ∪ N(y), x, y,∈ V, x 6= y. However fora Mendelsohn triple system, the neighbourhood of a point will be a set ofordered pairs, whi
h form a 
olle
tion of dire
ted 
y
les. The set of all thesesingle neighbourhoods is an invariant of an MTS(v).Two re
ursive 
onstru
tions for Mendelsohn triple systems are given onpages 442 and 443 of C&R.Theorem 8.2. If there exists an MTS (v) then there exists an MTS (2v+1).Proof. Let (V,B) be an MTS(v) and W be a set of 
ardinality v+1, disjointfrom V . Let L be a Latin square of side v + 1 with rows and 
olumnsindexed by W and entries from V ∪ {∞}, where L(i, i) = ∞, i ∈ W . Nowput D = {(i, L(i, j), j) : i, j,∈ W, i 6= j}. Then (V ∪ W,B ∪ D) is anMTS(2v + 1).Theorem 8.3. If there exists an MTS (v) then there exists an MTS (2v+4).Proof. Let (V,B) be an MTS(v) where V is disjoint from Zv+4. Let T bethe set of triples obtained by the a
tion of the mapping i 7→ i + 1 (mod
v + 4) on the starter triple (0, 1, 3). For ea
h d ∈ Zv+4 \ {0, 1, 2, v + 1}, let
D = {(xd, i, i+d) : 0 6 i 6 v+3, xd ∈ V } where the elements xd run throughall elements of V and addition is modulo v +4. Then (V ∪Zv+4,B∪T ∪D)is an MTS(2v + 4).Given Mendelsohn triple systems of orders 3, 4, 13, 16 the above twotheorems are su�
ient to give the entire spe
trum of MTS(v). Systems forthe latter two values are given in the next two examples.Example 8.4. For an MTS(13), let V = Z13. The blo
ks are obtained bythe a
tion of the mapping i 7→ i+1 (mod 13) on the starter triples (0, 1, 4),
(4, 3, 0), (0, 2, 7), (7, 5, 0).
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lose relatives 55Example 8.5. For an MTS(16), let V = Z13 ∪ {∞1,∞2,∞3}. The blo
ksare obtained by the a
tion of the mapping i 7→ i + 1 (mod 13) on thestarter triples (∞1, 0, 7), (∞2, 0, 9), (∞3, 0, 10), (0, 1, 5), (0, 2, 7), (0, 3, 1),with the points ∞1,∞2,∞3 as �xed points, together with the two blo
ks
(∞1,∞2,∞3) and (∞3,∞2,∞1).Given an MTS(v), if every 
y
li
 triple (x, y, z) is repla
ed by the 
orre-sponding unordered triple {x, y, z} a twofold triple system, usually denotedby TTS(v), is obtained. This is a 
olle
tion of triples in whi
h every pairo

urs pre
isely twi
e. The TTS(v) so obtained is 
alled the underlyingTTS(v) of the MTS(v) and may 
ontain repeated triples. If it does notthen it is 
alled simple and the MTS(v) is said to be pure. Bennett andMendelsohn [4℄ proved the following theorem.Theorem 8.6. There exists a pure MTS (v) for all v ≡ 0, 1 (mod 3) ex
ept
v = 3, 6.In fa
t, the results presented in this se
tion are a good start in provingthis. The 
onstru
tion given in the proof of Theorem 8.2 does not introdu
erepeated triples provided that the Latin square used is anti-symmetri
. Nordoes that in the proof of Theorem 8.3 if v is odd. If v is even, repla
e thestarter triple (0, 1, 3) with (0, 1, (v + 4)/2) and let d ∈ Zv+4 \ {0, 1, (v +
2)/2, (v + 4)/2}. Of the initial systems used in these 
onstru
tions thoseof orders 4 and 13 are pure. So what is required is a pure MTS(7) (one isgiven in the example above) and a pure MTS(10) to repla
e the MTS(3),and a pure MTS(16).Also given an MTS(v), if every 
y
li
 triple (x, y, z) is repla
ed by
(z, y, x), another MTS(v), 
alled the 
onverse of the original MTS(v), isobtained. The 
onverse is not ne
essarily isomorphi
 to the original but asystem where this is the 
ase is said to be self-
onverse. Chang, Yang andKang [9℄ proved the following theorem.Theorem 8.7. There exists a self-
onverse MTS (v) for all v ≡ 0, 1 (mod 3)ex
ept v = 6.We now turn our attention to dire
ted triple systems. These were intro-du
ed by Hung and Mendelsohn [57℄ and the formal de�nition is as follows.A dire
ted triple system of order v, usually denoted by DTS(v), is an or-dered pair (V,B) where V is a base set of 
ardinality v and B is a 
olle
tionof transitive triples whi
h 
olle
tively have the property that every orderedpair of distin
t elements of V is 
ontained in pre
isely one transitive triple.



56 T. S. GriggsAgain a ne
essary 
ondition for existen
e is v ≡ 0, 1 (mod 3) and this isalso su�
ient with no ex
eptions.Dire
ted triple systems exist in greater numbers than their Mendel-sohn 
ounterparts. Enumeration results for v 6 7 were obtained by Col-bourn and Colbourn [18℄. The DTS(3) is of 
ourse unique: on base set
{a, b, c}, it 
onsists of the transitive triples [a, b, c] and [c, b, a]. But thereare 3 non-isomorphi
 DTS(4)s. On base set {a, b, c, d}, they are (1) [a, b, c],
[b, a, d], [c, d, a], [d, c, b], (2) [a, b, c], [b, a, d], [c, d, b], [d, c, a], (3) [a, b, c],
[c, a, d], [b, d, a], [d, c, b]. There are 32 non-isomorphi
 DTS(6)s and 2,368non-isomorphi
 DTS(7)s (
ompared to no MTS(6) and just 3 MTS(7)s).In respe
t of pure dire
ted triple systems, there is a stronger result thanfor Mendelsohn triple systems. Colbourn and Colbourn [11℄ proved thefollowing theorem.Theorem 8.8. Every twofold triple system is the underlying system of somedire
ted triple system.This is 
ertainly not true for Mendelsohn triple systems. There are 36non-isomorphi
 TTS(9)s but only 16 of them are underlying systems of the18 MTS(9)s.As with MTS(v), the 
onverse of a DTS(v) is also a DTS(v), not ne
-essarily isomorphi
 to the original. Kang, Chang and Yang [58℄ establishedthe spe
trum of self-
onverse DTS(v).Theorem 8.9. There exists a self-
onverse DTS (v) for all v ≡ 0, 1 (mod 3)ex
ept v = 6.An existen
e proof for dire
ted triple systems 
an be adapted from andfollows 
losely Theorems 8.2 and 8.3 for Mendelsohn triple systems. Butto �nish this se
tion an alternative proof is given; one whi
h uses Wilson'sfundamental 
onstru
tion. We will need 
ertain ingredients to implementthis and we give these �rst as examples.Example 8.10. For 
larity bra
kets and 
ommas are omitted from dire
tedtriples.DTS(6): 013, 124, 230, 341, 402, 054, 150, 251, 352, 453.DTS(9): 012, 345, 678, 036, 147, 258, 048, 156, 237, 057, 138, 246, 310,872, 654, 520, 761, 843, 740, 851, 632, 860, 421, 753.DTS(10): 021, 203, 130, 312, 054, 506, 460, 645, 087, 809, 790, 978, 347,158, 269, 593, 671, 482, 836, 914, 725, 274, 385, 196, 952, 763,841, 628, 439, 517.



Steiner triple systems and their 
lose relatives 57This latter example is taken from [44℄. Note that the DTS(10) 
ontainsa subsystem DTS(4) on the set {0, 1, 2, 3}, a feature whi
h will be 
ru
ialin the proof below. The triples also have the interesting property that ifthey are interpreted as 
y
li
 triples instead of transitive triples they forman MTS(10).3-GDD of type 23: Let V = {a, b, c, x, y, z} with partition {a, x}, {b, y},
{c, z}. The dire
ted triples are abc, ayz, xbz, xyc, zyx, cbx, cya, zba.Theorem 8.11. There exists a DTS (v) for all v ≡ 0, 1 (mod 3).Proof. The proof is divided into di�erent residue 
lasses.(1) v = 6s + 1, s > 1. Let {{0, ai, ai + bi} : 1 6 i 6 s} be a set of orbitstarters under the mapping i 7→ i + 1 (mod 6s + 1). For a DTS(v), 
hooseorbit starters [0, ai, ai + bi] and [ai + bi, ai, 0] under the same mapping or,for a pure system, [0, ai, ai + bi] and [ai + bi, bi, 0].(2) v = 6s + 3, s > 0. As in 
ase (1), for s 6= 1 take a set of 
y
li
 orbitstarters. It will not be possible in this 
ase to 
onstru
t a pure DTS(v)be
ause of the short orbit starter {0, 2s + 1, 4s + 2}. A DTS(9) is given inthe above example.(3) v = 12s + 6, s > 0. For s = 0, a DTS(6) is given above. Otherwisetake a 3-GDD of type 32s+1 and weight every point with 2. Repla
e everyblo
k of the GDD by the slave dire
ted 3-GDD of type 23 given in the aboveexample and every expanded group by the DTS(6).(4) v = 12s + 4, s > 0. The three non-isomorphi
 DTS(4)s are givenabove. For s > 1, Take a 3-GDD of type 23s+1, weight every point with 2,and pro
eed as in 
ase (3), using the slave dire
ted 3-GDD and a DTS(4).(5) v = 12s, s > 1. This is exa
tly the same as the previous 
asestarting with a 3-GDD of type 23s.(6) v = 12s + 10, s > 0. This is a slightly more di�
ult 
ase andillustrates a further extension of the use of Wilson's 
onstru
tion. For s = 0,a DTS(10) is given above. Otherwise take a 3-GDD of type 32s+1, weightevery point with 2, and repla
e every blo
k of the GDD by the slave dire
ted3-GDD as before. The expanded groups of the master GDD have 
ardinality6 so adjoin four further points, say a, b, c, d. On every expanded blo
k,together with a, b, c, d, pla
e a DTS(10) 
ontaining a DTS(4) subsystem sothat this subsystem is on the four adjoined points. Re
all that we remarkedthat the DTS(10) in the example above had su
h a subsystem.



58 T. S. Griggs9. Quasigroups and loopsA Steiner quasigroup or squag is a pair (Q, ·) where Q is a set and · is anoperation on Q satisfying the identities
x · x = x, y · (x · y) = x, x · y = y · x.If (V,B) is an STS(v), then a Steiner quasigroup (Q, ·) is obtained by letting

Q = V and de�ning x·y = z where {x, y, z} ∈ B. The pro
ess is reversible; if
Q is a Steiner quasigroup, then a Steiner triple system is obtained by letting
V = Q and {x, y, z} ∈ B where x · y = z for all x, y ∈ Q, x 6= y. Thusthere is a one-one 
orresponden
e between all Steiner triple systems andall Steiner quasigroups, see for example Theorem V.1.11 of [78℄. A Steinerquasigroup is also known as an idempotent totally symmetri
 quasigroup,see Remark 2.12 on page 153 of HB. In a similar vein, a Steiner loop orsloop is a pair (L, ·) where L is a set 
ontaining an identity element, say e,and · is an operation on L satisfying the identities

e · x = x, x · x = e, y · (x · y) = x, x · y = y · x.If (V,B) is an STS(n), then a Steiner loop (L, ·) is obtained by letting
L = V ∪ {e} and de�ning x · y = z where {x, y, z} ∈ B. Again the pro
essis reversible. All of the above is well-known in both the algebrai
 and the
ombinatorial 
ommunities.For a Steiner loop, a natural question is whether it 
an ever be a groupand if so to identify both the group and the Steiner triple system from whi
hit 
omes? The answer, whi
h is also well-known, is in the a�rmative and iseasy to determine. Let (L, ·) be a Steiner loop. Then if it is also a group,sin
e every non-identity element has order 2, it is elementary Abelian oforder 2n, n > 2. The 
orresponding Steiner triple system thus has order
2n−1 and is the proje
tive Steiner triple system of that order introdu
ed inthe Introdu
tion and obtained by suitably identifying elements of the groupwith ve
tors in (F2)

n.A further question whi
h now arises is whether there are any otheralgebrai
 identities whi
h a Steiner loop may satisfy whi
h lead to otherinteresting 
lasses of Steiner triple system? However, before 
onsidering thisquestion, it is instru
tive to present a di�erent proof of the above result thatif a Steiner loop is asso
iative then it 
omes from a proje
tive Steiner triplesystem. This alternative proof is not group-theoreti
 but 
ombinatorial,relying on results from Design Theory. Let (V,B) be an STS(v) and (L, ·),



Steiner triple systems and their 
lose relatives 59where L = V ∪ {e}, the asso
iated Steiner loop. If any of x, y, z are equalto e or to one another then asso
iativity is satis�ed. If {x, y, z} ∈ B then
(x · y) · z = x · (y · z) = e. Now suppose that {x, y, z} /∈ B. Then theblo
k, say b1, 
ontaining x, y also 
ontains the element x · y. Similarly,the blo
k, say b2, 
ontaining y, z also 
ontains the element y · z. Now
onsider the blo
k b3 
ontaining x · y and z. The third point is (x · y) · z.Similarly the third point in the blo
k b4 
ontaining x and y · z is x · (y · z).If the asso
iative law holds then these two third points are the same andthe four blo
ks b1, b2, b3, b4 
ontain six points, x, y, z, x · y, y · z, x · y · z,i.e. they form a Pas
h 
on�guration. The number of sets {x, y, z} /∈ B is
v(v−1)(v−2)/6−v(v−1)/6 = v(v−1)(v−3)/6, so the STS(v) must 
ontainat least v(v − 1)(v − 3)/24 Pas
h 
on�gurations. But this is the maximumnumber that 
an o

ur and does so only in the proje
tive systems [90℄. Infa
t the 
y
le stru
ture of the proje
tive systems 
ontains only 4-
y
les.We now introdu
e a 
on
ept whi
h we 
all fra
tional asso
iativity. Inorder to do this we express asso
iativity in a di�erent notation. By in-trodu
ing left and right translations, x · y 
an be written as either Lx(y)or Ry(x). The asso
iative law 
an then be expressed as LxRz = RzLx.Then 1/nth asso
iativity is de�ned by (LxRz)

n = (RzLx)n. Clearly if anoperation is 1/nth asso
iative then it is 1/mth asso
iative for all m > nwith asso
iativity being the 
ase where n = 1. Now 
onsider a Steinerloop (L, ·) where the operation is 1/2-asso
iative, in 
onventional notation,
x ·((x ·(y ·z)) ·z) = (x ·((x ·y) ·z)) ·z. Then a straightforward, but somewhattedious, analysis shows that the 
y
le stru
ture of the 
orresponding Steinertriple system must 
ontain only 4-
y
les and 8-
y
les. This 
lass of STS(v)is wider than just the proje
tive systems. It 
ontains the STS(15) #2 inthe standard listing in [67℄ for example. But none of the 11,084,874,829STS(19)s have this property. The situation merits further investigation.The Hall triple systems have an elegant 
hara
terization in terms ofSteiner quasigroups.Theorem 9.1. Let (Q, ·) be the Steiner quasigroup 
orresponding to anSTS (v), (V,B). Then (Q, ·) satis�es the distributive law, i.e., x · (y · z) =
(x · y) · (x · z), x, y, z ∈ Q, if and only if (V,B) is a Hall triple system.Proof. To prove ne
essity, we need to show that every three points whi
hdo not form a triple generate the unique STS(9).So let a, b, p ∈ V where {a, b, p} /∈ B. Then there exists c, x, su
h that
{a, b, c}, {a, p, x} ∈ B. (It is to be understood that when a new letter is



60 T. S. Griggsintrodu
ed it represents a new point.) There also exist z, r, su
h that
{b, p, z}, {b, x, r} ∈ B.Now a·(b·p) = (a·b)·(a·p), i.e. a·z = c·x = q. Thus {a, z, q}, {c, x, q} ∈ B.Also a·(b·x) = (a·b)·(a·x), i.e., a·r = c·p = y. Thus {a, r, y}, {c, p, y} ∈ B.We now have nine points, a, b, c, p, q, r, x, y, z and eight blo
ks. To 
om-plete the STS(9) and also the proof we need to show that {b, q, y}, {c, r, z},
{p, q, r}, {x, y, z} ∈ B.So b ·q = (c ·a) ·(c ·x) = c ·(a ·x) = c ·p = y. Further c ·r = (b ·a) ·(b ·x) =
b · (a · x) = b · p = z. Next p · q = (x · a) · (x · c) = x · (a · c) = x · b = r.Finally x · y = (p · a) · (p · c) = p · (a · c) = p · b = z.To prove su�
ien
y, suppose �rst that {x, y, z} ∈ B. Then x · (y · z) =
x · x = x and (x · y) · (x · z) = z · y = x. If {x, y, z} /∈ B, then the threepoints x, y, z generate an STS(9). There exists a, b, c su
h that {a, y, z},
{x, b, z}, {x, y, c} ∈ B. But {a, b, c} /∈ B, be
ause the unique STS(9) is anti-Pas
h. Therefore there exists l, m, n su
h that{l, b, c}, {a, m, c}, {a, b, n}∈B,and by 
onsidering blo
ks 
ontaining the point a, {a, x, l} ∈ B. Now weobtain x · (y · z) = x · a = l and (x · y) · (x · z) = c · b = l.Another method of obtaining a loop from a Steiner triple system (V,B) isto 
hoose a point α ∈ V and de�ne an operation ◦ by the rule x◦y = (x·y)·αwhere x ·y is de�ned as in the Steiner quasigroup, i.e. x ·x = x and x ·y = zwhere {x, y, z} ∈ B. The point α is the identity and every other elementhas order 3. Di�erent values of α 
an lead to di�erent loops. If (V,B) is aHall triple system then the loop obtained is a Moufang loop and di�erentvalues of α then lead to isomorphi
 loops. The relationship between Halltriple systems and exponent 3 
ommutative Moufang loops is one-one.Less well known seems to be the fa
t that quasigroups and loops 
an beobtained from Mendelsohn triple systems by pre
isely the same pro
eduresas des
ribed above for 
onstru
ting Steiner quasigroups and Steiner loopsfrom Steiner triple systems. The law y · (x · y) = x is usually 
alled semi-symmetri
 and the quasigroups are known as idempotent semisymmetri
quasigroups, see again Remark 2.12 on page 153 of HB. However the alge-brai
 stru
tures might also appropriately be 
alled Mendelsohn quasigroupsand Mendelsohn loops; they satisfy the same properties as their Steiner
ounterparts with the ex
eption of 
ommutativity. Similarly there is aone-one 
orresponden
e between Mendelsohn triple systems, Mendelsohnquasigroups and Mendelsohn loops.For a dire
ted triple system, an algebrai
 stru
ture 
an also be obtainedas above by de�ning x ·x = x and x ·y = z for all x, y ∈ V , x 6= y where z is



Steiner triple systems and their 
lose relatives 61the third element in the transitive triple 
ontaining the ordered pair (x, y).However the stru
ture obtained is not ne
essarily a quasigroup. If [u, x, y]and [y,v,x℄ are transitive triples then u · x = v · x = y. But in fa
t someDTS(v)s do yield quasigroups and these are the subje
t of a re
ent paper byDrápal, Kozlik and the present author [27℄. Su
h a DTS(v) is 
alled a Latindire
ted triple system, and denoted by LDTS(v), to re�e
t the fa
t thatin this 
ase the operation table forms a Latin square. The quasigroup soobtained is 
alled a DTS-quasigroup. In an analogous way to that des
ribedabove for Steiner triple systems a loop may also be 
onstru
ted from anLDTS(n); 
alled a DTS-loop.A ne
essary and su�
ient 
ondition for a dire
ted triple system to beLatin is given in the following theorem, proved in [27℄.Theorem 9.2. Let D = (V,B) be a DTS (v). Then D is an LDTS (v) ifand only if [x, y, z] ∈ B ⇒ [w, y, x] ∈ B for some w ∈ V .Latin dire
ted triple systems di�er from their Steiner and Mendelsohn
ounterparts in fundamental ways. One of these is that they are not a va-riety. Another is that, unlike Steiner and Mendelsohn triple systems, thereis not a one-one 
orresponden
e between the Latin dire
ted triple systemsand the asso
iated quasigroups or loops. A further di�eren
e 
on
erns �ex-ibility. The �exible law states that x ·(y ·x) = (x ·y) ·x. As is easily veri�ed,both Steiner quasigroups and loops and Mendelsohn quasigroups and loopsall satisfy this law. But this is not the 
ase for DTS-quasigroups and loops.A �exible DTS-quasigroup or loop has an interesting geometri
 stru
tureand a ne
essary and su�
ient 
ondition is as follows.Theorem 9.3. A DTS-quasigroup or DTS-loop obtained from a Latin di-re
ted triple system LDTS (v), D = (V,B), satis�es the �exible law if andonly if [x, y, z] ∈ B ⇒ [x, z · x, y · x] ∈ B.DTS-quasigroups exist for all v ≡ 0, 1 (mod 3) ex
ept v = 4, 6, 10. Moredetails are in [27℄.Finally we remark that the isomorphism invariants, 
y
le lists and trains,used to distinguish non-isomorphi
 Steiner and Mendelsohn triple systems,and hen
e also their asso
iated quasigroups and loops, might also be usedmore widely. Let (Q, ·) be a quasigroup (in
luding a loop). For x ∈ Q de�nethe neighbourhood N(x) as the set of ordered pairs {(u, v) : u · v = x}. The
y
les indu
ed by double neighbourhoods and, if Q is not 
ommutative,the dire
ted 
y
les indu
ed by single neighbourhoods 
an be used to help
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y
li
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y
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