
Quasigroups and Related Systems 15 (2007), 141− 168Gyrogroups, the grouplike loopsin the servi
e of hyperboli
 geometry andEinstein's spe
ial theory of relativityAbraham A. UngarAbstra
tIn this era of an in
reased interest in loop theory, the Einstein velo
ity addition law hasfresh resonan
e. One of the most fas
inating aspe
ts of re
ent work in Einstein's spe
ialtheory of relativity is the emergen
e of spe
ial grouplike loops. The spe
ial grouplikeloops, known as gyro
ommutative gyrogroups, have thrust the Einstein velo
ity additionlaw, whi
h previously has operated mostly in the shadows, into the spotlight. We will �ndthat Einstein (Möbius) addition is a gyro
ommutative gyrogroup operation that formsthe setting for the Beltrami-Klein (Poin
aré) ball model of hyperboli
 geometry just asthe 
ommon ve
tor addition is a 
ommutative group operation that forms the settingfor the standard model of Eu
lidean geometry. The resulting analogies to whi
h thegrouplike loops give rise lead us to new results in (i) hyperboli
 geometry; (ii) relativisti
physi
s; and (iii) quantum information and 
omputation.
1. Introdu
tionThe author's two re
ent books with the ambitious titles, �Analyti
 hyper-boli
 geometry: Mathemati
al foundations and appli
ations� [56℄, and �Be-yond the Einstein addition law and its gyros
opi
 Thomas pre
ession: Thetheory of gyrogroups and gyrove
tor spa
es� [53, 66℄, raise expe
tations fornovel appli
ations of spe
ial grouplike loops in hyperboli
 geometry and inrelativisti
 physi
s. Indeed, these books lead their readers to see what some2000 Mathemati
s Subje
t Classi�
ation: 20N05, 51P05, 83A05Keywords: Grouplike loops, gyrogroups, gyrove
tor spa
es, hyperboli
 geometry,spe
ial relativity.



142 A. A. Ungarspe
ial grouplike loops have to o�er, and thereby give them a taste of loopsin the servi
e of the hyperboli
 geometry of Bolyai and Loba
hevsky andthe spe
ial relativity theory of Einstein.Seemingly stru
tureless, Einstein's relativisti
 velo
ity addition is nei-ther 
ommutative nor asso
iative. Einstein's failure to re
ognize and ad-van
e the ri
h, grouplike loop stru
ture [52℄ that regulates his relativis-ti
 velo
ity addition law 
ontributed to the e
lipse of his velo
ity additionlaw of relativisti
ally admissible 3-velo
ities, 
reating a void that 
ould be�lled only with the Lorentz transformation of 4-velo
ities, along with itsMinkowski's geometry.Minkowski 
hara
terized his spa
etime geometry as eviden
e that pre-established harmony between pure mathemati
s and applied physi
s doesexist [42℄. Subsequently, the study of spe
ial relativity followed the lineslaid down by Minkowski, in whi
h the role of Einstein velo
ity addition andits interpretation in the hyperboli
 geometry of Bolyai and Loba
hevskyare ignored [5℄. The tension 
reated by the mathemati
ian Minkowski intothe spe
ialized realm of theoreti
al physi
s, as well as Minkowski's strategyto over
ome dis
iplinary obsta
les to the a

eptan
e of his reformulation ofEinstein's spe
ial relativity is skillfully des
ribed by S
ott Walter in [64℄.A

ording to Leo Corry [11℄, Einstein 
onsidered Minkowski's reformu-lation of his theory in terms of four-dimensional spa
etime to be no morethan �super�uous erudition�. Admitting that, unlike his seemingly stru
-tureless relativisti
 velo
ity addition law, the Lorentz transformation is anelegant group operation, Einstein is quoted as saying:�If you are out to des
ribe truth, leave elegan
e to the tailor.�Albert Einstein (1879 � 1955)One might, therefore, suppose that there is a pri
e to pay in math-emati
al elegan
e and regularity when repla
ing ordinary ve
tor additionapproa
h to Eu
lidean geometry with Einstein ve
tor addition approa
h tohyperboli
 geometry. But, this is not the 
ase sin
e grouplike loops, 
alledgyro
ommutative gyrogroups, 
ome to the res
ue. It turns out that Einsteinaddition of ve
tors with magnitudes < c is a gyro
ommutative gyrogroupoperation and, as su
h, it possesses a ri
h nonasso
iative algebrai
 andgeometri
 stru
ture. The best way to introdu
e the gyro
ommutative gy-rogroup notion that regulates the algebra of Einstein's relativisti
 velo
ityaddition law is o�ered by Möbius transformations of the dis
 [29℄. The sub-sequent transition from Möbius addition, whi
h regulates the Poin
aré ball
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 geometry, Fig. 1, to Einstein addition, whi
h regulatesthe Beltrami-Klein ball model of hyperboli
 geometry, Fig. 6, expressedin gyrolanguage, will then turn out to be remarkably simple and elegant[56, 57℄.Evidently, the grouplike loops that we naturally 
all gyro
ommutativegyrogroups, along with their extension to gyrove
tor spa
es, form a new toolfor the twenty-�rst 
entury exploration of 
lassi
al hyperboli
 geometry andits use in physi
s.2. Möbius transformations of the dis
Möbius transformations of the dis
 D,
D = {z ∈ C : |z| < 1} (1)of the 
omplex plane C o�er an elegant way to introdu
e the grouplike loopsthat we 
all gyrogroups. More than 150 years have passed sin
e AugustFerdinand Möbius �rst studied the transformations that now bear his name[35℄. Yet, the ri
h stru
ture he thereby exposed is still far from beingexhaustedAhlfors' book [1℄, Conformal Invariants: Topi
s in Geometri
 Fun
tionTheory, begins with a presentation of the Möbius self-transformation of the
omplex open unit dis
 D,

z 7→ eiθ a + z

1 + az
= eiθ(a⊕Mz) (2)

a, z∈D, θ∈R, where a is the 
omplex 
onjugate of a [14, p. 211℄ [19, p. 185℄[36, pp. 177 � 178℄. Suggestively, the polar de
omposition (2) of Möbiustransformation of the dis
 gives rise to Möbius addition, ⊕M ,
a⊕Mz =

a + z

1 + az
. (3)Naturally, Möbius subtra
tion, ⊖M , is given by a⊖Mz = a⊕M(−z), so that

z⊖Mz = 0 and ⊖Mz = 0⊖Mz = 0⊕M(−z) = −z. Remarkably, Möbiusaddition possesses the automorphi
 inverse property
⊖M(a⊕Mb) = ⊖Ma⊖Mb (4)and the left 
an
ellation law
⊖Ma⊕M(a⊕Mz) = z (5)



144 A. A. Ungarfor all a, b, z∈D, [56, 53℄.Möbius addition gives rise to the Möbius dis
 groupoid (D,⊕M), re
allingthat a groupoid (G,⊕) is a nonempty set, G, with a binary operation, ⊕,and that an automorphism of a groupoid (G,⊕) is a bije
tive self map fof G that respe
ts its binary operation ⊕, that is, f(a⊕b) = f(a)⊕f(b).The set of all automorphisms of a groupoid (G,⊕) forms a group, denoted
Aut(G,⊕).Möbius addition ⊕M in the dis
 is neither 
ommutative nor asso
iative.To measure the extent to whi
h Möbius addition deviates from asso
iativitywe de�ne the gyrator

gyr : D× D→ Aut(D,⊕M) (6)by the equation
gyr[a, b]z = ⊖M(a⊕Mb)⊕M{a⊕M(b⊕Mz)} (7)for all a, b, z∈D.The automorphisms

gyr[a, b] ∈ Aut(D,⊕M) (8)of D, a, b∈D, 
alled gyrations of D, have an important hyperboli
 geometri
interpretation [63℄. Thus, the gyrator in (6) generates the gyrations in(8). In order to emphasize that gyrations of D are also automorphisms of
(D,⊕M), as we will see below, they are also 
alled gyroautomorphisms.Clearly, in the spe
ial 
ase when the binary operation ⊕M in (7) is asso-
iative, gyr[a, b] redu
es to the trivial automorphism, gyr[a, b]z = z for all
z∈D. Hen
e, indeed, the self map gyr[a, b] of the dis
 D measures the extentto whi
h Möbius addition ⊕M in the dis
 D deviates from asso
iativity.One 
an readily simplify (7) in terms of (3), obtaining

gyr[a, b]z =
1 + ab

1 + ab
z (9)

a, b, z∈D, so that the gyrations
gyr[a, b] =

1 + ab

1 + ab
=

a⊕Mb

b⊕Ma
(10)are unimodular 
omplex numbers. As su
h, gyrations represent rotationsof the dis
 D about its 
enter, as shown in (9).



Gyrogroups, the grouplike loops 145Gyrations are invertible. The inverse, gyr−1[a, b] = (gyr[a, b])−1, of agyration gyr[a, b] is the gyration gyr[b, a],
gyr−1[a, b] = gyr[b, a] (11)Moreover, gyrations respe
t Möbius addition in the dis
,

gyr[a, b](c⊕Md) = gyr[a, b]c⊕Mgyr[a, b]d (12)for all a, b, c, d∈D, so that gyrations of the dis
 are automorphisms of thedis
, as anti
ipated in (8).Identity (10) 
an be written as
a⊕Mb = gyr[a, b](b⊕Ma) (13)thus giving rise to the gyro
ommutative law of Möbius addition. Further-more, Identity (7) 
an be manipulated, by mean of the left 
an
ellation law(5), into the identity

a⊕M(b⊕Mz) = (a⊕Mb)⊕Mgyr[a, b]z (14)thus giving rise to the left gyroasso
iative law of Möbius addition.The gyro
ommutative law, (13), and the left gyroasso
iative law, (14),of Möbius addition in the dis
 reveal the grouplike stru
ture of Möbiusgroupoid (D,⊕M), that we naturally 
all a gyro
ommutative gyrogroup. Tak-ing the key features of Möbius groupoid (D,⊕M) as axioms, and guided byanalogies with group theory, we thus obtain the following de�nitions ofgyrogroups and gyro
ommutative gyrogroups.De�nition 1. (Gyrogroups). A groupoid (G,⊕) is a gyrogroup if itsbinary operation satis�es the following axioms. In G there is at least oneelement, 0, 
alled a left identity, satisfying(G1) 0⊕a = afor all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) su
h that forea
h a ∈ G there is an element ⊖a ∈ G, 
alled a left inverse of a, satisfying(G2) ⊖a⊕a = 0 .Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ Gsu
h that the binary operation obeys the left gyroasso
iative law(G3) a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c .



146 A. A. UngarThe map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism ofthe groupoid (G,⊕), that is,(G4) gyr[a, b] ∈ Aut(G,⊕) ,and the automorphism gyr[a, b] of G is 
alled the gyroautomorphism, or thegyration, of G generated by a, b ∈ G. The operator gyr : G×G→ Aut(G,⊕)is 
alled the gyrator of G. Finally, the gyroautomorphism gyr[a, b] generatedby any a, b ∈ G possesses the left loop property(G5) gyr[a, b] = gyr[a⊕b, b] .The gyrogroup axioms (G1) � (G5) in De�nition 1 are 
lassi�ed intothree 
lasses:
(1) The �rst pair of axioms, (G1) and (G2), is a reminis
ent of the groupaxioms.
(2) The last pair of axioms, (G4) and (G5), presents the gyrator axioms.
(3) The middle axiom, (G3), is a hybrid axiom linking the two pairs ofaxioms in (1) and (2).The loop property (G5) turns out to be equivalent to the gyration-freeidentity

x⊕(y⊕(x⊕z)) = (x⊕(y⊕x))⊕z (15)whi
h loop theorists re
ognize as the left Bol identity [46, 47℄.As in group theory, we use the notation a⊖b = a⊕(⊖b) in gyrogrouptheory as well.In full analogy with groups, gyrogroups are 
lassi�ed into gyro
ommu-tative and non-gyro
ommutative gyrogroups.De�nition 2. (Gyro
ommutative gyrogroups). A gyrogroup (G,⊕)is gyro
ommutative if its binary operation obeys the gyro
ommutative law(G6) a⊕ b = gyr[a, b](b⊕ a)for all a, b ∈ G.Some �rst gyrogroup theorems, some of whi
h are analogous to grouptheorems, are presented in [56, Chap. 2℄. Thus, in parti
ular, the gyrogroupleft identity and left inverse are identi
al with their right 
ounterparts, andthe resulting identity and inverse are unique, as in group theory. Further-more, the left gyroasso
iative law and the left loop property are asso
iatedwith 
orresponding right 
ounterparts.



Gyrogroups, the grouplike loops 147A gyrogroup operation ⊕ 
omes with a dual operation, the 
ooperation(or, 
o-operation, for 
larity) ⊞ [56, Def. 2.7℄, given by the equation
a ⊞ b = a⊕gyr[a,⊖b]b (16)so that
a ⊟ b = a⊖gyr[a, b]b (17)for all a, b ∈ G, where we de�ne a ⊟ b = a ⊞ (⊖b). The gyrogroup 
oop-eration shares with its asso
iated gyrogroup operation remarkable dualitysymmetries as, for instan
e [56, Theorem 2.10℄,

a ⊞ b = a⊕gyr[a,⊖b]b

a⊕b = a ⊞ gyr[a, b]b
(18)Interestingly, by [56, Theorem 3.4℄, a gyrogroup 
ooperation is 
ommu-tative if and only if its 
orresponding gyrogroup is gyro
ommutative.The gyroautomorphisms have their own ri
h stru
ture as we see, forinstan
e, from the gyroautomorphism inversion property

(gyr[a, b])−1 = gyr[b, a] (19)from the loop property (left and right)
gyr[a, b] = gyr[a⊕b, b]

gyr[a, b] = gyr[a, b⊕a]
(20)and from the elegant nested gyroautomorphism identity

gyr[a, b] = gyr[⊖gyr[a, b]b, a] (21)for all a, b ∈ G in any gyrogroup G = (G,⊕). More gyroautomorphismidentities and important gyrogroup theorems, along with their appli
ations,are found in [53, 56, 62℄ and in [6, 13, 25, 26, 30, 45, 46, 47, 63℄.Thus, without losing the �avor of the group stru
ture we have gener-alized it into the gyrogroup stru
ture to suit the needs of Möbius additionin the dis
 and, more generally, in the open ball of any real inner produ
tspa
e [61℄, as we will show in Se
. 3. Gyrogroups abound in group theory,as shown in [15℄ and [16℄, where �nite and in�nite gyrogroups, both gyro-
ommutative and non-gyro
ommutative, are studied. Plenty of gyrogrouptheorems are found in [53, 56, 62℄. Furthermore, any gyrogroup 
an be ex-tended into a group, 
alled a gyrosemidire
t produ
t group [56, Se
. 2.6℄ [28℄.



148 A. A. UngarHen
e, the generalization of groups into gyrogroups bears an intriguing re-semblan
e to the generalization of the rational numbers into the real ones.The beginner is initially surprised to dis
over an irrational number, like √2,but soon later he is likely to realize that there are more irrational numbersthan rational ones. Similarly, the gyrogroup stru
ture of Möbius additioninitially 
omes as a surprise. But, interested explorers may soon realize thatin some sense there are more non-group gyrogroups than groups.In our �gyrolanguage�, as the reader has noti
ed, we atta
h the pre-�x �gyro� to a 
lassi
al term to mean the analogous term in our study ofgrouplike loops. The pre�x stems from Thomas gyration, whi
h is the math-emati
al abstra
tion of the relativisti
 e�e
t known as Thomas pre
ession,explained in [53℄. Indeed, gyrolanguage turns out to be the language weneed to arti
ulate novel analogies that the 
lassi
al and the modern in thispaper and in [53, 56, 62℄ share.3. Möbius addition in the ballIf we identify 
omplex numbers of the 
omplex plane C with ve
tors of theEu
lidean plane R
2 in the usual way,
C ∋ u = u1 + iu2 = (u1, u2) = u ∈ R

2 (22)then the inner produ
t and the norm in R
2 are given by the equations

ūv + uv̄ = 2u·v

|u| = ‖u‖
(23)These, in turn, enable us to translate Möbius addition from the 
omplexopen unit dis
 D into the open unit dis
 R

2
s=1 = {v∈R

2 : ‖v‖ < s = 1} of
R

2 [29℄:
D ∋ u⊕Mv =

u + v

1 + ūv

=
(1 + uv̄)(u + v)

(1 + ūv)(1 + uv̄)

=
(1 + ūv + uv̄ + |v|2)u + (1− |u|2)v

1 + ūv + uv̄ + |u|2|v|2

=
(1 + 2u·v + ‖v‖2)u + (1− ‖u‖2)v

1 + 2u·v + ‖u‖2‖v‖2
= u⊕Mv ∈ R

2
s=1

(24)



Gyrogroups, the grouplike loops 149for all u, v ∈ D and all u,v ∈ R
2
s=1. The last equation in (24) is a ve
torequation, so that its restri
tion to the ball of the Eu
lidean two-dimensionalspa
e R

2
s=1 is a mere artifa
t. As su
h, it survives unimpaired in higherdimensions, suggesting the following de�nition of Möbius addition in theball of any real inner produ
t spa
e.De�nition 3. (Möbius addition in the ball). Let V be a real innerprodu
t spa
e [33℄, and let Vs be the s-ball of V,

Vs = {Vs ∈ V : ‖v‖ < s} (25)for any �xed s > 0. Möbius addition ⊕M in the ball Vs is a binary operationin Vs given by the equation
u⊕Mv =

(1 + 2
s2 u·v + 1

s2 ‖v‖2)u + (1− 1
s2 ‖u‖2)v

1 + 2
s2 u·v + 1

s4 ‖u‖2‖v‖2
(26)

u,v∈Vs, where · and ‖·‖ are the inner produ
t and norm that the ball Vsinherits from its spa
e V.Without loss of generality, one may sele
t s = 1 in De�nition 3. We,however, prefer to keep s as a free positive parameter in order to exhibitthe result that in the limit as s→ ∞, the ball Vs expands to the whole ofits real inner produ
t spa
e V, and Möbius addition ⊕M in the ball redu
esto ve
tor addition in the spa
e. Remarkably, like the Möbius dis
 groupoid
(D,⊕M), also the Möbius ball groupoid (Vs,⊕M) forms a gyro
ommutativegyrogroup, 
alled a Möbius gyrogroup.Möbius addition in the ball Vs is known in the literature as a hyper-boli
 translation [2, 43℄. Following the dis
overy of the gyro
ommutativegyrogroup stru
ture in 1988 [50℄, Möbius hyperboli
 translation in the ball
Vs now deserves the title �Möbius addition� in the ball Vs, in full analogywith the standard ve
tor addition in the spa
e V that 
ontains the ball.Möbius addition in the ball Vs satis�es the gamma identity

γu⊕Mv = γuγv

√

1 +
2

s2
u·v +

1

s4
‖u‖2‖v‖2 (27)for all u,v ∈ Vs, where γu is the gamma fa
tor

γv =
1

√

1− ‖v‖
2

s2

(28)



150 A. A. Ungarin the s-ball Vs.Following (16), Möbius 
ooperation, also 
alled Möbius 
oaddition, inthe ball is 
ommutative, given by the equation
u ⊞M v =

γ2
uu + γ2

vv

γ2
u + γ2

v − 1
(29)for all u,v∈Vs. Note that v ⊞M 0 = v and v ⊟M v = 0, as expe
ted.4. Gyrogroups are loopsA loop is a groupoid (G,⊕) with an identity element, 0, su
h that ea
h ofits two loop equations for the unknowns x and y,

a⊕x = b

y⊕a = b
(30)possesses a unique solution in G for any a, b ∈ G [39, 40℄. Any gyrogroup isa loop. Indeed, if (G,⊕) is a gyrogroup then the respe
tive unique solutionsof the gyrogroup loop equations (30) are [56, Se
. 2.4℄

x = ⊖a⊕b

y = b ⊟ a
(31)The 
ogyrogroup (G, ⊞), asso
iated with any gyrogroup (G,⊕), is also aloop. The unique solutions of its two loop equations

a ⊞ x = b

y ⊞ a = b
(32)are [56, Theorem 2.38℄

x = ⊖(⊖b⊕a)

y = b⊖a
(33)Note that, in general, the two loop equations in (32) are identi
allythe same equation if and only if the gyrogroup 
ooperation ⊞ is 
ommu-tative. Hen
e, their solutions must be, in general, identi
al if and only ifthe gyrogroup 
ooperation ⊞ is 
ommutative. Indeed, a gyrogroup (G,⊕)possesses the gyroautomorphi
 inverse property, ⊖(a⊕b) = ⊖a⊖b, if and
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ommutative [56, Theorem 3.2℄. Hen
e, the two solutions,
x and y, in (33) are, in general, equal if and only if the gyrogroup (G,⊕)is gyro
ommutative. This result is 
ompatible with the result that a gy-rogroup is gyro
ommutative if and only if its 
ooperation ⊞ is 
ommutative[56, Theorem 3.4℄.The 
ogyrogroup is an important and interesting loop. Its algebrai
stru
ture is not grouplike, but it plays a 
ru
ial role in the study of the gy-roparallelogram law of Einstein's spe
ial relativity theory and its underlyinghyperboli
 geometry, Figs. 4, 5 and 8.It follows from the solutions of the loop equations in (30) and (32) thatany gyrogroup (G,⊕) possesses the following 
an
ellation laws [56, Table2.1℄:

a⊕(⊖a⊕b) = b

(b ⊟ a)⊕a = b

a ⊟ (⊖b⊕a) = b

(b⊖a) ⊞ a = b

(34)The �rst (se
ond) 
an
ellation law in (34) is 
alled the left (right) 
an-
ellation law. The last 
an
ellation law in (34) is 
alled the se
ond right
an
ellation law. The two right 
an
ellation laws in (34) form one of theduality symmetries that the gyrogroup operation and 
ooperation share,mentioned in the paragraph of (18). It is thus 
lear that in order to main-tain analogies between gyrogroups and groups, we need both the gyrogroupoperation and its asso
iated gyrogroup 
ooperation.In the spe
ial 
ase when a gyrogroup is gyro
ommutative, it is alsoknown as (i) aK-loop (a term 
oined by Ungar in [51℄; see also [27, pp. 1, 169-170℄); and (ii) a Bru
k loop [27, pp. 168℄. A new term, (iii) �dyadi
 symset�,whi
h emerges from an interesting work of Lawson and Lim in [31℄, turnsout, a

ording to [31, Theorem 8.8℄, to be identi
al with a two-divisible,torsion-free, gyro
ommutative gyrogroup [56, p. 71℄.5. Möbius s
alar multipli
ation in the ballHaving developed the Möbius gyrogroup as a grouplike loop, we do not stopat the loop level. En
ouraged by analogies gyrogroups share with groups,we now seek analogies with ve
tor spa
es as well. A

ordingly, we un
overthe s
alar multipli
ation, ⊗M , between a real number r ∈R and a ve
tor



152 A. A. Ungar
v∈Vs, that a Möbius gyrogroup (Vs,⊕M) admits, so that we 
an turn theMöbius gyrogroup into a Möbius gyrove
tor spa
e (Vs,⊕M ,⊗M). For anynatural number n∈N we de�ne and 
al
ulate n⊗Mv := v⊕M . . . ⊕Mv (n-terms), obtaining a result in whi
h we formally repla
e n by a real number
r, suggesting the following de�nition of the Möbius s
alar multipli
ation.De�nition 4. (Möbius s
alar multipli
ation). Let (Vs,⊕M) be a Möbiusgyrogroup. Then its 
orresponding Möbius gyrove
tor spa
e (Vs,⊕M ,⊗M)involves the Möbius s
alar multipli
ation r⊗Mv = v⊗Mr in Vs, given by theequation

r⊗Mv = s

(

1 +
‖v‖
s

)r

−
(

1− ‖v‖
s

)r

(

1 +
‖v‖
s

)r

+

(

1− ‖v‖
s

)r

v

‖v‖

= s tanh(r tanh−1 ‖v‖
s

)
v

‖v‖

(35)
where r∈R, v∈Vs, v 6= 0; and r⊗M0 = 0.Extending De�nition 4 by abstra
tion, we obtain the abstra
t gyrove
torspa
e, studied in [56, Chap. 6℄. As we go through the study of gyrove
torspa
es, we see remarkable analogies with 
lassi
al results unfolding. Inparti
ular, armed with the gyrove
tor spa
e stru
ture, we o�er a gyrove
torspa
e approa
h to the study of hyperboli
 geometry [56℄, whi
h is fullyanalogous to the 
ommon ve
tor spa
e approa
h to the study of Eu
lideangeometry [24℄. Our basi
 examples are presented in the sequel and shownin several �gures.6. Möbius gyroline and moreIn full analogy with straight lines in the standard ve
tor spa
e approa
h toEu
lidean geometry, let us 
onsider the gyroline equation in the ball Vs,

LAB := A⊕(⊖A⊕B)⊗t (36)
t∈R, A, B ∈ Vs, in a Möbius gyrove
tor spa
e (Vs,⊕,⊗). For simpli
ity,we use in this se
tion the notation ⊕M = ⊕ and ⊗M = ⊗. The gyrosegment
AB is the part of the gyroline (36) that links the points A and B. Hen
e,it is given by (36) with 0 6 t 6 1, Fig. 1.
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a

b

ma,b

p

d⊖(a,p)⊕d⊖(p,b) = d⊖(a,b)

a⊕(⊖a⊕b)⊗t

0 ≤ t ≤ 1

Figure 1. The gyrosegment that links the two
pointsa andb in the Möbius gyrovector plane
(R2

s,⊕,⊗). p is a generic point betweena
andb, andma,b is the midpoint of the points
a andb.

a

b

mc
a,b

p

d⊟(a,p) ⊞ d⊟(p,b) = d⊟(a,b)

(b ⊟ a)⊗t⊕a

0 ≤ t ≤ 1

b ⊟ mc
ab

p ⊟ a

Figure 2. The cogyrosegment that links the
two pointsa andb in the Möbius gyrovector
plane(R2

s,⊕,⊗). p is a generic point cobe-
tweena andb andma,b is the comidpoint of
the pointsa andb.For any t∈R the point P (t) = A⊕(⊖A⊕B)⊗t lies on the gyroline LAB .Thinking of t as time, at time t = 0 the point P lies at P (0) = A and,owing to the left 
an
ellation law in (34), at time t = 1 the point P lies at

P (1) = B. Furthermore, the point P rea
hes the gyromidpoint MAB of thepoints A and B at time t = 1/2,
MAB = A⊕(⊖A⊕B)⊗1

2 = 1
2⊗(A ⊞ B) (37)[56, Se
. 6.5℄. Here MAB is the unique gyromidpoint of the points A and

B in the gyrodistan
e sense, d(A, MAB ) = d(B, MAB ), the gyrodistan
efun
tion being d(A, B) = ‖⊖A⊕B‖ = ‖B⊖A‖.In the spe
ial 
ase when Vs = R
2
s, the gyroline LAB , shown in Fig. 1, isa 
ir
ular ar
 that interse
ts the boundary of the s-dis
 R

2
s orthogonally. Astudy of the 
onne
tion between gyrove
tor spa
es and di�erential geometry[56, Chap. 7℄ [57℄ reveals that this gyroline is the unique geodesi
 thatpasses through the points A and B in the Poin
aré dis
 model of hyperboli
geometry.The 
ogyroline equation in the ball Vs, similar to (36), is

Lc
AB := (B ⊟ A)⊗t⊕A (38)
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α

β

γ

a

b

c

A

B

C

a = ⊖C⊕B

b = ⊖C⊕A

c = ⊖B⊕A

a = ‖a‖, b = ‖b‖, c = ‖c‖

a2

s2 = cos α+cos(β+γ)
cos α+cos(β−γ)

b2

s2 = cos β+cos(α+γ)
cos α+cos(α−γ)

c2

s2 = cos γ+cos(α+β)
cos γ+cos(α−β)

cos γ = ⊖C⊕A
‖⊖C⊕A

· ⊖C⊕B
‖⊖C⊕B

δ = π − (α + β + γ) > 0

Figure 3. Möbius gyrotriangle and its standard notation and identities in a Möbius gyrovector
space(Vs,⊕,⊗). Remarkably, in the limit ass → ∞ the equations in the figure reduce to
their Euclidean counterparts. Thus, for instance, in that limit we havecos α + cos(β + γ) = 0
implying the Euclidean theorem according to which the triangle angle sum isπ, α+β +γ = π.

t∈R, A, B ∈ Vs, in a Möbius gyrove
tor spa
e (Vs,⊕,⊗). The 
ogyroseg-ment AB is the part of the 
ogyroline (38) that links the points A and B.Hen
e, it is given by (38) with 0 6 t 6 1, Fig. 2.For any t∈R the point P (t) = (B ⊟ A)⊗t⊕A lies on the 
ogyroline Lc
ABin (38). Thinking of t as time, at time t = 0 the point P lies at P (0) = Aand, owing to the right 
an
ellation law in (34), at time t = 1 the point

P lies at P (1) = B. Furthermore, the point P rea
hes the 
ogyromidpoint
M c

AB of the points A and B at time t = 1/2,
M c

AB = (B ⊟ A)⊗1
2⊕A = 1

2⊗(A⊕B) (39)[56, Theorem 6.34℄. Here M c
AB is the unique 
ogyromidpoint of the points

A and B in the 
ogyrodistan
e sense, dc(A, M c
AB ) = dc(B, M c

AB ), the 
ogy-rodistan
e fun
tion being dc(A, B) = ‖⊖A ⊞ B‖ = ‖B ⊟ A‖.In the spe
ial 
ase when Vs = R
2
s, the 
ogyroline Lc

AB , shown in Fig. 2,is a 
ir
ular ar
 that interse
ts the boundary of the s-dis
 R
2
s diametri
ally.Let A, B, C∈G be any three non-gyro
ollinear points of a Möbius gy-rove
tor spa
e G = (G,⊕,⊗). In Fig. 3 we see a gyrotriangle ABC whoseverti
es, A, B, and C, are linked by the gyrove
tors a, b, and c; and whose
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A

B

C

D◮

◮
◮

The Gyroparallelogram Law

(⊖A⊕B) ⊞ (⊖A⊕C) = ⊖A⊕D

b ⊞ c = d

b = ⊖A⊕B

c = ⊖A⊕C

d = ⊖A⊕D
b

c

d

Figure 4. The Möbius gyroparallelogram
ABDC and its associated gyroparallelogram
addition law of gyrovectors in a M̈obius gy-
rovector space(Vs,⊕,⊗) is shown.

A

B

C

D◮

◮

◮

The Gyroparallelogram Law

(⊖B⊕A) ⊞ (⊖B⊕D) = ⊖B⊕C

a ⊞ d = c

a = ⊖B⊕A

c = ⊖B⊕C

d = ⊖B⊕D

a

c

d

Figure 5. As a second example, the same
Möbius gyroparallelogramABDC in Fig. 4
gives rise to a second gyroparallelogram addi-
tion of gyrovectors.side gyrolengths are a, b, and c, given by the equations

a = ⊖C⊕B, a = ‖a‖
b = ⊖C⊕A, b = ‖b‖
c = ⊖B⊕A, c = ‖c‖

(40)With the gyrodistan
e fun
tion d(A, B) = ‖⊖A⊕B‖ = ‖B⊖A‖, we havethe gyrotriangle inequality [56, Theorem 6.9℄ d(A, C) 6 d(A, B)⊕d(B, C),in full analogy with the Eu
lidean triangle inequality.A gyrove
tor v = ⊖A⊕B in a Möbius gyrove
tor plane (R2
s,⊕,⊗) andin a Möbius three-dimensional gyrove
tor spa
e (R3

s,⊕,⊗) is representedgraphi
ally by the dire
ted gyrosegment AB from A to B as, for instan
e,in Figs. 4 � 5 and 8.Two gyrove
tors, (i) ⊖A⊕B, from A to B, and (ii) ⊖A′⊕B′, from A′ to
B′, in a gyrove
tor spa
e G = (G,⊕,⊗) are equivalent if

⊖A⊕B = ⊖A′⊕B′ (41)In the same way that ve
tors in Eu
lidean geometry are equivalen
e
lasses of dire
ted segments that add a

ording to the parallelogram law,
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tors in hyperboli
 geometry are equivalen
e 
lasses of dire
ted gy-rosegments that add a

ording to the gyroparallelogram law. A gyroparal-lelogram, the hyperboli
 parallelogram, sounds like a 
ontradi
tion in termssin
e parallelism in hyperboli
 geometry is denied. However, in full anal-ogy with Eu
lidean geometry, but with no referen
e to parallelism, thegyroparallelogram is de�ned as a hyperboli
 quadrilateral whose gyrodiag-onals interse
t at their gyromidpoints, as in Figs. 4 � 5. Indeed, any threenon-gyro
ollinear points A, B, C in a gyrove
tor spa
e (G,⊕,⊗) form agyroparallelogram ABDC if and only if D satis�ed the gyroparallelogram
ondition D = (B ⊞ C)⊖A [56, Se
. 6.7℄.An interesting 
ontrast between Eu
lidean and hyperboli
 geometry isobserved here. In Eu
lidean geometry ve
tor addition 
oin
ides with theparallelogram addition law. In 
ontrast, in hyperboli
 geometry gyrove
-tor addition, given by Möbius addition, and the Möbius gyroparallelogramaddition law are distin
t.7. Einstein operations in the ballDe�nition 5. (Einstein addition in the ball). Let V be a real innerprodu
t spa
e and let Vs be the s-ball of V,
Vs = {v ∈ V : ‖v‖ < s} (42)where s > 0 is an arbitrarily �xed 
onstant (that represents in physi
s theva
uum speed of light c). Einstein addition ⊕E is a binary operation in Vsgiven by the equation

u⊕Ev =
1

1 + u·v
s2

{

u +
1

γu

v +
1

s2

γu

1 + γu

(u·v)u

} (43)where γu is the gamma fa
tor, (28), in Vs, and where · and ‖·‖ are the innerprodu
t and norm that the ball Vs inherits from its spa
e V.We may note that the Eu
lidean 3-ve
tor algebra was not so widelyknown in 1905 and, 
onsequently, was not used by Einstein. Einstein 
al-
ulated in his founding paper [12℄ the behavior of the velo
ity 
omponentsparallel and orthogonal to the relative velo
ity between inertial systems,whi
h is as 
lose as one 
an get without ve
tors to the ve
torial version(43).
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a, t = 0

b, t = 1

The Einstein Gyroline
through the points a and b

a⊕
E
(⊖

E
a⊕

E
b)⊗

E
t

−∞ < t <∞

Figure 6. The unique gyroline in an Ein-
stein gyrovector space(Vs,⊕E,⊗E) through
two given pointsa and b. The case of the
Einstein gyrovector plane, whenVs = R

2

s is
the real open unit disc, is shown graphically.

a, t = 0

b, t = 1

b ⊟E a

The Cogyroline
through the points a and b

(b ⊟E a)⊗
E
t⊕

E
a

−∞ < t <∞

Figure 7. The unique cogyroline in an Ein-
stein gyrovector space(Vs,⊕E,⊗E) through
two given pointsa and b. The case of the
Einstein gyrovector plane, whenVs = R

2

s is
the real open unit disc, is shown graphically.Seemingly stru
tureless, Einstein velo
ity addition 
ould not play in Ein-stein's spe
ial theory of relativity a 
entral role. Indeed, Borel's attemptto �repair� the seemingly �defe
tive� Einstein velo
ity addition in the yearsfollowing 1912 is des
ribed in [65, p. 117℄. Fortunately, however, there isno need to �repair� the Einstein velo
ity addition law sin
e, like Möbiusaddition in the ball, Einstein addition in the ball is a gyro
ommutative gy-rogroup operation, whi
h gives rise to the Einstein ball gyrogroups (Vs,⊕E)and gyrove
tor spa
es (Vs,⊕E ,⊗E), Figs. 6 � 7 [53, 8℄. Furthermore, Ein-stein's gyration turns out to be the Thomas pre
ession of relativity physi
s[52℄, so that Thomas pre
ession is a kinemati
 e�e
t rather than a dynami
e�e
t as it is usually portrayed [58℄. A brief history of the dis
overy ofThomas pre
ession is presented in [53, Se
. 1.1℄.The gamma fa
tor is related to Einstein addition by the gamma identity

γu⊕Ev = γuγv

(

1 +
u·v
s2

) (44)This gamma identity provided the histori
 link between Einstein's spe
ialtheory of relativity and the hyperboli
 geometry of Bolyai and Loba
hevsky,as explained in [60℄.Einstein s
alar multipli
ation in the ball Vs is identi
al with Möbiuss
alar multipli
ation, (35), in the ball Vs, r⊗Ev = r⊗Mv for all r∈R and
v∈Vs. Hen
e Einstein and Möbius s
alar multipli
ation are denoted here,
olle
tively, by ⊗.The isomorphism between Einstein addition ⊕E and Möbius addition
⊕M in the ball Vs is surprisingly simple when expressed in gyrolanguage,
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tor spa
es. As we see from [56, Table 6.1℄, thegyrove
tor spa
e isomorphism between (Vs,⊕E ,⊗) and (Vs,⊕M ,⊗) is givenby the equations
u⊕Ev = 2⊗(1

2⊗u⊕M 1
2⊗v)

u⊕Mv = 1
2⊗(2⊗u⊕E2⊗v)

(45)Following (16), Einstein 
ooperation, also 
alled Einstein 
oaddition, inthe ball is 
ommutative, given by the equation
u ⊞E v = 2⊗γuu + γvv

γu + γv

(46)for all u,v∈Vs. Clearly, v ⊟E v = 0. Noting the Einstein half,
1
2⊗v = γv

1+γv

v (47)and the s
alar asso
iative law of gyrove
tor spa
es [56, p. 138℄, it is 
learfrom (46) � (47) that v ⊞E 0 = v, as expe
ted.Einstein noted in 1905 that�Das Gesetz vom Parallelogramm der Ges
hwindigkeiten giltalso na
h unserer Theorie nur in erster Annäherung.�A. Einstein [12℄, 1905[Thus the law of velo
ity parallelogram is valid a

ording to our theory onlyto a �rst approximation.℄We now see that with our gyrove
tor spa
e approa
h to hyperboli
 ge-ometry, Einstein's non
ommutative addition ⊕E gives rise to an exa
t hy-perboli
 parallelogram addition ⊞E , Fig. 8, whi
h is 
ommutative. The
ogyrogroup (Vs, ⊞) is thus an important 
ommutative loop that regulatesalgebrai
ally the hyperboli
 parallelogram [59℄.An interesting 
ontrast between Eu
lidean and hyperboli
 geometry isthus observed here. In Eu
lidean geometry and in 
lassi
al me
hani
s ve
toraddition 
oin
ides with the parallelogram addition law. In 
ontrast, in hy-perboli
 geometry and in relativisti
 me
hani
s gyrove
tor addition, givenby Einstein addition, u⊕Ev, and the gyroparallelogram addition, u ⊞E v in
Vs, are distin
t. We thus fa
e the problem of whether the ultimate relativis-ti
 velo
ity addition is given by the (i) non-
ommutative Einstein velo
ityaddition law in (43), or by the (ii) 
ommutative Einstein gyroparallelogram
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◮

◮
◮

A

B

C
D

u

v w

D = (B ⊞ C)⊖A

u = ⊖A⊕B
v = ⊖A⊕C
w = ⊖A⊕D

u ⊞ v = w

Figure 8. The Einstein gyroparallelogram addition law of relativistically admissible veloci-
ties. LetA, B, C∈R

3

s be any three nongyrocollinear points of an Einstein gyrovector space
(R3

s,⊕,⊗), giving rise to the two gyrovectorsu = ⊖A⊕B andv = ⊖A⊕C. Furthermore,
let D be a point of the gyrovector space such thatABDC is a gyroparallelogram, that is,
D = (B ⊞ C)⊖A. Then, Einstein coaddition ofu andv, u⊞ v = w, obeys the gyroparallelo-
gram law,w = ⊖A⊕D, just as vector addition in(R3, +) obeys the parallelogram law. Einstein
coaddition,⊞, thus gives rise to the gyroparallelogram addition law of Einsteinian velocities,
which is commutative and fully analogous to the parallelogram addition law of Newtonian
velocities.addition law in Fig. 8. Fortunately, a 
osmi
 phenomenon that 
an providethe ultimate resolution of the problem does exist. It is the stellar aberration,illustrated 
lassi
ally and relativisti
ally for parti
le aberration in Figs. 9and 10.A 
osmi
 experiment in our 
osmi
 laboratory, the Universe, that 
anvalidate the Einstein gyroparallelogram addition law, Fig. 8, and its asso-
iated gyrotriangle addition law of Einsteinian velo
ities shown in Fig. 10,is the stellar aberration [48℄. Stellar aberration is parti
le aberration wherethe parti
le is a photon emitted from a star. Parti
le aberration, in turn,is the 
hange in the apparent dire
tion of a moving parti
le 
aused by therelative motion between two observers. The 
ase when the two observersare E (at rest relative to the Earth) and S (at rest relative to the Sun) isshown graphi
ally in Fig. 9 (
lassi
al interpretation) and Fig. 10 (relativisti
interpretation). Obviously, in order to dete
t stellar aberration there is noneed to pla
e an observer at rest relative to the Sun sin
e this e�e
t variesduring the year. It is this variation that 
an be observed by observers atrest relative to the Earth.The 
lassi
al interpretation of parti
le aberration is obvious in terms ofthe triangle law of Newtonian velo
ity addition (whi
h is the 
ommon ve
toraddition in Eu
lidean geometry), as demonstrated graphi
ally in Fig. 9. The
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ESQ

P

ps pe

← v

b

a
θs θe

→→

v = −E + S ∈ R
3

+ being a group operation

in (R3,+)

Figure 9. Particle Aberration: Classical in-
terpretation in terms of the triangle law of
addition of Newtonian velocities in the stan-
dard model of 3-dimensional Euclidean geom-
etry (R3, +). Two dimensions are shown for
graphical clarity. Here + is the common vector
addition inR

3.
A particleP moves with Newtonian velocity
pe (ps) relative to the EarthE (the SunS),
making an angleθe (θs) with the Newtonian
velocityv of the SunS relative to the EarthE.
In order to calculate the Newtonian (classical)
particle aberrationθs − θe, the Euclidean tri-
angleESP is augmented into the Euclidean
right-angled triangleEQP , allowing elemen-
tary trigonometry to be employed.
Points are given by their orthogonal Cartesian
coordinates(x, y, z), x2+y2 +z2 < ∞. The
coordinates are not shown.
The Euclidity of(R3, +) is determined by the
Euclidean metric in which the distance be-
tween two pointsA, B is ‖ − A + B‖.

ESQ

P

ps pe

← v

b

a
θs θe

→→
v = ⊖E⊕S ∈ R

3
c

⊕ being a loop operation

in (R3
c ,⊕)

Figure 10. Particle Aberration: Relativistic
interpretation in terms of the gyrotriangle law
of addition of Einsteinian velocities in the
Beltrami-Klein ball model of 3-dimensional
hyperbolic geometry(R3

c,⊕). Here⊕ is Ein-
stein addition in thec-ball R3

c ⊂ R
3.

A particleP moves with Einsteinian velocity
pe (ps) relative to the EarthE (the SunS),
making an angleθe (θs) with the Einsteinian
velocityv of the SunS relative to the EarthE.
In order to calculate the relativistic particle
aberrationθs − θe, the gyrotriangleESP

is augmented into the right-gyroangled gy-
rotriangle EQP , allowing elementary gy-
rotrigonometry to be employed [62].
Points are given by their orthogonal Cartesian
coordinates(x, y, z), x2 +y2 +z2 < c2. The
coordinates are not shown.
The hyperbolicity of(R3

c,⊕) is determined by
the hyperbolic gyrometric in which the dis-
tance between two pointsA,B is given by
‖⊖A⊕B‖.relativisti
 interpretation of parti
le aberration is, however, less obvious.Relativisti
 parti
le aberration is illustrated in Fig. 10 in terms of analo-gies that it shares with its 
lassi
al interpretation in Fig. 9. These analogiesare just analogies that gyro
ommutative gyrogroups share with 
ommuta-tive groups and gyrove
tor spa
es share with ve
tor spa
es. Remarkably,the resulting expressions that des
ribe the relativisti
 stellar aberration phe-nomenon, obtained by our gyrove
tor spa
e approa
h, agree with expres-sions that are obtained in the literature by employing the relativisti
 Lorentztransformation group. Our gyrove
tor spa
e approa
h is thus 
apable of re-
overing known results in astrophysi
s, to whi
h it gives new geometri
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lassi
al interpretations.8. Dark matter of the universeWhat is the universe made of? We do not know. If stan-dard gravitational theory is 
orre
t, then most of the matterin the universe is in an unidenti�ed form that does not emitenough light to have been dete
ted by 
urrent instrumenta-tion. Astronomers and physi
ists are 
ollaborating on analyzingthe 
hara
teristi
s of this dark matter and in exploring possiblephysi
s or astronomi
al 
andidates for the unseen material.S. Weinberg and J. Bah
all [4, p. v℄Fortunately, our gyrove
tor spa
e approa
h is 
apable of dis
overing anovel result in astrophysi
s as well, proposing a viable me
hanism for theformation of the dark matter of the Universe.We have seen in Se
. 8 that the 
osmi
 e�e
t of stellar aberration sup-ports our gyrove
tor gyrospa
e approa
h guided by analogies that it shareswith the 
ommon ve
tor spa
e approa
h. Another 
osmi
 e�e
t that maysupport a relativisti
 physi
al novel result obtained by our gyrove
tor spa
eapproa
h to Einstein's spe
ial theory of relativity is related to the elusiverelativisti
 
enter of mass. The di�
ulties in attempts to obtain a satis-fa
tory relativisti
 
enter of mass de�nition were dis
ussed by Born andFu
hs in 1940 [7℄, but they did not propose a satisfa
tory de�nition. Para-doxi
ally, �In relativity, in 
ontrast to Newtonian me
hani
s, the 
entre ofmass of a system is not uniquely determined�, as Rindler stated with a sup-porting example [44, p. 89℄. Indeed, in 1948 M.H.L. Pry
e [41℄ rea
hed the
on
lusion that �there appears to be no wholly satisfa
tory de�nition of the[relativisti
℄ mass-
entre.� Subsequently, Pry
e's 
on
lusion was 
on�rmedby many authors who proposed various de�nitions for the relativisti
 
enterof mass; see for instan
e [3, 17, 32℄ and referen
es therein, where variousapproa
hes to the 
on
ept of the relativisti
 
enter of mass are studied.Consequently, Goldstein stated that �a meaningful 
enter-of-mass (some-times 
alled 
enter-of-energy) 
an be de�ned in spe
ial relativity only interms of the angular-momentum tensor, and only for a parti
ular frame ofreferen
e.� [18, p. 320℄.Fortunately, the spa
etime geometri
 insight that our novel grouplikeloop approa
h o�ers enables the elusive �manifestly 
ovariant� relativisti




162 A. A. Ungar
enter of mass of a parti
le system with proper time to be identi�ed. It turnsout to be analogous to the 
lassi
al 
enter of mass to the mass of whi
h aspe
i�ed �
titious mass must be added so as to render it �manifestly 
ovari-ant� with respe
t to the motions of hyperboli
 geometry. Spe
i�
ally, let
S = S(mk,vk, Σ0, N), be an isolated system of N nonintera
ting materialparti
les the k-th parti
le of whi
h has mass mk > 0 and velo
ity vk∈R

3
crelative to a rest frame Σ0, k = 1, . . . , N . Then, 
lassi
ally, the system Sof N parti
les 
an be viewed as a �
titious single parti
le lo
ated at the
enter of mass of S, with mass m0 =

∑N
k=1 mk that equals the total massof the 
onstituent parti
les of S. Relativisti
ally, however, symmetries aredetermined by gyrogroup, rather than group, symmetries. As in the 
lassi-
al 
ounterpart, the system S 
an be viewed in Einstein's spe
ial theory ofrelativity as a �
titious single parti
le lo
ated at the relativisti
 
enter ofmass of S (spe
i�ed in [62℄), with mass m0 that we present in (48) below.In order to obey ne
essary relativisti
 symmetries, the mass m0 of therelativisti
 
enter of mass of S must ex
eed, in general, the total mass ofthe 
onstituent parti
les of S a

ording to the equation

m0 =

√

√

√

√

√

√

(

N
∑

k=1

mk

)2

+ 2
N

∑

j,k=1
j<k

mjmk(γ⊖vj⊕vk
− 1) ≥

N
∑

k=1

mk (48)as explained in [62℄.The additional, �
titious mass m0 −
∑N

k=1 mk in (48) of the system Sresults from relative velo
ities, ⊖vj⊕vk, j, k = 1, . . . , N , between parti
lesof the system S. The �
titious mass of a rigid parti
le system, therefore,vanishes. The �
titious mass of nonrigid galaxies does not vanish and,hen
e, 
ould a

ount for the dark matter needed to gravitationally �glue�ea
h nonrigid galaxy together.Indeed, the 
osmi
 laboratory, our Universe, may support the existen
eof the predi
ted �
titious mass in (48) as the mass of the dark matter inthe Universe that astrophysi
ists are for
ed to postulate but 
annot dete
t[4, 34, 10, 37, 49℄. Hen
e, in order to un
over a viable me
hanism thata

ounts for the formation of dark matter that manifests itself only throughgravitational intera
tion, there is no need to modify the laws of physi
s, asMilgrom proposed in [34℄. Rather, one 
an �nd it in our grouplike loopapproa
h that improves our understanding of Einstein's spe
ial theory ofrelativity and its underlying hyperboli
 geometry of Bolyai and Loba
hevsky[62℄.
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h gyrove
tor of QICBlo
h ve
tor is well known in the theory of quantum information and 
om-putation (QIC). We will show that, in fa
t, Blo
h ve
tor is not a ve
torbut, rather, a gyrove
tor [9, 54, 55℄. It is easy to predi
t that in the presenttwenty-�rst 
entury it is quantum me
hani
s that will in
reasingly in�uen
eour lives. Hen
e, it would be interesting to see what gyrove
tor spa
es haveto o�er in QIC.A qubit is a two state quantum system 
ompletely des
ribed by the qubitdensity matrix ρv,
ρv = 1

2

(

1 + v3 v1 − iv2

v1 + iv2 1− v3

) (49)parametrized by the ve
tor v = (v1, v2, v3)∈B
3 in the open unit ball B

3 =
R

3
s=1 of the Eu
lidean 3-spa
e R

3. The ve
tor v in the ball is known in QICas the Blo
h ve
tor. However, we will see that it would be more appropriateto 
all it a gyrove
tor rather than a ve
tor.The density matrix produ
t of the four density matri
es in the followingequation, whi
h are parametrized by two distin
t Blo
h ve
tors u and v,
an be written as a single density matrix parametrized by the Blo
h ve
tor
w, multiplied by the tra
e of the matrix produ
t,

ρuρvρvρu = tr[ρuρvρvρu]ρw (50)
u,v∈B

3. Here tr[m] is the tra
e of a square matrix m, and
w = u⊕M(2⊗v⊕Mu) = 2⊗(u⊕Mv) (51)Identity (51) is one of several identities available in [9, 54, 55℄ that demon-strate the 
ompatibility of density matrix manipulations and gyrove
torspa
e manipulations.Two Blo
h ve
tors u and v generate the two density matri
es ρu and

ρv that, in turn, generate the Bures �delity F(ρu, ρv) that we may alsowrite as F(u,v). The Bures �delity F(u,v) is a most important distan
emeasure between quantum states ρu and ρv of the qubit in QIC, given bythe equations
F(u,v) =

[

tr
√√

ρuρv

√
ρu

]2

= 1
2

1 + γu⊕Ev

γuγv

(52)The �rst equation in (52) is well known [38, 67℄, and the se
ond equation in(52) is a gyrove
tor spa
e equation veri�ed in [56, Eq. 9.69℄. Identity (51)



164 A. A. Ungarand the se
ond identity in (52) indi
ate that in density matrix manipulationsin QIC, Blo
h ve
tors appear to behave like gyrove
tors in Möbius gyrove
-tor spa
es (R3
s=1,⊕M ,⊗) and in Einstein gyrove
tor spa
es (R3

s=1,⊕E ,⊗).Indeed, sin
e the Bures �delity has parti
ularly wide 
urren
y todayin QIC geometry, Nielsen and Chuang had to admit for their 
hagrin [38,p. 410℄ that�Unfortunately, no similarly [alluding to Eu
lidean geometri
interpretation℄ 
lear geometri
 interpretation is known for the�delity between two states of a qubit�.It is therefore interesting to realize that while Bures �delity has noEu
lidean geometri
 interpretation, as Nielsen and Chuang admit, it doeshave a hyperboli
 geometri
 interpretation, whi
h is algebrai
ally regulatedby our grouplike loops and their asso
iated gyrove
tor spa
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