A characterization of binary invertible algebras linear over a group

Sergey S. Davidov

Abstract. In this paper we define linear over a group and an abelian group binary invertible algebras and characterize the class of such algebras by second-order formulae, namely the $\forall\exists(\forall)$-identities.

1. Introduction

A quasigroup, $(Q; \cdot)$, of the form,

$$xy = \varphi x + a + \psi y,$$

where $(Q; +)$ is a group, φ, ψ are automorphisms (antiautomorphisms) of $(Q; +)$, and a is a fixed element of Q, is called linear (alinear) quasigroup over the group, $(Q; +)$, [2, 6].

All primitive linear (alinear) quasigroups form a variety [6].

A linear quasigroup over an abelian group is called a T-quasigroup [10].

An important subclass of the T-quasigroups is the class of medial quasigroups. A quasigroup $(Q; \cdot)$ is called medial, if the following identity holds:

$$xy \cdot uv = xu \cdot yv.$$ Any medial quasigroup is a T-quasigroup by Toyoda theorem, [3] - [8], with the condition, $\varphi \psi = \psi \varphi$.

Medial quasigroups have been studied by many authors, namely R.H. Bruck [8], T. Kepka, P. Nemec and J. Ježek [9]-[11], D.S. Murdoch [16], A.B. Romanowska and J.D.H. Smith [17], K. Toyoda [21] and others and this class plays a special role in the theory of quasigroups. T-quasigroups were introduced by T. Kepka and P. Nemec [10, 11]. Later G.B. Belyavskaya characterized the class of T-quasigroups by a system of two identities [5, 7].

A binary algebra $(Q; \Sigma)$ is called invertible, if $(Q; A)$ is a quasigroup for any operation, $A \in \Sigma$. The invertible algebras first were considered by
R. Schaufler in touch with coding theory [19, 20]. Later such algebras were investigated by J. Aczel [1], V.D. Belousov [2, 3], Yu.M. Movsisyan [12] - [15], A. Sade [18] and others.

By analogy with linear (alinear) quasigroups we introduce the notion of a linear (alinear) invertible algebra.

Definition 1.1. An invertible algebra \((Q; \Sigma)\) is called linear (alinear) over the group \((Q; +)\) if every operation \(A \in \Sigma\) has the form:

\[
A(x, y) = \phi_A x + t_A + \psi_A y,
\]

where \(\phi_A, \psi_A\) are automorphisms (antiautomorphisms) of \((Q; +)\) for all \(A \in \Sigma\), and \(t_A\) are fixed elements of \(Q\).

A linear invertible algebra over an abelian group is called an invertible T-algebra.

Let us recall, that the following absolutely closed second-order formulae:

\[
\forall X_1, \ldots, X_m \forall x_1, \ldots, x_n \quad (\omega_1 = \omega_2),
\]

\[
\forall X_1, \ldots, X_k \exists X_{k+1}, \ldots, X_m \forall x_1, \ldots, x_n \quad (\omega_1 = \omega_2),
\]

where \(\omega_1, \omega_2\) are words (terms) written in the functional variables \(X_1, \ldots, X_m\), and in the objective variables, \(x_1, \ldots, x_n\), are called \(\forall(\forall)-identity\) or \(hyper-identity\) and \(\forall\exists(\forall)-identity\). The satisfiability (truth) of these second order formulae in the algebra \((Q; \Sigma)\) is understood in the sense of functional quantifiers, \((\forall X_i)\) and \((\exists X_j)\), meaning: "for every value \(X_i = A \in \Sigma\) of the corresponding arity" and "there exists a value \(X_j = A \in \Sigma\) of the corresponding arity". It is assumed that such a replacement is possible, that is:

\[
\{|X_1|, \ldots, |X_m|\} \subseteq \{|A| \mid A \in \Sigma\},
\]

where \(|S|\) is the arity of \(S\). Generally, hyperidentities are written without a quantifier prefix: \(\omega_1 = \omega_2\). For details about such formulae see [12] - [15].

The binary algebra, \((Q; \Sigma)\), is called medial (abelian) if the following hyperidentity holds:

\[
X(Y(x, y), Y(u, v)) = Y(X(x, u), X(y, v)).
\]

Yu.M. Movsisyan proved that medial invertible algebras are a special class of invertible T-algebras, namely all automorphisms of the group \((Q; +)\),
which correspond the operations from Σ are permutable:

$$\varphi_A \cdot \varphi_B = \varphi_B \cdot \varphi_A, \ \psi_A \cdot \psi_B = \psi_B \cdot \psi_A, \ \varphi_A \cdot \psi_B = \psi_B \varphi_A$$

for all $A, B \in \Sigma$.

In the present paper we characterize the class of invertible linear (alinear) algebras and the class of invertible T-algebras by second-order formulae, namely, $\forall \exists(\forall)$-identities. For proofs of these results we use the methods of the papers, [6, 5].

2. Linear and alinear invertible algebras

We denote by $L_{A,a}$ and $R_{A,a}$ the left and right translations of the binary algebra $(Q; \Sigma)$:

$L_{A,a} : x \mapsto A(a, x)$, $R_{A,a} : x \mapsto A(x, a)$. If the algebra $(Q; \Sigma)$ is an invertible algebra, then the translations, $L_{A,a}$ and $R_{A,a}$ are bijections for all $a \in Q$ and all $A \in \Sigma$.

The unique solution of the equality $B(a, x) = a (B(x, a) = a)$ is denoted by $e_a^B (f_a^B)$, i.e., $e_a^B (f_a^B)$ is the right (left) local identity of the element a with respect to the operation B.

It is well known [3] that with each quasigroup A the next five quasigroups are connected:

$$A^{-1}, -1A, -1(A^{-1}), (-1A)^{-1}, A^*,$$

where $A^*(x, y) = A(y, x)$. These quasigroups are called inverse quasigroups or parastrophies. Like this, with each invertible algebra $(Q; \Sigma)$ the next five invertible algebras are connected:

$$(Q; \Sigma^{-1}), (Q; -1 \Sigma), (Q; (\Sigma^{-1})^{-1}), (Q; (\Sigma^*)^*),$$

where

$$\Sigma^{-1} = \{A^{-1} | A \in \Sigma\},$$

$$-1 \Sigma = \{-1A | A \in \Sigma\},$$

$$-1(\Sigma^{-1}) = \{-1(A^{-1}) | A \in \Sigma\},$$

$$(\Sigma^{-1})^{-1} = \{(-1A)^{-1} | A \in \Sigma\},$$

$$\Sigma^* = \{A^* | A \in \Sigma\}.$$

Each of these invertible algebras are called parastrophies of $(Q; \Sigma)$.

Lemma 2.1. If an invertible algebra $(Q; \Sigma)$ satisfies the following equality:

$$A(B(x, y), B(u, v)) = A(B(x, u), B(\alpha y, v)),$$ \hspace{1cm} (2)
where α is a mapping from Q into Q and A, B are some operations from Σ, then α depends on u, A, B and on their inverse operations and has the form:

$$\alpha y = \alpha_u A B y = -1 B(A^{-1}(u, A(B^{-1}(u, y), u)), B^{-1}(u, u)).$$ \hspace{1cm} (3)

Proof. If in (2) $x = f_u^B$ and $v = e_u^B$, we obtain:

$$A(B(f_u^B, y), B(u, e_u^B)) = A(B(f_u^B, u), B(\alpha y, e_u^B));$$

$$A(B(f_u^B, y), u) = A(u, B(\alpha y, e_u^B));$$

$$A(L_B f_u^B y, u) = A(u, R_B e_u^B \alpha y);$$

$$R_{A,u} L_B f_u^B y = L_{A,u} R_B e_u^B \alpha y;$$

$$\alpha y = R_{B,e_u^B}^{-1} L_{A,u}^{-1} R_{A,u} L_B f_u^B y.$$

We have

$$\alpha y = R_{B,e_u^B}^{-1} L_{A,u}^{-1} R_{A,u} B(f_u^B, y) = R_{B,e_u^B}^{-1} L_{A,u}^{-1} A(B(f_u^B, y), u) =$$

$$R_{B,e_u^B}^{-1} A^{-1}(u, A(B(f_u^B, y), u)) =$$

$$-1 B(A^{-1}(u, A(B^{-1}(B(u, y), u)), B^{-1}(u, u))),$$

since $e_u^B = B^{-1}(u, u)$, $f_u^B = -1 B(u, u)$, $R_{B,y}^{-1} x = -1 B(x, y)$, $L_{B,y} x = B^{-1}(y, x).$ \hfill \Box

Lemma 2.2. If an invertible algebra $(Q; \Sigma)$ satisfies the following equality:

$$A(B(x, y), B(u, v)) = A(B(\beta v, y), B(u, x)), \hspace{1cm} (4)$$

where β is a mapping from Q into Q and A, B are some operations from Σ, then β depends on x, A, B and on their inverse operations and has the form:

$$\beta v = \beta_x A B v = -1 B(-1 A(x, B^{-1}(B(x, y), v)), x), B^{-1}(x, x)). \hspace{1cm} (5)$$

Proof. If in (4) $y = e_x^B$ and $u = f_x^B$, then we obtain as in Lemma 2.1. \hfill \Box

Theorem 2.1. The binary algebra $(Q; \Sigma)$ is an invertible linear algebra iff the following second order formula:

$$X(Y(x, y), Y(u, v)) = X(Y(x, u), Y(A_x Y y, v)), \hspace{1cm} (6)$$

where

$$\alpha_u A x Y y = -1 Y(X^{-1}(u, X(Y^{-1}(Y(u, u), y), u))), Y^{-1}(u, u)) \hspace{1cm} (7)$$

is valid in the algebra $(Q; \Sigma \cup \Sigma^{-1} \cup \Sigma^{-1})$ for all $X, Y \in \Sigma.$
Lemma 2.1 we obtain that
\[X, Y = \text{prove that equality (6) is valid in the algebra } (Q; \Sigma \cup \Sigma^1 \cup \Sigma^{-1}) \text{ for all } X, Y \in \Sigma, \text{ when} \]
\[\alpha_{XY}^{X,Y} y = -\alpha_0^{X,Y} u + \alpha_0^{XY} y + u, \]
where \(\alpha_0^{XY} y = \varphi_X^{-1} \psi_X^{-1} \tilde{L}_{cy} \tilde{R}_{cx} \varphi_X \psi_Y y, \tilde{L}_{cy} x = cy + x, \tilde{R}_{cx} x = x + cX. \)

Indeed,
\[X(Y(x, y), Y(u, v)) = \varphi_X(\varphi_Y x + cy + \psi_Y y) + cX + \psi_X(\varphi_Y u + cy + \psi_Y v) = \]
\[= \varphi_X \psi_Y x + \varphi_X cy + \varphi_X \psi_Y y + cX + \psi_X \varphi_Y u + \psi_X \psi_Y v, \]
on the other hand, using the expressions for \(\alpha_0^{XY} y \), we obtain
\[X(Y(x, u), Y(\alpha_{XY}^{X,Y} y, v)) = \varphi_X(\varphi_Y x + cy + \psi_Y u) + cX + \]
\[+ \psi_X(\varphi_Y \alpha_{XY}^{X,Y} y + cy + \psi_Y v) = \varphi_X \varphi_Y x + \varphi_X cy + \varphi_X \psi_Y u + cX + \]
\[+ \psi_X \varphi_Y (-\alpha_0^{X,Y} u + \alpha_0^{X,Y} y + u) + \psi_X cy + \psi_X \psi_Y v = \varphi_X \varphi_Y x + \varphi_X cy + \]
\[+ \psi_X \psi_Y u + cX - \psi_X \varphi_Y \varphi_Y^{-1} \psi_X^{-1} \tilde{L}_{cy} \tilde{R}_{cx} \varphi_X \psi_Y u + \]
\[+ \psi_X \varphi_Y \varphi_Y^{-1} \psi_X^{-1} \tilde{L}_{cy} \tilde{R}_{cx} \varphi_X \psi_Y y + \psi_X \varphi_Y u + \psi_X cy + \psi_X \psi_Y v = \]
\[= \varphi_X \varphi_Y x + \varphi_X cy + \varphi_X \psi_Y u + cX - \tilde{L}_{cy} \tilde{R}_{cx} \varphi_X \psi_Y u + \tilde{L}_{cy} \tilde{R}_{cx} \varphi_X \psi_Y y + \]
\[+ \psi_X \varphi_Y u + \psi_X cy + \psi_X \psi_Y v = \varphi_X \psi_Y x + \varphi_X cy + \varphi_X \psi_Y u + cX - \psi_X \varphi_Y u + \psi_X cy + \]
\[- (\psi_X \varphi_Y u + cX) - cY + \varphi_X \psi_Y y + cX + \psi_X \varphi_Y u + \psi_X cy + \]
\[+ \psi_X \psi_Y v = \varphi_X \psi_Y x + \varphi_X cy + \varphi_X \psi_Y y + cX - \psi_X \varphi_Y u + \psi_X cy + \]
\[- \psi_X \varphi_Y u + \psi_X cy + \psi_X \varphi_Y u + \psi_X cy + \psi_X \psi_Y v = \]
\[= \varphi_X \varphi_Y x + \varphi_X cy + \varphi_X \psi_Y y + cX + \psi_X \varphi_Y u + \psi_X cy + \psi_X \psi_Y v. \]

Thus, the right and left sides of equality (6) are equal. According to Lemma 2.1 we obtain that \(\alpha_0^{XY} y \) has the form of (7).

Conversely, let formula (6) be valid in the algebra \((Q; \Sigma \cup \Sigma^1 \cup \Sigma^{-1})\) for all \(X, Y \in \Sigma \). We prove that the algebra \((Q; \Sigma)\) is an invertible linear algebra. Let us fix (in (6)) the element \(u = a \) and the operations \(X = A, Y = B \), where \(A, B \in \Sigma \), then we obtain:
\[A(B(x, y), B(a, v)) = A(B(x, a), B(\alpha_{a}^{A,B} y, v)), \]
\[A(B(x, y), L_{B,a} v) = A(R_{B,a} x, B(\alpha_{a}^{A,B} y, v)), \]
or

\[A_1(x, y) = A_3(x, A_4(y, v)), \]

where

\[A_1(x, y) = A(x, L_{B,a}y), \quad A_2(x, y) = B(x, y), \quad A_3(x, y) = A(R_{B,a}x, y), \]

\[A_4(x, y) = B(\alpha_{A,B}x, y). \]

From the last equality, according to Belousov’s theorem about four quasigroups which are connected through the associative law [18], all the operations \(A_i \) \((i = 1, 2, 3, 4)\) are isotopic to the same group. Hence, the operations \(A \) and \(B \), are isotopic to the same group, and since the operations \(A \) and \(B \) are arbitrary we obtain that all the operations from \(\Sigma \) are isotopic to the same group \((Q; *)\).

For every \(X \in \Sigma \), let us define the operations:

\[x + y = X(R_{X,a}^{-1}x, L_{X,b}^{-1}y), \tag{8} \]

where \(a, b \) are some elements from \(Q \). These operations are loops with the identity element \(0_X = X(b, a) \)[3], and they are isotopic to the group \((Q; *)\). Hence, by Albert’s theorem [3], they are groups for every \(X \in \Sigma \).

Let us rewrite equality (6) (where \(X = A \), \(Y = B \)), (in terms of the operations \(+ \) and \(+ \)) in the following way:

\[R_{A,a}(R_{B,a}x + L_{B,b}y) + L_{A,b}(R_{B,a}u + L_{B,b}v) = \]

\[R_{A,a}(R_{B,a}x + L_{B,b}u) + L_{A,b}(R_{B,a}\alpha_{A,B}y + L_{B,b}v), \]

\[R_{A,a}(x + y) + L_{A,b}(u + v) = \]

\[R_{A,a}(x + L_{B,b}R_{B,a}^{-1}u) + L_{A,b}(R_{B,a}\alpha_{A,B}y + L_{B,b}R_{B,a}^{-1}y + u). \]

If we take \(u = 0_B \) and \(v = L_{A,b}^{-1}0_A \) in the last equality, then we have:

\[R_{A,a}(x + y) + L_{A,b}(0_B + L_{A,b}^{-1}0_A) = \]

\[R_{A,a}(x + L_{B,b}R_{B,a}^{-1}0_B) + L_{A,b}(R_{B,a}\alpha_{A,B}y + L_{B,b}^{-1}y + L_{B,b}^{-1}0_A), \]

\[R_{A,a}(x + y) = \alpha_{A,B}x + \beta_{A,B}y, \tag{9} \]

where

\[\alpha_{A,B}x = R_{A,a}(x + L_{B,b}R_{B,a}^{-1}0_B), \]

\[\beta_{A,B}y = L_{A,b}(R_{B,a}\alpha_{A,B}^{-1}y + L_{B,b}^{-1}y + L_{A,b}^{-1}0_A). \]
Since the operations A and B are arbitrary, we can take $A = B$ in (9), then we obtain:
\[R_{A,a}(x + y)_A = \alpha_{A,A}x + \beta_{A,A}y. \] (10)

From (9) and (10), we have:
\[x + y = R_{A,a}(\alpha_{A,A}^{-1}x + \beta_{A,A}^{-1}y), \]
\[x + y = R_{A,a}(\alpha_{A,B}^{-1}x + \beta_{A,B}^{-1}y), \]
\[\alpha_{A,A}^{-1}x + \beta_{A,A}^{-1}y = \alpha_{A,B}^{-1}x + \beta_{A,B}^{-1}y, \]

thus, we obtain:
\[x + y = \gamma_{A,B}x + \delta_{A,B}y, \] (11)

where $\gamma_{A,B} = \alpha_{A,B}^{-1}\alpha_{A,A}$ and $\delta_{A,B} = \beta_{A,B}^{-1}\beta_{A,A}$ are the permutations of the set Q. Hence, from (9), according to (11), we get:
\[R_{A,a}(x + y)_B = \gamma_{A,B}x + \delta_{A,B}y, \]

i.e., $R_{A,a}$ is a quasiautomorphism of the group $(Q; +)$ and since the operation A is arbitrary, we have that $R_{A,a}$ is the quasiautomorphism of the group $(Q; +)$ for all operations A from Σ. We fix the operation $+$ and further will be denote it by $+$.

According to (8), for the operations $A \in \Sigma$ we have:
\[A(x, y) = R_{A,a}x + L_{A,b}y. \]

According to (11), from the last equality, we get:
\[A(x, y) = \theta_1^{A,B}x + \theta_2^{A,B}y, \] (12)

where $\theta_1^{A,B} = \gamma_{A,B}R_{A,a}$ and $\theta_2^{A,B} = \delta_{A,B}L_{A,b}$ are the permutations of Q.

We prove that $\theta_1^{A,B}$ and $\theta_2^{A,B}$ are quasiautomorphisms of the group $(Q; +)$. To do it we take $v = a$, $u = f^B_a$, $X = A$, $Y = B$ in equality (6) and rewrite this equality in terms of the operation $+$:
\[A(B(x, y), a) = A(B(x, f^B_a), B(\alpha_{f^B_a,y}^A, a)), \]
\[\theta_1^{A,B}(R_{B,a}x + L_{B,b}y) + \theta_2^{A,B}a = \theta_1^{A,B}R_{B,f^B_a}x + \theta_2^{A,B}(R_{B,a}\alpha_{f^B_a,y}^A + L_{B,b}a), \]
\[\theta_1^{A,B}(R_{B,a}x + L_{B,b}y) = \theta_1^{A,B}R_{B,f^B_a}x + \theta_2^{A,B}(R_{B,a}\alpha_{f^B_a,y}^A + L_{B,b}a) - \theta_2^{A,B}a, \]
\[
\theta_1^{A,B}(x + y) = \theta_1^{A,B} R_B f_B^y R_B^{-1} x + \theta_2^{A,B} (R_B s_B^\alpha A^B L_B b y + L_B b a) - \theta_2^{A,B} a,
\]
\[
\theta_1^{A,B}(x + y) = \sigma_{A,B} x + \mu_{A,B} y,
\]
where
\[
\sigma_{A,B} x = \theta_1^{A,B} R_B f_B^y R_B^{-1} x \text{ and } \mu_{A,B} y = \theta_2^{A,B} (R_B s_B^\alpha A^B L_B b y + L_B b a) - \theta_2^{A,B} a
\]
are the permutations of \(Q \) and therefore \(\theta_1^{A,B} \) is a quasiautomorphism of the group \((Q; +)\).

Now, we take \(x = f_B^y, u = b, X = A, Y = B \) in (6) and rewrite this equality in terms of the operation \(+\):
\[
A(B(f_B^y, B(b, v)) = A(b, B(\alpha_{A,B}^B y, v)),
\]
\[
\theta_1^{A,B} L_B f_B^y + \theta_2^{A,B} L_B b v = \theta_1^{A,B} b + \theta_2^{A,B} (R_B s_B^\alpha A^B y + L_B b v),
\]
\[
\theta_2^{A,B} (R_B s_B^\alpha A^B y + L_B b v) = -\theta_1^{A,B} b + \theta_1^{A,B} L_B f_B^y + \theta_2^{A,B} L_B b v,
\]
\[
\theta_2^{A,B} (y + v) = \sigma'_{A,B} v + \mu'_{A,B} v,
\]
where \(\sigma'_{A,B} v = -\theta_1^{A,B} b + \theta_1^{A,B} L_B f_B^y (\alpha_{A,B}^B)^{-1} R_B^{-1} y \) and \(\mu'_{A,B} v = \theta_2^{A,B} v \) are the permutations of the set \(Q \) and therefore \(\theta_2^{A,B} \) is a quasiautomorphism of the group \((Q; +)\).

According to [3, lemma 2.5] we have:
\[
\theta_1^{A,B} x = \varphi_A x + s_A,
\]
\[
\theta_2^{A,B} x = t_A + \psi_A y,
\]
where \(\varphi_A, \psi_A \) are automorphisms of the group \((Q; +)\) and \(t_A, s_A \) are some elements of the set \(Q \). Hence, from (12), it follows that
\[
A(x, y) = \varphi_A x + c_A + \psi_A y, \tag{13}
\]
where \(c_A = s_A + t_A \).

Since the operation \(A \) is arbitrary, we obtain that all the operations from \(\Sigma \) can be presented in the form of (13) through the operation \(+\).

Theorem 2.2. The binary algebra \((Q; \Sigma)\) is an invertible alinear algebra iff the following second order formula:
\[
X(Y(x, y), Y(u, v)) = X(Y(\beta^X_Y v, y), Y(u, x)), \tag{14}
\]
where
\[
\beta^X_Y v = -1 Y(-1 X(x, Y(-1 Y(x, x), v)), x), Y^{-1}(x, x) \tag{15}
\]
is valid in the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup -1 \Sigma)\) for all \(X, Y \in \Sigma \).
Proof. Let \((Q; \Sigma)\) be an invertible alinear algebra, then for every \(X \in \Sigma\)

\[X(x, y) = \varphi_X x + c_X + \psi_X y, \]

where \(\varphi_X, \psi_X\) are anti-automorphisms of the group \((Q; +)\) and \(c_X \in Q\). We prove that equality (14) is valid in the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup -1 \Sigma)\) for all \(X, Y \in \Sigma\), if:

\[\beta_{X Y}^v = x + \beta_0^{X Y} v - \beta_0^{X Y} x, \]

where \(\beta_0^{X Y} v = \varphi_Y^{-1} \tilde{R}_{c y}^{-1} \tilde{L}_{c x} \psi_X \psi_Y v, \tilde{R}_{c y} x = x + c_Y, \tilde{L}_{c x} x = c_X + x.\)

Indeed,

\[
X(Y(x, y), Y(u, v)) = \varphi_X(\varphi_Y x + c_Y + \psi_Y y) + c_X + \psi_X(\varphi_Y u + c_Y + \psi_Y v) = \\
= \varphi_X \psi_Y y + \varphi_X c_Y + \varphi_X \varphi_Y x + c_X + \psi_X \psi_Y v + \psi_X c_Y + \psi_X \varphi_Y u,
\]

on the other hand, using the expressions for \(\beta_0^{X Y}\), and taking into account that \(\varphi_X \varphi_Y\) is an automorphism of the group \((Q; +)\) we obtain:

\[
X(Y(\beta_{X Y}^v, y), Y(u, x)) = \varphi_X(\varphi_Y \beta_{X Y}^v + c_Y + \psi_Y y) + c_X + \\
+ \psi_X(\varphi_Y u + c_Y + \psi_Y x) = \varphi_X \psi_Y y + \varphi_X c_Y + \varphi_X \varphi_Y \beta_{X Y}^v + c_X + \\
+ \psi_X \psi_Y x + \psi_X c_Y + \psi_X \varphi_Y u = \varphi_X \psi_Y y + \varphi_X c_Y + \varphi_X \varphi_Y x + \\
+ \varphi_X \psi_Y \varphi_Y^{-1} \varphi_X^{-1} \tilde{R}_{c y}^{-1} \tilde{L}_{c x} \varphi_X \psi_Y x = \varphi_X \psi_Y y + \varphi_X c_Y + \varphi_X \varphi_Y x + c_X + \\
+ \psi_X \psi_Y v - c_Y - (c_X + \psi_X \psi_Y - c_Y) + c_X + \psi_X \psi_Y x + \psi_X c_Y + \psi_X \varphi_Y u = \\
= \varphi_X \psi_Y y + \varphi_X c_Y + \varphi_X \varphi_Y x + c_X + \psi_X \psi_Y v - c_Y - \psi_X \psi_Y x + \\
- c_X + c_X + \varphi_X \psi_Y x + \psi_X c_Y + \psi_X \varphi_Y u = \\
= \varphi_X \psi_Y y + \varphi_X c_Y + \varphi_X \varphi_Y x + c_X + \psi_X \psi_Y v + \psi_X c_Y + \psi_X \varphi_Y u.
\]

Thus, the right and left sides of equality (14) are equal. According to Lemma 2.2, we get that \(\beta_{X Y}^v\) has the form of (15).

Conversely, let the formula (14) be valid in the algebra \((Q; \Sigma \cup -1 \Sigma)\) for all \(X, Y \in \Sigma\). We prove that the algebra \((Q; \Sigma)\) is an invertible alinear algebra. Fixing the element \(x = p\) and the operations \(X = A, Y = B,\)
where \(A, B \in \Sigma \) in (14), we obtain:

\[
A(B(p, y), B(u, v)) = A(B(\beta^{A,B}_p v, y), B(u, p)),
\]
\[
A(L_{B,p} y, B(u, v)) = A(B(\beta^{A,B}_p v, y), R_{B,p} u),
\]
\[
A^*(B(u, v), L_{B,p} y) = A^*(R_{B,p} u, B(\beta^{A,B}_p v, y))
\]
or

\[
A_1(A_2(u, v), y) = A_3(u, A_4(v, y)),
\]
where \(A_1(x, y) = A^*(x, L_{B,p} y), A_2(x, y) = B(x, y), A_3(x, y) = A^*(R_{B,p} x, y), A_4(x, y) = B(\beta^{A,B}_p x, y). \)

From the last equality, according to Belousov’s theorem about four quasigroups which are connected with the associative law [18], all the operations \(A_i (i = 1, 2, 3, 4) \) are isotopic to the same group. Since the operation \(B \) is arbitrary, we obtain that all the operations from \(\Sigma \) are isotopic to the same group \((Q; *) \).

For every \(X \in \Sigma \) let us define the operations:

\[
x + y = X(R^{-1}_{X,a} x, L^{-1}_{X,b} y), \tag{16}
\]
where \(a, b \) are some elements from \(Q \). These operations are loops with the identity element \(0_X = X(b, a) \) [3], and they are isotopic to the group \((Q; *) \).

Hence by Albert’s theorem [3] they are groups for every \(X \in \Sigma \).

Let us rewrite the equality (14) (where \(X = A, Y = B \)) in terms of the operations \(+ \) and \(- \):

\[
R_{A,a}(R_{B,a} x + L_{B,b} y) + L_{A,b}(R_{B,a} u + L_{B,b} v) = R_{A,a}(R_{B,a} \beta^{A,B}_x v + L_{B,b} y) + L_{A,b}(R_{B,a} u + L_{B,b} x).
\]

If we take \(y = a \) and \(x = R^{-1}_{B,a} b = d \) in the last equality, we have:

\[
R_{A,a}(R_{B,a} R^{-1}_{B,a} b + L_{B,b} a) + L_{A,b}(R_{B,a} u + L_{B,b} v) = R_{A,a}(R_{B,a} \beta^{A,B}_d v + L_{B,b} a) + L_{A,b}(R_{B,a} u + L_{B,b} d),
\]
\[
R_{A,a}(b + 0_B) + L_{A,b}(R_{B,a} u + L_{B,b} v) = R_{A,a}(R_{B,a} \beta^{A,B}_d v + 0_B) + L_{A,b} B(u, d),
\]
\[
R_{A,a} b + L_{A,b}(R_{B,a} u + L_{B,b} v) = R_{A,a} R_{B,a} \beta^{A,B}_d v + L_{A,b} R_{B,d} u,
\]
A characterization of binary algebras

\begin{align*}
L_{A,b}(R_{B,a}u + L_{B,b}v) &= R_{A,b}R_{B,a}A^{A,B}v + L_{A,b}R_{B,d}u, \\
\text{or} \quad L_{A,b}(u + v) &= \alpha_{A,B}v + \beta_{A,B}u \quad (17)
\end{align*}

where

\begin{align*}
\alpha_{A,B} &= R_{A,b}R_{B,a}A^{A,B}v_{B,b}^{-1} \\
\beta_{A,B} &= L_{A,b}R_{B,d}R_{B,a}^{-1}
\end{align*}

are permutations of the set \(Q \).

Since the operations \(A \) and \(B \) are arbitrary, we can take \(A = B \) in (17), and get:

\begin{align*}
L_{A,b}(u + v) &= \alpha_{A,A}v + \beta_{A,A}u. \quad (18)
\end{align*}

From (17) and (18) we have:

\begin{align*}
v + u &= L_{A,b}(\beta_{A,B}^{-1}u + \alpha_{A,B}^{-1}v), \\
v + u &= L_{A,b}(\beta_{A,A}^{-1}u + \alpha_{A,A}^{-1}v), \\
\beta_{A,B}^{-1}u + \alpha_{A,B}^{-1}v &= \beta_{A,A}^{-1}u + \alpha_{A,A}^{-1}v,
\end{align*}

and thus, we obtain:

\begin{align*}
u = \gamma_{A,B}u + \delta_{A,B}v, \quad (19)
\end{align*}

where \(\gamma_{A,B} = \beta_{A,B}^{-1} \beta_{A,A} \) and \(\delta_{A,B} = \alpha_{A,B}^{-1} \alpha_{A,A} \) are the permutations of the set \(Q \).

According to (16), for the operations \(A \in \Sigma \), we have:

\begin{align*}
A(x, y) &= R_{A,a}x + L_{A,b}y.
\end{align*}

According to (19), from the last equality, we get:

\begin{align*}
A(x, y) &= \theta_1^{A,B}x + \theta_2^{A,B}y, \quad (20)
\end{align*}

where \(\theta_1^{A,B} = \gamma_{A,B}R_{A,a} \) and the \(\theta_2^{A,B} = \delta_{A,B}L_{A,b} \) are the permutations of the set \(Q \). Thus, we can represent every operations from \(\Sigma \) by the operation \(+ \). We fix the operation \(+ \) and further denote it by \(+ \).

We shall prove that \(\theta_1^{A,B} \) and \(\theta_2^{A,B} \) are antiquasiomorphisms of the group \((Q; +) \). To do it we take \(x = a, u = f_a^B, X = A, Y = B \), in equality (14) and rewrite this equality in terms of the operation, \(+ \):
\[A(B(a, y), B(f^B_v, v)) = A(B(\beta^{AB}_a v, y), a), \]
\[\theta^{AB}_1 (\beta^{AB}_a v + L_{B, b} v) + \theta^{AB}_2 \beta^{AB}_a = \theta^{AB}_1 (\beta^{AB}_a v + L_{B, b} y) + \theta^{AB}_2 a, \]
\[\theta^{AB}_1 (\beta^{AB}_a v + L_{B, b} y) = \theta^{AB}_1 (\beta^{AB}_a v + L_{B, b} y) + \theta^{AB}_2 L_{B, f^B_v} v - \theta^{AB}_2 a, \]
\[\theta^{AB}_1 (v + y) = \theta^{AB}_1 (\beta^{AB}_a v + y) + \theta^{AB}_2 L_{B, f^B_v} (\beta^{AB}_a v^{-1} R_{B, a} v - \theta^{AB}_2 a, \]
\[\theta^{AB}_1 (v + y) = \sigma^{AB} y + \mu^{AB} v, \]

where
\[\sigma^{AB} y = \theta^{AB}_1 (R_{B, a} v + y) \] and \(\mu^{AB} v = \theta^{AB}_2 L_{B, f^B_v} (\beta^{AB}_a v^{-1} R_{B, a} v - \theta^{AB}_2 a \)

are the permutations of the set \(Q \) and therefore, \(\theta^{AB}_1 \) is an antquasiautomorphism of the group \((Q; +) \).

If we take \(x = a, y = e^B_a, X = A, Y = B \) in the equality (14), we can similarly prove that \(\theta^{AB}_2 \) is an antquasiautomorphism of the group \((Q; +) \).

Thus, we have [2]
\[\theta^{AB}_1 x = \varphi_A x + s_A, \]
\[\theta^{AB}_2 x = t_A + \psi_A y, \]

where \(\varphi_A, \psi_A \) are antiautomorphisms of the group \((Q; +) \) and \(t_A, s_A \) are some elements of the set \(Q \). Hence, from (20) we get that:
\[A(x, y) = \varphi_A x + c_A + \psi_A y, \quad (21) \]

where \(c_A = s_A + t_A \).

Since the operation \(A \) is arbitrary, we obtain that all the operations from \(\Sigma \) can be presented in the form of (21).

\[\square \]

3. Invertible \(T \)-algebras

It is known [10, 11] that \(T \)-quasigroups are invariant under parastrophies. We have the same result for parastrophies of invertible \(T \)-algebras.

Proposition 3.1. Let \((Q; \Sigma)\) be an invertible \(T \)-algebra. Then all parastrophies of the algebra, \((Q; \Sigma)\), are invertible \(T \)-algebras.

Also, as in the case of quasigroups [6], we have the following result:

Proposition 3.2. If an invertible algebra is linear and alinear then it is \(T \)-algebra.
Lemma 3.1. If the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup \Sigma^{-1})\), where \((Q; \Sigma)\) is an invertible T-algebra, satisfies equality (6) for all \(X, Y \in \Sigma\), then this equality is also valid in the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1})\) for all \(X, Y \in \Sigma \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1}\).

Proof. We must check equalities for all \(A, B \in \Sigma \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1} \cup \Sigma^{-1}\). For example, let us check the following equality:

\[
A((-1)B(x, y), -1B(u, v)) = A((-1)B(x, u), -1B(A^{-1}B(y, v), v))
\]

In this case, we have:

\[
\alpha_u^{-1}B y = B(A^{-1}(u, A^{-1}B(B(u, u), y)), (-1B)^{-1}(u, u)).
\]

It follows from (1):

\[
A^{-1}(x, y) = \psi_A^{-1}(-c_A - \varphi_A x + y),
\]

\[
-1B(x, y) = \varphi_B^{-1}(x - \psi_B y - c_B),
\]

\[
(1)^{-1}(x, y) = \psi_B^{-1}(-c_B - \varphi_B y + x).
\]

Let us calculate \(\alpha_u^{-1}B y\):

\[
\alpha_u^{-1}B y = \varphi_B \psi_A^{-1}((\varphi_A \varphi_B^{-1} \psi_B u - \varphi_A \varphi_B^{-1} \psi_B u + \psi_A u) + u - \varphi_B u - c_B + c_B
\]

\[
= \varphi_B \psi_A^{-1} \varphi_A \varphi_B^{-1} \psi_B u - \varphi_B \psi_A^{-1} \varphi_A \varphi_B^{-1} \psi_B u + \varphi_B u + u - \varphi_B u
\]

\[
= \varphi_B \psi_A^{-1} \varphi_A \varphi_B^{-1} (\psi_B u - \psi_B y) + u.
\]

Therefore

\[
A((-1)B(x, u), -1B(\alpha_u^{-1}B y, v))
\]

\[
= A(\varphi_B^{-1}(x - \psi_B u - c_B), \varphi_B^{-1}(\alpha_u^{-1}B y - \psi_B v - c_B))
\]

\[
= \varphi_A \varphi_B^{-1}(x - \psi_B u - c_B) + \psi_A \varphi_B^{-1}(\alpha_u^{-1}B y - \psi_B v - c_B) + c_A
\]

\[
= \varphi_A \varphi_B^{-1} x - \varphi_A \varphi_B^{-1} \psi_B u - \varphi_A \varphi_B^{-1} c_B + \psi_A \varphi_B^{-1} \psi_B \psi_A \varphi_B^{-1} (\psi_B u - \psi_B y)
\]

\[
+ \psi_A \varphi_B^{-1} u - \psi_A \varphi_B^{-1} \psi_B v - \psi_A \varphi_B^{-1} c_B + c_A
\]

\[
= \varphi_A \varphi_B^{-1} x - \varphi_A \varphi_B^{-1} \psi_B u + \psi_A \varphi_B^{-1} u - \psi_A \varphi_B^{-1} \psi_B v - \psi_A \varphi_B^{-1} c_B + c_A
\]

On the other hand

\[
A((-1)B(x, u), -1B(u, v)) = \varphi_A \varphi_B^{-1}(x - \psi_B y - c_B) + \psi_A \varphi_B^{-1}(u - \psi_B v - c_B) + c_A
\]

\[
= \varphi_A \varphi_B^{-1} x - \varphi_A \varphi_B^{-1} \psi_B y - \varphi_A \varphi_B^{-1} c_B + \psi_A \varphi_B^{-1} u - \psi_A \varphi_B^{-1} \psi_B v - \psi_A \varphi_B^{-1} c_B + c_A.
\]

Thus, the right and left sides are equal. Similarly, we can check the other cases. \(\square\)
Lemma 3.2. Let \((Q; \Sigma)\) be an invertible \(T\)-algebra. If the algebra, \((Q; \Sigma \cup \Sigma^{-1} \cup \Sigma^{-1})\), satisfies equality (14) for all \(X, Y \in \Sigma\), then this equality is valid in the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup (-1)\Sigma^{-1} \cup (-1)\Sigma^{-1} \cup \Sigma^*)\) for all \(X, Y \in \Sigma \cup \Sigma^{-1} \cup (-1)\Sigma^{-1} \cup (-1)\Sigma^{-1} \cup \Sigma^*)\).

Proof. Similarly as Lemma 3.1.

Theorem 3.1. \((Q; \Sigma)\) is an invertible \(T\)-algebra iff (6) and (14) are valid in the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup (-1)\Sigma^{-1} \cup (-1)\Sigma^{-1} \cup \Sigma^*)\) for all \(X, Y \in \Sigma \cup \Sigma^{-1} \cup (-1)\Sigma^{-1} \cup (-1)\Sigma^{-1} \cup \Sigma^*)\).

Proof. As in the proof of Theorems 2.1 and 2.2, the invertible \(T\)-algebra satisfies formulae (6) and (14). The rest follows from Lemmas 3.1 and 3.2. The converse statement is a consequence of Proposition 3.2.

Corollary 3.1. Let \((Q; \Sigma)\) be an invertible \(T\)-algebra. If \((Q; \Sigma)\) satisfies the following second-order formula:

\[
\forall X_1, X_2 \, \forall x_1, x_2, x_3 \exists x_4 \\
(X_1(X_2(x_1, x_2), X_2(x_4, x_3))) = X_1(X_2(x_1, x_4), X_2(x_2, x_3)),
\]

then in \((Q; \Sigma)\) the following hyperidentity is valid:

\[
X_1(X_2(x_1, x_2), X_2(x_4, x_3)) = X_1(X_2(x_1, x_4), X_2(x_2, x_3)).
\]

Proof. Let \((Q; \Sigma)\) be an invertible \(T\)-algebra. Then it satisfies (6). If we rewrite (6), in terms of the operation \(+\), then after cancellations we obtain

\[
\psi_X \psi_Y u + \varphi_X \psi_Y y = \varphi_X \psi_Y u + \psi_X \varphi_Y \alpha^{X,Y}_u y,
\]

which for \(u = 0\) gives \(\varphi_X \psi_Y = \psi_X \varphi_Y \alpha^{X,Y}_0\). This together with (23) implies

\[
u + \alpha^{X,Y}_0 y = \alpha^{X,Y}_0 u + \alpha^{X,Y}_u y,
\]

where \(\alpha^{X,Y}_0\) is the permutation which corresponds to the identity element of the group, \((Q; +)\).

If (22) is valid in \((Q; \Sigma)\), then for every \(X, Y \in \Sigma\) and every \(x, y, v \in Q\) there exists an element \(h \in Q\) such that the following equality is valid:

\[
X(Y(x, y, Y(h, v))) = X(Y(x, h), Y(y, v)).
\]
Therefore, $\alpha_{h}^{X,Y}$ is the identity permutation of the set Q.

From the proof of Theorem 2.1, it follows that the loops $x \pm y = X(R_{X,a}^{-1}x, L_{X,b}^{-1}y)$ are groups for all $a, b \in Q$ and all operations $X \in \Sigma$ and also, we can take any of the groups, $\pm (X \in \Sigma)$ as a group \pm.

Let us choose the elements a, b such that $h = Y(b, a)$ is an identity element of the group $(Q; +)$, then $\alpha_{h}^{X,Y}$ is the identity permutation of the set Q. Therefore, from (24), we have $\alpha_{u}^{X,Y} y = y$ since $\alpha_{0}^{X,Y} = \alpha_{h}^{X,Y}$ is the identity permutation. Hence $\alpha_{u}^{X,Y}$ is the identity permutation for all $u \in Q$ and all $X, Y \in \Sigma$.

Corollary 3.2. The quasigroup, $(Q; \cdot)$, is a T-quasigroup iff formulae (6) and (14) are valid in the quasigroup, $(Q; \cdot, /, \backslash)$, for all $X, Y \in \{\cdot, /, \backslash\}$.

References

Received March 28, 2011

Department of Mathematics and Mechanics
Yerevan State University
1 Alex Manoogian
Yerevan 0025
Armenia
e-mail: davidov@ysu.am