Indicators of quasigroups

Ivan I. Deriyenko

Abstract. We present some useful conditions which are necessary for isotopy of two quasigroups of the same finite order.

Let \(Q = \{1, 2, 3, \ldots, n\} \) be a finite set, \(S_n \) - the set of all permutations of \(Q \). The multiplication (composition) of permutations \(\varphi \) and \(\psi \) of \(Q \) is defined as \(\varphi \psi(x) = \varphi(\psi(x)) \). All permutations will be written in the form of cycles and cycles will be separated by points, e.g.

\[
\varphi = \left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 5 & 4 & 6
\end{array}\right) = (132.45.6).
\]

By a cyclic type of a permutation \(\varphi \in S_n \) we mean the sequence \(l_1, l_2, \ldots, l_n \), where \(l_i \) denotes the number of cycles of the length \(i \). In this case we will write

\[
C(\varphi) = \{l_1, l_2, \ldots, l_n\}.
\]

Obviously, \(\sum_{i=1}^{n} i \cdot l_i = n \).

Definition 1. By the indicator of a permutation \(\varphi \) of type \(C(\varphi) = \{l_1, l_2, \ldots, l_n\} \) we mean the polynomial

\[
w(\varphi) = x_1^{l_1} x_2^{l_2} \cdots x_n^{l_n}.
\]

For example, for \(\varphi = (123.45.6) \) we have \(C(\varphi) = \{1, 1, 0, 0, 0\} \) and \(w(\varphi) = x_1 x_2 x_3 \); for \(\psi = (1.2536.47.80.9) \), \(C(\psi) = \{2, 2, 0, 1, 0, 0, 0, 0, 0, 0\} \) and \(w(\psi) = x_1^2 x_2^2 x_4 \).

As it is well-known, two permutations \(\varphi, \psi \in S_n \) are conjugate if there exists a permutation \(\rho \in S_n \) such that

\[
\rho \varphi \rho^{-1} = \psi.
\]

2010 Mathematics Subject Classification: 20N20, 05B15
Keywords: quasigroup, isotopy, autotopy.
Theorem 1. (Theorem 5.1.3 in [4]) Two permutations are conjugate if and only if they have the same cyclic type.

As a consequence we obtain

Corollary 1. Conjugated permutations have the same indicators.

As it is well-known, two quasigroups $Q(\circ)$ and $Q(\cdot)$ are isotopic if there are three permutations α, β, γ of Q such that

$$\gamma(x \circ y) = \alpha(x) \cdot \beta(y).$$

(1)

In the case $\alpha = \beta = \gamma$ we say that quasigroups are autotopic.

A track (or a right middle translation) of a quasigroup $Q(\cdot)$ is a permutation φ_i of Q satisfying the identity

$$x \cdot \varphi_i(x) = i,$$

where $i \in Q$. Each quasigroup can be identified with the set $\{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ of all its tracks (cf. [2]).

Tracks of $Q(\cdot)$ will be denoted by φ_i, track of $Q(\circ)$ by ψ_i. Similarly, left and right translations of $Q(\cdot)$ will be denoted by L_a and R_a, left and right translations of $Q(\circ)$ by L_a° and R_a°.

Proposition 1. (cf. [2]) Tracks of isotopic quasigroups satisfying (1) are connected by the formula

$$\varphi_{\gamma(i)} = \beta \psi_i \alpha^{-1}.$$

(2)

Similar results hold for left and right translations.

Theorem 2. Left and right translations of isotopic quasigroups satisfying (1) are connected by the conditions

$$L_{\alpha(a)} = \gamma L_a^\circ \beta^{-1}, \quad R_{\beta(b)} = \gamma R_b^\circ \alpha^{-1}.$$

(3)

Proof. Indeed, putting $x = a$ we obtain $\gamma L_a^\circ(y) = L_{\alpha(a)} \beta(y)$ for every $y \in Q$, which implies $\gamma L_a^\circ \beta^{-1} = L_{\alpha(a)}$. Similarly, putting in (1) $y = b$ we obtain $R_{\beta(b)} = \gamma R_b^\circ \alpha^{-1}$. □

Corollary 2. For autotopic quasigroups we have

$$\varphi_{\alpha(i)} = \alpha \psi_i \alpha^{-1}, \quad L_{\alpha(a)} = \alpha L_a^\circ \alpha^{-1}, \quad R_{\alpha(b)} = \alpha R_b^\circ \alpha^{-1}.$$
Consider the following three matrices:

\[\Phi = [\varphi_{ij}], \quad L = [L_{ij}], \quad R = [R_{ij}], \]

where \(\varphi_{ij} = \varphi_i \varphi_j^{-1} \), \(L_{ij} = L_i L_j^{-1} \), \(R_{ij} = R_i R_j^{-1} \) for all \(i, j \in Q \). Obviously, \(\varphi_{ii}(x) = L_{ii}(x) = R_{ii}(x) = x \) and \(\varphi_{ij}(x) \neq x \), \(L_{ij}(x) \neq x \), \(R_{ij}(x) \neq x \) for all \(i, j, x \in Q \) and \(i \neq j \).

Theorem 3. For isotopic quasigroups \(Q(\circ) \) and \(Q(\cdot) \) with the isotopy of the form (1) we have

\[\varphi_{\gamma(i)\gamma(j)} = \beta \psi_{ij} \beta^{-1}, \quad L_{\alpha(i)\alpha(j)} = \gamma L_{ij}^\alpha \gamma^{-1}, \quad R_{\beta(i)\beta(j)} = \gamma R_{ij}^\beta \gamma^{-1}. \]

Proof. Indeed, using (2) we obtain

\[\varphi_{\gamma(i)\gamma(j)} = \varphi_{\gamma(i)} \varphi_{\gamma(j)}^{-1} = (\beta \psi_i \alpha^{-1}) \beta \psi_j \alpha^{-1} \beta^{-1} = \beta \psi_i \psi_j^{-1} \beta^{-1} = \beta \psi_{ij} \beta^{-1}. \]

In a similar way, using (3), we obtain the other two equations. \(\square \)

Definition 2. By the *indicator of the matrix* \(\Phi \) we mean the polynomial

\[w(\Phi) = \sum_{i=1}^{n} w(\Phi_i), \]

where \(\Phi_i = \{ \varphi_{i1}, \varphi_{i2}, \ldots, \varphi_{in} \} \) and \(w(\Phi_i) = \sum_{j=1, j \neq i}^{n} w(\varphi_{ij}) \).

Indicators of the matrices \(L \) and \(M \) are defined analogously.

Example 1. Consider two quasigroups defined by the following tables:

\[\begin{array}{ccc|ccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 4 & 1 & 6 & 2 & 5 & 3 \\
2 & 5 & 3 & 2 & 6 & 4 & 1 \\
3 & 2 & 6 & 5 & 3 & 1 & 4 \\
4 & 3 & 5 & 1 & 4 & 6 & 2 \\
5 & 6 & 2 & 4 & 1 & 3 & 5 \\
6 & 1 & 4 & 3 & 5 & 2 & 6 \\
\end{array} \quad \begin{array}{ccc|ccc}
\circ & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 2 & 3 & 4 & 5 & 6 \\
2 & 2 & 1 & 5 & 6 & 4 & 3 \\
3 & 3 & 5 & 4 & 2 & 6 & 1 \\
4 & 4 & 6 & 2 & 3 & 1 & 5 \\
5 & 5 & 4 & 6 & 1 & 3 & 2 \\
6 & 6 & 3 & 1 & 5 & 2 & 4 \\
\end{array} \]

For the quasigroup \(Q(\circ) \) we have:

\[\varphi_1 = (126.354.) \quad \varphi_2 = (146523.) \quad \varphi_3 = (16342.5.) \quad \varphi_4 = (1.25364.) \quad \varphi_5 = (15642.3.) \quad \varphi_6 = (13245.6.). \]

Thus,

\[\begin{array}{ccc}
\varphi_{11} = (1.2.3.4.5.6.) & \varphi_{12} = (15.24.36.) & \varphi_{13} = (13.26.45.) \\
\varphi_{14} = (12.34.56.) & \varphi_{15} = (164.235.) & \varphi_{16} = (146.253.). \\
\end{array} \]
Consequently,
\[w(\varphi_{11}) = x_1^6, \quad w(\varphi_{12}) = w(\varphi_{13}) = w(\varphi_{14}) = x_2^3, \quad w(\varphi_{15}) = w(\varphi_{16}) = x_3^2. \]

Hence \(w(\Phi_1) = 3x_3^2 + 2x_3^2. \)

By analogous computations we can see that for this quasigroup
\[w(\Phi) = w(L) = w(R) = 6(3x_2^3 + 2x_3^2). \]

For the second quasigroup we obtain:
\[w(\Phi) = (2x_2x_4 + x_3^3 + 2x_6) + (x_2^3 + 2x_3^3 + 2x_6) + 2(x_2x_4 + x_3^2 + 3x_6) + 2(2x_3^2 + 3x_6), \]
\[w(L) = w(R) = 2(x_2x_4 + 4x_6) + 4(2x_2x_4 + x_3^3 + 2x_6). \]

As a consequence of our Theorem 3 and Corollary 1 we obtain

Theorem 4. Isotopic quasigroups have the same indicators of the matrices \(\Phi, L \) and \(R. \)

This theorem shows that quasigroups from the above example are not isotopic.

Corollary 3. For quasigroups of order \(n \) isotopic to a group we have \(w(\Phi) = w(\Phi_1). \)

Proof. In [2] it is proved that for a quasigroup isotopic to a group all its \(\Phi_i \) are groups isomorphic to \(\Phi_1. \) Hence \(w(\Phi_i) = w(\Phi_1) \) for every \(i \in Q. \)

There are examples proving that the converse statement is not true.

References

Received December 2, 2011

Department of Higher Mathematics and Informatics, Kremenchuk National University, 20 Pervomayskaya str, 39000 Kremenchuk, Ukraine

E-mail: ivan.deriеноko@gmail.com