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Free topological acts over a topological monoid

Behnam Khosravi

Abstract. First we present the free topological S-acts on sets, on topological spaces, and
as well as on S-acts. Then, we give more concrete description of these free objects in some
cases.

1. Introduction
The action of topological semigroups and their representations have a very wide
usage in di�erent branches of Mathematics like geometry, analysis, Lie groups
or dynamical systems, and they are studied by many authors, see for example
[4, 7, 20, 23, 24]. Furthermore, some notions are in fact topological S-acts with
some extra properties, e.g., in analysis, S-�ow is a compact topological S-act
(see [5, 19]), or the representation of a discrete group G is in fact a topological
G-act (see [2, 13, 17]). Also in geometry, �ow is a smooth topological S-act,
where S is (R,+) with its usual topology (see [7]). These kinds of topological S-
acts are studied more and there are some works about their universal structures
(for example see [15]). We note that, a space which a topological semigroup acts
on it, sometimes has di�erent names in di�erent branches of Mathematics, e.g.
in some text, it is called G-space where G is a topological group (e.g. see [12]),
while in some others, it is called topological S-act (see for example [22]). In
this note we use the latter terminology since we use theorems and terminology
of [18]. Because of the importance of the universal structures and specially
free structures, in this paper we study the notion of freeness which is a fruitful
subject in the study of di�erent categories (see for example [3, 8, 9, 16]). We
present the free topological S-acts on sets, on topological spaces, and as well
as on S-acts.

Let (S, ·, τS) be a topological monoid. In this note, we want to study di�er-
ent free topological S-acts. Note that since there are three forgetful functors
from the category of topological S-acts to the category of topological spaces,
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the category of S-acts and the category of sets, we can de�ne free topological
S-acts on a topological space, on an S-act and on a set. In Section 2, we brie�y
study topological S-acts, semitopological S-acts and compare them. In Section
3, �rst, we introduce the free topological S-acts on a topological space, then
we describe the topology of free topological S-acts more concretely and study
some of its properties, like its behavior with separation axioms. Also we give
a coarser and �ner topology than the topology of the free topological S-act
on a topological space (X, τX) according to the topology of topological space
(X, τX) and the topology of the topological monoid (S, ·, τS). Finally in Sec-
tion 3, we introduce the free topological S-acts on a set. In Section 4, we study
the free topological S-act on an S-act and present it. Then by using the notion
of free topological S-acts on S-acts, we present some method for studying uni-
versal objects in the category of topological S-acts, using the known universal
structures in the category of S-acts. To illustrate this method, we apply it
to characterize projective topological S-acts by using the characterization of
projective S-acts.

Now we brie�y recall some de�nitions about S-acts needed in the sequel.
For more information see [11, 18].

Recall that, for a semigroup S, a set A is a left S-act (or S-set) if there is, so
called, an action µ : S×A → A such that, denoting µ(s, a) := sa, (st)a = s(ta)
and, if S is a monoid with 1, 1a = a. Right S-acts are de�ned similarly. An
S-act A is called cyclic, if there exists an a ∈ A such that A = Sa.

Each semigroup S can be considered as an S-act with the action given by
its multiplication.

The de�nitions of a subact A of B, written as A ≤ B, and a homomorphism
between S-acts are clear. In fact S-homomorphisms, or S-maps, are action-
preserving maps: f : A → B with f(sa) = sf(a), for s ∈ S, a ∈ A. We denote
the category of S-acts with S-maps, by S-Act.

A topological space (X, τX) has Alexandro� topology, if the intersection
of an arbitrary family of open sets in (X, τX) is open. An space with an
Alexandro� topology is called an Alexandro� space.

The algebraic structure of the free topological S-act on a topological space can be char-
acterized concretely, however, like free topological groups, the topology of free topological
S-acts can not be described as concretely as its algebraic structure.
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2. Topological S-acts
In this section, we brie�y state the notions we need about topological S-acts.
First recall the following

De�nition 2.1. Let S be a semigroup and a topological space with topology
τS . S with this topology is called a topological semigroup if multiplication
(s, t) 7→ st : S × S → S is (jointly) continuous ([5, 10, 14]). We use Kelley's
notation in [14], and denote a topological semigroup by (S, ·, τS)

Despite the above convention, for simplicity, we denote a topological (S, ·, τS)-
act by topological S-act.

De�nition 2.2. For a topological semigroup (S, ·, τS), a (left) topological S-
act or a topological S-act is a left S-act A with a topology τA such that the
action S×A → A is (jointly) continuous. Similar to topological semigroup, we
denote a topological S-act by (A, τA). We denote the category of all topological
S-acts with continuous S-maps by S-Top.

De�nition 2.3. We say that a topological semigroup (S, ·, τS) has a left ideal
topology, if each of its open sets, including the empty one, is a left ideal (sub
S-act) of S. Also, a topological S-act (A, τA) is said to have a subact topology
if all of its open sets, including the empty one, are subacts of A.

We use the above de�nition of a left ideal topology which is more general
than the de�nition in [22].

De�nition 2.4. By weak topology on a set Z, with respect to a family of
functions on Z, we mean the coarsest topology on Z which makes those func-
tions continuous. In other words, given a set Z and an indexed family (Yi)i∈I

of topological spaces with functions fi : Z → Yi, the weak topology on Z is
generated by the sets of the form f−1

i (U), where U is an open set in Yi.

notation. For any two arbitrary topological spaces (X1, τX1) and (X2, τX2),
by τX1×X2 we mean the product topology on X1 × X2. For any set Z, we
denote Z with discrete topology by (Z, τdis). For any S-act A, by |A| we mean
the underlying set of A.

Remark 2.5. Recall that for a semigroup S and an S-act A, the functions λs

and ρa are de�ned for any s ∈ S and a ∈ A as follows

λs : A → A, y 7→ sy and ρa : S → A, t 7→ ta.
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In the special case A = S, we use the notation λ
(S)
s : S → S, to prevent

misunderstanding.
Now if S has a topology τS for which its multiplication S × S → S is

(separately) continuous, that is, λ
(S)
s and ρs are continuous for all s ∈ S, then

S with topology τS is called a semitopological semigroup.
Similarly, one can de�ne a semitopological S-act by taking λs : A → A and

ρa : S → A to be continuous for each s ∈ S and a ∈ A.
Clearly any topological S-act is a semitopological S-act, because every

jointly continuous function is separately continuous. But, as the following
example shows, for a topological semigroup (S, ·, τS), a semitopological S-act
need not be a topological S-act. Note that clearly if S with a topology τS

is a semitopological semigroup which is not a topological semigroup, then S
with τS is a semitopological S-act which is not a topological S-act. However
the following example shows that for a topological semigroup S, the joint
continuity of the action of S-acts is independent from the joint continuity of
the multiplication of S.
Example 2.6. Suppose that S = [0, 1] and τS is the usual topology on [0, 1]
which is inherited from R by subspace topology. De�ne for each s and t in
S, s · t = 0. It is obvious that (S, ·, τS) is a topological semigroup. Again,
consider [0, 1] with topology which is inherited from R. For any s, t ∈ S, de�ne
the action of S on [0, 1] by

µ(s, t) =
∞∑

n=1

(
1
2
)nfn(s, t),

where
fn(s, t) =

{
0 if s 6 sn or t 6 tn

|(s−sn)(t−tn)|
(s−sn)2+(t−tn)2

otherwise

and {(sn, tn)|n = 1, 2, . . .} is any (non-void) subset of the product [12 , 1]×[12 , 1].
If we take T = [0, 1

2 ], then by an straightforward checking, we can see that µ
has the following properties:

1. µ((T × [0, 1]) ∪ (S × T )) = {0},
2. µ(S, [0, 1]) ⊆ T = [0, 1

2 ].
(For more details about the properties of the function µ, see [23, Example
5.14.]) So we have for all s, s′ and t in S

µ(st, s′) = µ(0, s′) ∈ µ(T × [0, 1]) = {0},
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µ(s, µ(t, s′)) ∈ µ(S × T ) = {0}.
Therefore, [0, 1] is an S-act with the action µ. Again, by direct checking, one
can see that µ, the action of (S, ·, τS) on [0, 1], is not continuous but all the
functions λs(−) = µ(s,−) and ρa(−) = µ(−, a), for each s and a in S, are
continuous. Hence [0, 1] is not a topological S-act but it is a semitopological
S-act.

Now we recall the de�nition of di�erent free topological S-acts in the follow-
ing de�nition. Since these de�nitions are very similar, we state them together.

De�nition 2.7. A topological S-act (F, τF ) with one-one S-map ν : B → F ,
(the embedding ν : (X, τX) → (F, τF )), (one-one function ν : Z → F ) is the
free topological S-act over the S-act B (over the topological space X) (over
the set Z), if for every topological S-act (A, τA) and an S-map f : B → A,
(a continuous function f : (X, τX) → (A, τA)), (a function f : Z → A), there
exists a unique continuous S-map f̃ : (F, τF ) → (A, τA) such that f̃ ◦ν = f (for
the general de�nition of the free objects in an arbitrary category, see [1, 6]).

The free topological space over a set Z is the set Z together with the
discrete topology. The free S-act, for a monoid S, on a set Z is de�ned as
follow. Consider the set S × Z with the action de�ned by t(s, z) = (ts, z) for
any t, s ∈ S and z ∈ Z, and de�ne ν : Z → S×Z as follows ν(z) = (1, z). It is
a known fact that S×Z with this action is an S-act. From now on, for any set
Z, by F (Z) we mean this S-act which is de�ned on S × Z. Furthermore, it is
a known fact that F (Z) is the free S-act over the set Z (it means that for any
S-act A and a function f : Z → A, there exists a unique S-map f̃ : F (Z) → A
such that f̃ ◦ ν = f (for more details see, [11, 18])).

3. Free topological S-act on a topological space
In this section, we present the free topological S-act over a topological space
and then describe it more concretely in some special instances, e.g, when τS is
Alexandro�. First note the following remark.

Remark 3.1. Let {(A, τi)}i∈I be a family of topological S-acts. Let τA be the
topology generated by the subbasis ∪i∈Iτi on A. Then we show that (A, τA)
is a topological S-act. Let s ∈ S, a ∈ A, and U ∈ τA such that sa ∈ U and
U ∈ τA. As we have in section 2.18 of [21], we can and will suppose that U
is an element of the subbasis ∪i∈Iτi. So there is some i ∈ I such that U ∈ τi.
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Since (A, τi) is a topological S-act, there exist open sets W ∈ τi and V ∈ τS

which contain a and s, respectively such that V · W ⊆ U . Since τi ⊆ τA,
(A, τA) is a topological S-act.

Proposition 3.2. For any topological monoid (S, ·, τS), the free topological
S-act on a topological space (X, τX) is F (X) with the topology τ∗X which is
generated by the union of all topologies τi on |F (X)| = S × X which makes
F (X) to a topological S-act and furthermore ν : (X, τX) −→ (S ×X, τi) is a
topological embedding.

Proof. Let (X, τX) be a topological space. We �rst show that if τ∗X is the
topology generated by the union of all topologies τi on |F (X)| = S×X where
(F (X), τi) satis�es the following conditions

(a) the map ν : X → (F (X), τi) de�ned by ν(x) = (1, x) is a topological
embedding.

(b) (F (X), τi) is a topological S-act.

Then (F (X), τ∗X) satis�es conditions (a) and (b).
De�ne

Γ(X,τX) := {τ |τ is a topology on |F (X)| = S ×X satisfying (a) and (b)}.
We show that τ∗X belongs to Γ(X,τX) and (F (X), τ∗X) is the desired free topo-
logical S-act. (One can easily check that τS×X ∈ Γ(X,τX) and so Γ(X,τX) 6= ∅.)

Since τ∗X is �ner than each τi ∈ Γ(X,τX), so ν−1 is continuous and since τ∗X is
generated by all τi ∈ Γ(X,τX), so ν is continuous, therefore τ∗X satis�es condition
(a). By Remark 3.1, τ∗X satis�es condition (b), too. Thus, τ∗X ∈ Γ(X,τX).
Therefore (F (X), τ∗X) is a topological S-act.

Finally, to prove that (F (X), τ∗X) is actually the free topological S-act on
X, let g : (X, τX) → (A, τA) be a continuous function into a topological S-act
(A, τA). We claim that the function g̃ : F (X) → A, de�ned by g̃((s, x)) :=
sg(x), is the unique continuous S-map with g̃ν = g. Clearly, g̃ is an S-map.
Since τS×X ⊆ τ∗X , (idS , g) : (S × X, τ∗X) → (S × A, τS×A) is continuous and
since the action S ×A → A is also continuous, g̃ is continuous.

For the uniqueness of g̃, let g̃ ◦ ν = h ◦ ν. Therefore h((1, x)) = g̃((1, x)),
and so g̃ = h. Hence, the S-act F (X) with τ∗X is the free topological S-act on
the topological space (X, τX).

Before we begin to describe the topology τ∗X more concretely, we need some
de�nitions and results which are presented in the following
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Remark 3.3. Suppose that we are given a topological space (X, τX) and a
topological monoid (S, ·, τS). We de�ne τ(S, X) as follows: O ∈ τ(S, X) if
there exist open sets Y ∈ τX and T ∈ τS such that π1(O) = T and π2(O) = Y
and for any (s, x) ∈ O, there exist an open set V (O, x) ∈ τS and an open set
W (O, s) ∈ τX which contain s and x, respectively such that

π1(O ∩ (S × {x})) = V (O, x) and π2(O ∩ ({s} ×X)) = W (O, s).

One can obviously see that

V (O, x) = {s ∈ S|(s, x) ∈ O} and W (O, s) = {x ∈ X|(s, x) ∈ O}. (I)

(where π1 and π2 are the usual projections of O onto its �rst and second
factors, respectively). Note that for each O ∈ τ(S, X) and the corresponding
open sets {V (O, x)}x∈Y ⊆ τS and {W (O, s)}s∈T ⊆ τX which are obtained by
the de�nition of τ(S, X), we have

O =
⋃

x∈Y

(V (O, x)× {x}) and O =
⋃

s∈T

({s} ×W (O, s)). (II)

Therefore if we de�ne for an open set Y ∈ τX and an open set T ∈ τS ,

τ1(T, Y ) := {O ⊆ T × Y |∀(s, x) ∈ O,∃V (O, x) ∈ τS : s ∈ V (O, x) and
π1(O ∩ (S × {x})) = V (O, x)}

τ2(T, Y ) := {O ⊆ T × Y |∀(s, x) ∈ O, ∃W (O, s) ∈ τX : x ∈ W (O, s) and
π2(O ∩ ({s} ×X)) = W (O, s)}

and

τ1(S,X) :=
⋃

T∈τS , Y ∈τX

τ1(T, Y ) and τ2(S, X) :=
⋃

T∈τS , Y ∈τX

τ2(T, Y ),

then by the de�nition of τ(S, X), one can easily see that

τ(S, X) = τ1(S,X) ∩ τ2(S, X).

By an easy check, one can see that τ1(S,X) and τ2(S, X) are two topologies
on |F (X)| = S×X (Note that each element of τ1(S, X) satis�es the right side
of Relation (II) and each element of τ2(S,X) satis�es the left side of Relation
(II)), so τ(S,X) is a topology on F (X), too. (Since the intersection of any two
topologies on a space is a topology on it.)
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Lemma 3.4. Let (S, ·, τS) be a topological semigroup and (X, τX) be a topo-
logical space. Then (F (X), τ(S,X)) is a semitopological S-act.

Proof. We prove that for any s ∈ S and (t, x) ∈ F (X), the functions λs :
F (X) → F (X) and ρ(t,x) : S → F (X) are continuous. First, we show that the
function λs is continuous. Suppose that we are given U ∈ τ(S, X). We show
that λ−1

s (U) is an open set in F (X). By the de�nition of τ(S,X) there exist
open sets T ∈ τS and Y ∈ τX such that U ⊆ T × Y and for any t′ ∈ T and
x′ ∈ Y such that (t′, x′) ∈ U , there exist open sets V (U, x′) and W (U, t′) which
contain t′ and x′, respectively, such that

π1(U ∩ (S × {x′})) = V (U, x′) and π2(U ∩ ({t′} ×X)) = W (U, t′).

Note that since (S, ·, τS) is a topological monoid, the function λ
(S)
s : S → S is

continuous. Now by the de�nition of the action of F (X), we have

λ−1
s (U) =

⋃

y∈Y

[(λ(S)
s )−1(V (U, y))× {y}].

To prove λ−1
s (U) is in τ(S, X), we show that it is equal to an open set which

belongs to τ(S, X). De�ne V1 := (λ(S)
s )−1(T ) and U ′ := ∪t′∈V1({t′}×W (U, st′))

where W (U, st′) is the open set which is found for the element (st′, y) ∈ U for
some y ∈ X, by the assumption U ∈ τ(S, X). (Note that since we have
π2(U ∩ ({st′} ×X)) = W (U, st′), W (U, st′) does not depend on the choice of
y ∈ X.) We show that λ−1

s (U) equals U ′, and U ′ belongs to τ1(S, X), since it
is easy to see that U ′ ∈ τ2(V1, Y ) ⊆ τ2(S, X). (Note that U ∈ τ2(S,X) and
recall Relation (I).) By the de�nition of the action of F (X), we have obviously
λs(U ′) ⊆ U . Suppose that (t1, y) ∈ λ−1

s (U) for some t1 ∈ S and y ∈ X, so
we have (st1, y) ∈ U . Therefore we have {st1} ×W (U, st1) ⊆ U which by the
de�nition of the action F (X), implies that (t1, y) ∈ {t1} × W (U, st1). But
{t1} ×W (U, st1) is a subset of U ′, hence (t1, y) ∈ U ′. Therefore U ′ = λ−1

s (U)
which implies that λ−1

s (U) ∈ τ(S, X).
Now, we show the continuity of ρ(t,x). Consider U like the above and

suppose that we are given s′ ∈ S such that s′ ∈ ρ−1
(t,x)(U). Again note that

since (S, ·, τS) is a topological monoid, the function ρt : S → S is continuous.
Since U ∈ τ(S, X), there exists open set V (U, x) in τS which contains s′t and
V (U, x) × {x} ⊆ U . Therefore s′ ∈ ρ−1

t (V (U, x)) ∈ τS . We have ρ(t,x)(s′) ∈
ρ(t,x)(ρ

−1
t (V (U, x))) ⊆ V (U, x)×{x} ⊆ U . So ρ−1

t (V (U, x)) ⊆ ρ−1
(t,x)(U). Hence

ρ−1
(t,x)(U) ∈ τS .
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The following result shows a characterization of τ(S,X).

Proposition 3.5. Let (X, τX) be a topological space and (S, ·, τS) be a topo-
logical monoid. Then τ(S,X) is the �nest topology on F (X) such that F (X)
is a semitopological S-act and ν : (X, τX) → (F (X), τ(S, X)), x Ã (1, x), is
continuous.

Proof. By the above proposition and the de�nition of τ(S,X), τ(S, X) has the
above properties. Let τ be a topology on |F (X)| = S × X with the above
properties. First note that if s(1, x) = (s, x) ∈ U and U ∈ τ , then by the
continuity of ρ(1,x), λs and ν we can conclude that

s ∈ ρ−1
(1,x)(U) and x ∈ ν−1(λ−1

s (U)),

where ρ−1
(1,x)(U) ∈ τS and ν−1(λ−1

s (U)) ∈ τX . Furthermore we have obviously

π1(U ∩ (S × {x})) = ρ−1
(1,x)(U) ∈ τS

and also
π2(U ∩ ({s} ×X)) = ν−1(λ−1

s (U)) ∈ τX

Hence, U ∈ τ(S, X) = τ1(S, X) ∩ τ2(S, X). Therefore τ ⊆ τ(S, X)

By the above proposition, we can explain the topology τ∗X in another way
and we can present a coarser and �ner topology than it, according to the
topologies τS and τX (note that any topological S-act is a semitopological
S-act and note that τ∗X satis�es condition (b) in the proof of Proposition 3.2).

Corollary 3.6. Let (S, ·, τS) be a topological monoid and (X, τX) be a topo-
logical space. Then, τS×X ⊆ τ∗X ⊆ τ(S, X) and τ∗X is the �nest topology which
is coarser than τ(S, X) and it makes F (X) a topological S-act. ¤

Proposition 3.7. For any Alexandro� topological monoid (S, ·, τS) and any
topological space (X, τX), the topology τ∗X is the product topology on |F (X)| =
S ×X. In fact we have τ∗X = τS×X = τ(S,X).

Proof. We �rst show that, in this case, τ∗X equals to τ(S, X) and then we
show that τ(S, X) equals to the product topology τS×X . Note that by Corol-
lary 3.6, we have τ∗X ⊆ τ(S,X). On the other hand, since τ(S,X) ob-
viously satis�es condition (a) by Relation (I) in Remark 3.3, to complete
our proof, it is enough to prove that (F (X), τ(S,X)) is a topological S-
act. Suppose t(s, x) = (ts, x) ∈ U and U ∈ τ(S,X). Hence there exists
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open set W (U, ts) ∈ τX with x ∈ W (U, ts) such that {ts} × W (U, ts) ⊆ U .
But for any y ∈ W (U, ts), since again U ∈ τ(S, X), there exists open set
V (U, y) ∈ τS such that V (U, y) × {y} ⊆ U and ts ∈ V (U, y). Now de�ne
V := ∩y∈V (U,y)V (U, y) ∈ τS , because τS is Alexandro�, V contains ts and we
have:

V ×W (U, ts) ⊆
⋃

y∈W (U,ts)

(V (U, y)× {y}) ⊆ U. (*)

Now since (S, ·, τS) is a topological monoid, there exist open sets Vs and Vt

which contain s and t, respectively and satisfy the relation Vt · Vs ⊆ V . By
Corollary 3.6, if we de�ne W := Vs × W (U, ts), then W ∈ τS×X ⊆ τ(S, X)
which contains (s, x) such that

t(s, x) ∈ Vt ·W = (Vt · Vs)×W (U, ts) ⊆ V ×W (U, ts) ⊆ U.

So (F (X), τ(S,X)) is a topological S-act. Now suppose that U ∈ τ(S,X). If
U is a non-empty open subset of |F (X)| = S ×X, then consider an arbitrary
element (t, x) in U . We have clearly t(1, x) ∈ U , so by the above discussion,
there exists an open set V ∈ τS which contains t such that (t, x) = t(1, x) ∈
V ×W (U, t) ⊆ U . (Recall Relation (*) with s = 1.) Since V ×W (U, t) belongs
to the product topology on |F (X)| = S × X, τS×X is �ner than τ(S, X).
Therefore by Corollary 3.6 we have τ∗X = τ(S, X) = τS×X .

Proposition 3.8. Suppose that (S, ·, τS) is a topological monoid. For each
Alexandro� topological space (X, τX), the topology τ∗X is the product topology
on S ×X and more precisely τ∗X = τS×X = τ(S, X).

Proof. τ∗X satis�es conditions (a) and (b) in Proposition 3.2 so τS×X ⊆ τ(S, X).
Suppose that we are given (ts, x) ∈ U for some t, s ∈ S, x ∈ X and an open
set U ∈ τ(S,X). Since U ∈ τ(S,X), we can choose for (ts, x) ∈ U , the
open set V (U, x) such that V (U, x) × {x} ⊆ U and ts ∈ V (U, x). Choose for
any s′ ∈ V (U, x), an open set W (U, s′) such that {s′} × W (U, s′) ⊆ U and
x ∈ W (U, s′). De�ne W := ∩s′∈V (U,x)W (U, s′). Now, by a similar argument as
in the proof of Proposition 3.7, we can get the result.

Since every discrete topological space is Alexandro�, as an immediate con-
sequence of the above proposition and Proposition 3.5, we have

Proposition 3.9. (Free topological S-act on a set) Let (S, ·, τS) be a topolog-
ical monoid and Z be a set. Then the free topological S-act on the set Z is
F (Z) with the topology τS×Z where τZ in the de�nition of τS×Z is the discrete
topology.
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Now we discuss the properties of the free topological S-act on a topological
space which satis�es some of the separation axiom, (for more details about the
separation axioms, see [21].)

Proposition 3.10. Let (S, ·, τS) be a topological monoid with left ideal topol-
ogy. Suppose that (X, τX) satis�es one of the separation axioms Ti for i =
0, 1, 2, 3, 31

2 . Then, the free topological S-act on (X, τX) satis�es that separa-
tion axiom if and only if S = {1}.
Proof. For the non-trivial part, let (X, τX) be a Ti space for some i. Then,
by assumption, the free topological S-act on (X, τX) is a Ti space. Note that
if a topological S-act (A, τA) which has subact topology, satis�es Ti, then
for any a ∈ A, Sa = {a}. For, if there exist s ∈ S and a ∈ A such that
sa 6= a, then any open set in the subact topology τA containing a, also contains
sa. Thus, we have S(s, x) = {(s, x)} for each (s, x) ∈ F (X). In particular,
S(1, x) = {(1, x)}. Therefore S = S1 = {1}.

Although Proposition 3.10 shows that for any non-trivial topological monoid
(S, ·, τS) with left ideal topology, the free topological S-act on a Ti space does
not satisfy any of the separation axioms Ti, but the following proposition shows
that if (S, ·, τS) itself satis�es any Ti, i = 0, 1, 2 then the free topological S-act
on a topological space which satis�es that Ti, satis�es that separation axiom,
too.

First, note that if (X1, τX1) and (X2, τX2) are two topological spaces which
satisfy Ti for some i = 0, 1, 2, then their product space satis�es that Ti, too
(for more details, see [10] or [21]).

Proposition 3.11. Let (S, ·, τS) be a topological monoid which satis�es Ti for
some 0 ≤ i < 3. Then, the free topological S-act on a topological space which
satis�es that Ti, satis�es that separation axiom, too.

Proof. suppose that the topological space (X, τX) satis�es Ti. Clearly S ×X
with product topology also satis�es Ti, too and since for any topological space
(X, τX), we have τS×X ⊆ τ∗X , then (F (X), τ∗X) satis�es Ti.

Remark 3.12. About the preservation of T3 1
2
, �rst, we prove that if we de�ne

Γ′(X,τX) as follows,

{τ |τ is a completely regular topology on |F (X)| satis�ng (a) and (b)}
and let τ ′X be de�ned to be the generated topology by ∪τi∈Γ(X,τX )

τi, then
(F (X), τ ′X) is a completely regular topological S-act. Then we give a condition
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such that the completely regularity is preserved. For our assertion, we just need
to show the completely regularity of (F (X), τ ′X), since it is straightforward to
see that τ ′X satis�es conditions (a) and (b). For this purpose, we show that
the generated topology by a family of topologies (τi)i∈I on a set C such that
each τi is completely regular for any i ∈ I, is a completely regular topology
on C. Let (τi)i∈I be a family of completely regular topologies on a set C.
Let τ be the generated topology by ∪i∈Iτi. Let K be a closed set in C with
the topology τ and c ∈ C \ K. Since O = C \ K belongs to τ , there exists
a family of open sets {Oj}j∈J ⊆ ∪i∈Iτi such that O is equal to a union of
their �nite intersections of Oi's. Therefore we can assume that there exists
O1∩ . . .∩On such that K = C \O ⊆ C \ (O1∩ . . .∩On) and c ∈ O1∩ . . .∩On.
Since for any i, Oi is open in τni and since τni is completely regular, for closed
set C \ Oi and c, there exists a continuous real valued function fi : C → R
such that fi(C \ Oi) = 1 and fi(c) = 0. Since τ is the generated topology
by τi, all the functions fi are continuous real valued function from C with the
topology τ to R such that fi(C \ Oi) = 1 and fi(c) = 0. Let f be de�ned
by f(x) := max{f1(x), . . . , fn(x)}, for any x ∈ C. Therefore τ is completely
regular, since f is a continuous function from C with topology τ to R such
that f is continuous and f(K) = 1 and f(c) = 0. Therefore, since τ ′X is
the generated topology by ∪τi∈Γ′

(X,τX )
τi, and since for each τi ∈ Γ′(X,τX), τi is

completely regular, τ ′X is completely regular. Hence (F (X), τ ′X) is a completely
regular topological S-act.

Now if for a topological semigroup (S, ·, τS) and a topological space (X, τX),
we have τ ′X = τ∗X or more specially, if Γ′(X,τX) = Γ(X,τX), then the separation
axiom T3 1

2
is preserved. For an example of a topological semigroup (S, ·, τS) and

a topological space (X, τX) with this property, let (S, ·, τdis) be a topological
monoid. Then for any completely regular space (X, τX), clearly, by Proposition
3.7, τ∗X = τS×X = τ ′X . Therefore for a topological semigroup which has discrete
topology, the separation axiom T3 1

2
is preserved.

4. The free topological S-act on an S-act
The category S-Act is a very well-known category and its universal struc-
tures are studied comprehensively by many authors. In this section we want
to present a very useful and e�ective tool which enables us to study S-Top
by using the studies in S-Act. First, in this section, we present the free topo-
logical S-act on an S-act, then to illustrate the application of this result, we
characterize the projective topological S-acts. In fact, we show that the pro-
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jective topological S-acts are exactly the free topological S-acts on projective
S-acts.

Now we discuss the free topological S-act on an S-act. One might naturally
expect that an S-act A with discrete topology to be the free topological S-
act on A, but, as Proposition 4.1 shows, A with this topology may not be a
topological S-act and if it happens to be so, then it is indeed the free topological
S-act on A.

Since by the de�nition of topological S-acts, the proof of the following
result is straightforward, we state it without proof.

Proposition 4.1. An S-act A with the discrete topology is a topological S-act
if and only if for any a ∈ A and s ∈ S, (sa : a) := {t ∈ S|ta = sa} ∈ τS. ¤

Proposition 4.2. If (S, ·, τS) is a topological semigroup with a right identity,
then the following statements are equivalent

(1) All the S-acts with discrete topology are topological S-acts.

(2) τS is the discrete topology.

(3) If we de�ne G from category S-Act to category S-Top as follows, A 7→
(A, τdis), then G is the free functor.

Proof. Since (1) and (3) are equivalent, for the non-trivial part of the proof,
by Proposition 4.1, we just need to show (1) ⇒(2). Since S with the discrete
topology is a topological S-act, if e is the right identity of S, then the function
idS = ρe : (S, τS) → (S, τdis) is continuous and hence τS = τdis.

Now, we discuss about the free topological S-act on an S-act in general.

Proposition 4.3. For any topological semigroup (S, ·, τS), the free topological
S-act on an S-act A is de�ned as follows

(A, τ∗A), (A ∈ S−Act)

in which τ∗A is the topology generated on A by the union of all τi on A, where
(A, τi) is a topological S-act.

Proof. Let A be an arbitrary S-act and de�ne

ΣA := {τ | (A, τ) is a topological S-act}.
(Note that every S-act is a topological S-act with trivial topology, so ΣA is
not empty.)



38 B. Khosravi

Similar to the proof of Proposition 3.2, we can show that τ∗A which is the
topology generated by the union of all τi where τi ∈ ΣA, makes A a topological
S-act.

To prove that (A, τ∗A) with idA : A → (A, τ∗A) is the free topological S-act
on A, let f : A → (B, τB) be an S-map into a topological S-act (B, τB). Then,
the same function f : (A, τ∗A) → (B, τB) is claimed to be a continuous S-map.

Let τf := {f−1(U)}U∈τB
. To prove the claim, �rst we show that (A, τf ) is

a topological S-act. Let U ∈ τB, sa ∈ f−1(U) for some a ∈ A and s ∈ S. Since
f(sa) = sf(a) ∈ U and (B, τB) is a topological S-act, there exists Vs ∈ τS and
Wf(a) ∈ τB such that s ∈ Vs and f(a) ∈ Wf(a) and

sf(a) ∈ Vs ·Wf(a) ⊆ U.

Thus, sa ∈ Vs · f−1(Wf(a)) ⊆ f−1(U), and so (A, τf ) is a topological S-act.
Now, since {f−1(U)}U∈τB

belongs to ΣA, by the de�nition of τ∗A, we have
τf = {f−1(U)}U∈τB

⊆ τ∗A.

So f : (A, τ∗A) → (B, τB) is continuous.
The rest of the proof is trivial.

Now using the concept of weak topology and the above proposition and its
proof, we can explain τ∗A in these ways.
Proposition 4.4.

(i) τ∗A is the weak topology which is induced on |A| with respect to the family
of S-homomorphisms id : A → (A, τi) where (A, τi) is a topological S-act.

(ii) τ∗A is the weak topology on |A| with respect to the family of all S-
homomorphisms from A to other topological S-acts. ¤

Note that, for a topological space (X, τX) and any topological monoid
(S, ·, τS), since (F (X), τ∗X) is a topological S-act, it is obvious that τ∗X on
|F (X)| = S × X is coarser than τ∗F (X). (See the de�nitions of Γ(X,τX) and
ΣF (X) in the proof of Propositions 3.2 and 4.3.)

But, the following example shows that τ∗X can be a proper subset of τ∗F (X).
Example 4.5. Let (S, ·, τdis) be a topological monoid and let (X, τX) be a
non-discrete topological space. Then τ∗X ( τ∗F (X). Because, by Proposition
4.2, τ∗F (X) is discrete. On the contrary, suppose that τ∗F (X) equals to τ∗X .
Since ν is an embedding, and since {1} × X with the subspace topology is
the discrete topology (because τ∗F (X) is discrete), (X, τX) is a discrete space,
which is impossible. So we have the result.
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For all universal objects in category S-Top, we can use the free topological
S-acts on S-acts to change any given diagrams in S-Act to a given diagram in
S-Top. Therefore, we can study the algebraic structure of universal structures
by using the known universal objects in S-Act. To illustrate this method,
we apply it in the next proposition to characterize the projective topological
S-acts.

Proposition 4.6. Let (S, ·, τS) be a topological monoid. Then the projective
topological S-acts are the free topological S-acts on the S-acts ti∈ISei, where
ei's are idempotents in S, I is a set and ti∈ISei denote the coproduct of Sei's.

Proof. Let (P, τP ) be a projective S-act. First, we show that (P, τP ) is the
free topological S-act on S-act P . For this purpose, we show that topology
τP is the �nest topology which makes P a topological S-act. Let (P, τ) be a
topological S-act. We show that τ is coarser than τP . Consider the generated
topology by the union of τ and τP , and denote it by τ ′. Consider the identity
maps idP : (P, τP ) → (P, τP ) and idP : (P, τ ′) → (P, τP ). Since (P, τP ) is
a projective topological S-act, the identity map idP : (P, τP ) → (P, τ ′) is
continuous. Therefore τ ′ is coarser than τP and therefore τ ⊆ τP . Now, to
complete the proof, we show that P is a projective S-act and then we use [18,
Theorem 1.5.10], to characterize the algebraic structure of (P, τP ). Suppose
that f : A → B be a surjective S-map, where A and B are S-acts and let
g : P → B be an S-map. Since the epimorphisms in category S-Act are exactly
onto S-maps (see [18]), it is straightforward to see that f : (A, τ∗A) → (B, τ∗B)
is an epimorphism in S-Top and g : (P, τP ) → (B, τ∗B) is continuous (note
that if C is an S-act, (D, τD) is a topological S-act and h : C → (D, τD) is an
S-map, then τ1 = {V ⊆ C|V = f−1(U), where U is an open set in (D, τD)}
is a topology on C such that (C, τ1) is a topological S-act). Since (P, τP ) is
a projective topological S-act, there exists a continuous S-map h : (P, τP ) →
(A, τ∗A) such that f ◦ h = g. Since h is an S-map, P is a projective S-act.
Therefore by [18, Theorem 1.5.10], there exists a family {ei}i∈I of idempotents
in S such that P is algebraically isomorphic to ti∈ISei, where t denotes the
coproduct of Sei's in S-Act. Therefore, P is the projective S-act which is a
coproduct of cyclic S-acts in S-Act and (P, τP ) is the free topological S-act
on S-act P .

Finally in this paper we show that the free topological S-act on the set

For a non-empty family of S-acts, like {Ai}i∈I , the coproduct of Ai's in S-Act is the
disjoint union of Ai's with its natural action (see [18]).
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Z is the free topological S-act on the S-act F (Z). (So if we de�ne the free
topological S-act on a set Z in this way, then the result will be the same.)

Proposition 4.7. let (S, ·, τS) be a topological monoid. The free topological
S-act on the set Z equals to the free topological S-act on the S-act F (Z).

Proof. Since a discrete topological space (Z, τdis) is Alexandro�, by Proposition
3.8 we have τ∗Z = τS×Z . We show that the topology τ∗ on F (Z) equals to τ∗Z .
For this purpose, we show that ΣF (Z) = Γ(Z,τdis). Since obviously, τ∗Z ∈ ΣF (Z),
it is enough to show that τ∗F (Z) belongs to Γ(Z,τdis). Clearly, τ∗F (Z) on F (Z)
satis�es condition (a). Since τS×Z = τ∗Z ⊆ τ∗F (Z) and Z is a discrete space,
then {U ∩ ({1} × Z)|U ∈ τ∗F (Z)} is the discrete topology on {1} × Z. Since
ν : Z → {1} × Z is a one to one, onto function from a discrete topological
space to another discrete topological space, it is an embedding. Therefore
τ∗F (Z) satis�es conditions (a) and (b) in Proposition 3.2 and hence τ∗F (Z) ∈
Γ(Z,τdis).

In fact, the proof of the above proposition shows that:

Corollary 4.8. Let (S, ·, τS) be a topological monoid. Then for each set Z, we
have τ∗F (Z) is the product topology τS×Z on S × Z, where τZ in the de�nition
of τS×Z is the discrete topology on Z. ¤
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