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Fuzzy (strong) congruence relations

on hypergroupoids and hyper BCK-algebras

Reza Ameri, Mahmoud Bakhshi, Seyyed A. Nematollah Zadeh

and Rajabali Borzooei

Abstract
We define the concept of fuzzy (strong) congruence relations on hyper-
groupoids and hyper BC'K-algebras and construct a quotient hyperstruc-
ture on a hypergroupoid. In particular, we prove that if H is a (semi)
hypergroup and R is a fuzzy (strong) congruence relation on H, then H/R
is a (semi) group. Finally, by considering the notion of a hyper BCK-
algebra, we construct a quotient hyper BC K-algebra.

1. Introduction

The notion of a hyperstructure was introduced by F. Marty [13]| in 1934 at
the 8" congress of Scandinavian Mathematicians and the notion of a fuzzy
set was introduced by Zadeh [16] in 1965. The study of BCK-algebras
was initiated by Y. Imai and K. Iséki [7] in 1966 as a generalization of
the concept of the set-theoretic difference and propositional calculi. In this
paper, we use the notion of a fuzzy set and define the concept of a fuzzy
(strong) congruence relation on hypergroupoids and hyper BC K-algebras
and we obtain some results as mentioned in the abstract.

2. Fuzzy (strong) congruence relations

Definition 1. By a hypergroupoid we mean a nonempty set H endowed
with a binary hyperoperation "o" (i.e., a function o : H x H — P(H),
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where P(H) is the set of all nonempty subsets of H.)
Let © be a binary relation on a hypergroupoid H and A, B C H. Then:

(a) AOB means that there exist a € A and b € B such that a©b,

(b) A©B means that for a € A there exists b € B and for b € B there
exists a € A such that a©b,

(¢) A©®B means that a®b for each a € A and for b € B,

(d) © is left (resp. right) compatible if Oy implies a o 1Oa o y (resp.
xoaByoa) forall x,y,a € H,

(e) © is strong left (resp. right) compatible if 2Oy implies a o 20a o Yy
(resp. 0 aOyoa),

(f) © is (resp. strong) compatible if it is both (resp. strong) left and right
compatible,

(g) ©isa (resp. strong) congruence relation on H if it is a (resp. strong)
compatible equivalence relation on H.

Definition 2. Let H be a nonempty set and R be a fuzzy relation on H.
We say that R satisfies the sup property if for every subset T of H there

exists (u,v) € T? such that sup R(z,y) = R(u,v). R is said to be a
(,y)eT?
fuzzy equivalence relation if

R(z,x) = \/ R(y, 2), (fuzzy reflexive)
(y,z)eH?
R(y,z) = R(x,y), (fuzzy symmetric)

R(z,y) > \/ (R(x,2) AN R(z,y)), (fuzzy transitive).
z€H

Definition 3. Let H be a nonempty set and R be a fuzzy relation on H.
Then, for all @ € [0,1], the a-level subset and strong a-level subset of R
respectively, is defined as follows:

R ={(z,y) € H* : R(z,y) > o}
R*” ={(z,y) € H?: R(z,y) > a}
Lemma 1. Let R be a fuzzy relation on o nonempty set H. Then:
R*= (| R" and R* = |J R’
B€[0,a) Be(a,1]

for all a € [0,1].
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Proof. Let a € [0,1] and 8 < a. Then R* C R% and so R* C (] R”.

Be[0,)
Conversely, let € > 0 be given and (z,y) ﬂ RP. Then R(z,y) > a—c¢,
pel0,@)
which implies that R(z,y) > « and hence (z,y) € R*. Similarly, the other
part can be proved. O

Theorem 1. (cf. [3]) Let R be a fuzzy relation on nonempty set H. Then
the following properties are equivalent:

(1) R is a fuzzy equivalence relation on H,
(i1) R™ # 0 is an equivalence relation on H for all a € [0,1],
(iii) R™ # 0 is an equivalence relation on H for all a € [0,1]. O

Definition 4. Fuzzy relation R on hypergroupoid H is said to be
(1) fuzzy left compatible iff
( /\ \/ R(uv) ( /\ \/ Ruv)/ R(a,b) Ya,b,c € H,
UuEcoa vEcob VEcob uEcoa
and fuzzy right compatible iff

(/\ \/R(““> (/\ \/Ruv)/ R(a,b) Va,b,c€ H,

u€aoc vEboc vEboc uE€aoc
(ii) fuzzy strong left compatible iff

A\ R(u,v) > R(a,b) Va,bce H.

u€coa,vEcob

and fuzzy strong right compatible iff

/\ R(u,v) > R(a,b), Ya,b,c € H

u€aoc,vEboc

Clearly, every fuzzy strong left (resp. right) compatible relation is a
fuzzy left (resp. right) compatible relation, but the converse is not true.

Theorem 2. Let R be a fuzzy relation on o hypergroupoid H that satisfies
the sup property. Then the following statements are equivalent:

(1) R is fuzzy left (resp. right) compatible,



222 R. Ameri, M. Bakhshi, S. A. Nematollah Zadeh and R. Borzooei

(i1) R # 0 is left (resp. right) compatible, for all a € [0, 1],

(iii) R # 0 is left (resp. right) compatible, for all o € [0,1].
Proof. We prove only for "left" compatible, the other cases can be proved
in a similar way.

(1) = (17) Let R* # 0. For a € [0,1] and z,y,a € H let xRy and
u € x o a. Since by (i), R is fuzzy left compatible, then

( /\ \/ R(u,v)>/\( /\ \/ R(u,v))}R(xvy)>a

ueaoxr veaoy vEaoy ucaoxr

and so

/\\/Ruv aand/\\/Ruv/

ucaoxr veaoy vEaoy ucaoxr

Hence, for all u € aoz, \/ R(u,v) > o and for all v € aoy, \/ R(u,v) >

veaoy ueaoxr
a. Since, R satisfies the sup property, then there exist vg € a oy and
up € aox such that R(u,vg) = \/Ruv ) = afor all u € aox and
vEaoy
R(ugp,v \/ R(u,v) > « for all v € aoy. Hence, (u,v9) € R* and

ueaox

(ug,v) € R, for all u € aox and v € aoy. This implies that R* is left
compatible.

(i) = (iii) Let R*™ # 0, for a € [0,1] and z,y,a € H be such that
2R* y and u € aoz. Thus by Lemma 1, there exists 3 € («, 1] such that
zR%y. Since RP is left compatible, then a o zRPa oy, and so there exists
v € aoy such that uR%v. Thus, R(u,v) > B > a. This shows that uR* v
Similarly, if v € a oy, then there exists u € a oz such that R(u,v) > « and
so uR* v. Therefore, R*” is left compatible.

(#i1) = (i) Suppose that z,y,a € H are such that R(x,y) = a. Then
by Lemma 1, for all 8 € [0,a) we have zR% y. So, by (iii) we have
aoxRP” aoy, and so for all u € aox there exists v € aoy such that uR% v
i.e., R(u,v) > (. This implies that /\ \/ R(u,v) > f, forall 5 € [0, «).

ueaoxr veaoy
Similarly, for all v € a o y there exists u € a o x such that wRP” v and so

/\ \/ R(u,v) > 3, for all § € [0,«). Hence, /\ \/ R(u,v) > a =

vEaoy ucaoxr u€aor vEaoy
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R(z,y) and /\ \/ R(u,v) > a = R(z,y), which implies

vEAOy uEaoxr

( /\ \/ R(u,v))/\< /\ \/ R(u,v)) > R(z,y).

ucaor vEaoy vEaoy ucaoxr

Thus, R is fuzzy left compatible. O

Theorem 3. For a fuzzy relation R on a hypergroupoid H satisfying the
sup property the following properties are equivalent:

(1) R is fuzzy strong left (resp. right) compatible,
(i1) R™ # 0 is strong left (resp. right) compatible, for all a € [0,1],
(iii) R # 0 is strong left (resp. right) compatible, for all o € [0,1].

Proof. (i) = (ii) Let R be a fuzzy strong left compatible relation on H,
a € H and x,y € H be such that xRy, for some a € [0,1]. Then for all
ucaoxrandvEaoy,

R(u,v) > /\ R(w,w') > R(z,y) > «

weEaox, w €aoy

that is uR“v. This shows that R is a strong left compatible relation on H.

(i1) = (4ii) Let R® # () be a strong left compatible relation on H,
for « € L, x,y € H be such that :URO‘>y and a € H. Then, there exists
B € (o, 1] such that 2Ry and so by (i), ao xR%aoy. This implies that for
allw € aow and for all v € aoy, R(u,v) > f > a and so uR* v. Hence,

ao 33R5‘>a o gy, which implies that R is a strong left compatible relation
on H.

(4it) = (i) Let a € H and z,y € H be such that R(z,y) = «, for
a € [0,1]. Then, by Lemma 1, for all 8 € [0, ) we have 2R5 y and so by

(7i1), a oxRP aoy;ie., forall u € aox and for all v € aoy, uR" v ie.,
R(u,v) > f, for all § € [0, ). Thus R(u,v) > a, and hence

/\ R(u,v) > a = R(x,y).

ucaox,veaoy

Therefore, R is a fuzzy strong left compatible relation on H. O
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Definition 5. Let R be a fuzzy relation on a hypergroupoid H. Then, R
is said to be

(1) fuzzy compatible if

(A VEwo)A( AV R@)) > RabARC ), Yobede T,

ucaoc yebod vEbod u€aoc

(ii) fuzzy strong compatible if

AN R(u,v) > R(a,b) AR(c,d), Va,bc,de H.

u€aoc,vebod

Definition 6. By a fuzzy (resp. strong) congruence relation we mean a
fuzzy (resp. strong) compatible equivalence relation.

Theorem 4. A fuzzy relation R is a (resp. strong) fuzzy congruence relation
if and only if it is both a (resp. strong) left and right fuzzy compatible
equivalence relation.

Proof. Let R be a fuzzy congruence relation on H and a,z,y € H. Then

( /\ \/ R(u, U)) A ( /\ \/ R(u,v)) > R(z,y) A R(a,a) = R(z,y)

u€aoxr vEaoy vEaoy ucaoxr

which shows that R is a fuzzy left compatible relation on H. Similarly, it
can be shown that R is a fuzzy right compatible relation on H.

Conversely, suppose that R is both a fuzzy left and right compatible
equivalence relation on H and a,b,c,d € H. Now, for every v € a o ¢ and
every v € bod, by transitivity of R, we have

R(u,v) > \/ (R(u,y) AN R(y,v)) = R(u, w) N R(w,v), Ywe€boc
yeH

and so

R(u,v) > ( \/ R(u,w)) /\( \/ R(w,v)).

weboc weboc

Thus

\/ R(u,v) > /\ R(u,v) 2( \/ R(u,w)) /\< /\ \/ R(w,v))

vEbod vEbod wEboc vEbod weEboc
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and hence
AV Rwv) > (A V Rew)r( NV Rww)
ucaoc vebod ueaoc weboc vebod weboc

> R(a,b) N R(c,d).

Therefore, R is a fuzzy congruence relation on H.

Now, let R be a fuzzy strong congruence relation on H and z,y,a € H.

Then,
/\ R(u,v) > R(a,a) N R(x,y) = R(z,y).
ucaox, veaoy

Hence, R is fuzzy strong left compatible. The proof for "fuzzy strong right"
is similar.

Conversely, let R be a fuzzy strong left and right compatible, a,b,c,d €
H. Then,

R(a,b) < /\ R(u,v) and R(c,d) < /\ R(u,v)

u€aoc, vEboc u€boc, veEbod
and so
R(a,b) A R(c,d) < ( A R, u)) A ( A R(u,v)).
uEaoc, vEboc u€boc, veEbod

For every u € aoc and v € bod, by transitivity of R, we have

R(u,v) > é/H(R(u,y) A R(y,v)) 2 R(u,w) AN R(w,v), Yw€Eboc
= A R(u,v)) A ( A R(u,v)) = R(a,b) A R(c,d).

u€aoc, vEboc weEboc, zEbod
Thus R is a fuzzy strong congruence relation on H. 0
By Theorems 1, 2, 3 and 4 we have the following corollary.

Corollary 1. Let R be a fuzzy relation on a hypergroupoid H that satisfies
the sup property. Then,

(1) R is a fuzzy congruence relation on H if and only if every nonempty o-
level set R* of R 1is both left and right compatible equivalence relation,
(ii) R is a fuzzy strong congruence relation on H if and only if every

nonempty a-level set R* of R is both strong left and right compatible
equivalence relation on H. O
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Let R be a fuzzy relation on H. For all x € H, define a fuzzy subset p
on H by pz(y) = R(y,z), for all y € H.

Lemma 2. Let R be a fuzzy equivalence relation on a hypergroupoid H.
Then, pz = iy if and only if R(x,y) = \/ R(u,v).
u,vEH

Proof. (i) Let pg = py, for x,y € H. Since, R is fuzzy reflexive, then

R(z,y) = py(x) = pe(z) = R(z,x) = \/ R(u,v).

Conversely, suppose that R(z,y) \/ R(u,v), for z,y € H and w € H.
u,veH
Since R is fuzzy symmetric and fuzzy transitive, we obtain

a(w) = R(w, ) = R(z,w) > R(z,y) A R(y,w)

= (Vuwern R(w,0)) A Rly, w) = Ry, w) = py(w).
Similarly, we can show that g, (w) > pz(w). Thus, pz(w) = py(w) and so
Mz = Hy- [

Theorem 5. Let R be a fuzzy congruence relation on H with the sup prop-
erty and H/R = {puy : ®* € H}. Then (H/R,©) is a hypergroupoid, where
binary hyperoperation "o" is defined by

ﬂrouy:{ﬂzzzexoy}:,&woy-

Proof. First, we show that "o" is well-defined. Let p, = ppr and py = pyy,

for iz, ftar s fty, oy € H/R. Then, by Lemma 2, R(x,z") \/ R(u,v) =
u,veEH
R(y,y). Let a = \/ R(u,v). Then xR*x’ and yR*y" and by Corollary
u,veEH

1, R® is a congruence relation on H, then z o yR®z' o y/. Now, let pu, €

Pz © [y = [lzoy. Then there exists 2z’ € x oy such that p, = p,. On the

other hand, since z oyRz’ oy, then there exists u € 2’ oy’ such that 2/ R%u

and so R(z',u) > a = \/ R(u,v) > R(7',u). Hence, R(',u) = a. Now,
u,veH

for w € H we have

e (w) = py(w) = R(w, 2') = R(Z,w) > R(Z',u) A R(u,w) = a A R(u,w)
= R(u,w) = R(w,u) = py(w)
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and S0 p, = . Similarly g, > p,. Hence, p, = py and so p, = fy €
Patoy = Ha' © [y, since u € &’ oy, Thus iy © p1y C fizr © pty. Analogously,
gt © fyr C fig © fy. Thus piz © ty = g © pryy. This completes the proof. [

In the following, we briefly give some preliminaries about hypergroups.

Definition 7. (cf. [5]) Let (H,o0) be a hypergroupoid. Then H is called a
semihypergroup if "o" is associative i.e., (roy)oz = xo(yoz), for all z,y, z €
H. Moreover, if H is a semihypegroup that satisfies the reproduction axioms
that is, xtoH = Hox = H, for all x € H, then we say that H is a hypergroup.
Now, let H be a hypergroup. An, element e € H is called an identity if
forallz € H z € (xoe)N(eox), an element a € H is said to be a scalar
identity if for all v € H, [aox| = |z oa| = 1. Let H has an identity e, an
element ' € H is said to be an inverse of a € H if e € (aod’)N(a' oa). H
is called regular if it has at least one identity and each element has at least
one inverse. H is said to be reversible if for all x,y,z € H, y € aox implies
that there exists an inverse a’ of a such that € a’ oy and y € z oa implies
that there exists an inverse a” of a such that z € y o a”, a hypergroup
(H,o) is called canonical if it is commutative, with a scalar identity, such
that every element has an unique inverse and it is reversible.

Theorem 6. If (H,o) is a semihypergroup and R is a fuzzy congruence
relation on H, then H/R is a semihypergroup. In particular, if (H,o) is a
hypergroup then H/R is a hypergroup.

Proof. Let pig, fty, pt- € H/R and 1, € (pz0phy) ot Then there exists p, €
fa© fhy such that i, € O, = plwo and so there exists v € woz such that
fy = iy But, v € woz C (zoy)oz = zo(yoz) and so there exists u’ € yoz
such that v € z ow/. Hence, fiy = o € fgow = fa Ot C fa © (fby © 112),
which shows that (¢ fty) © pz C piz © (fty © f12). By a similar way, we can
show that iz 0 (pyopz) C (HaOpy)ops. Hence, (a0 py)opiz = pizp o (pyopz),
which shows that "o" is associative. Therefore, H/R is a semihypergroup.

Now, suppose that (H,o) is a hypergroup and u, € H/R. Obviously
pe o H/R C H/R. Now, let u, € H/R. Since, u € H = x o H, then there
exists y € H such that u € x oy and 0 fiy € ooy = pz © oy < i © H/R.
Hence, H/R C p, ¢ H/R and so p, ¢ H/R = H/R. Similarly, H/R ¢ j1, =
H/R and hence H/R satisfies the reproduction axioms. Therefore, H/R is
a hypergroup. O

Theorem 7. Let (H,o) be a semihypergroup and R be a fuzzy strong con-
gruence relation on H. Then:
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(1) H/R is a semigroup,
(i) if H is a hypergroup, then H/R is a group.

Proof. (i) By Theorem 6, H/R is a semihypergroup. It is enough to show
that |p, o py| = 1, for all pg, puy € H/R. Let piz, 1y € H/R. Since, R is a
fuzzy strong congruence relation, then

/\ R(a,b) > R(xz,z) N R(y,y) \/ R(u,v).

a€xoy, bexoy u,veH

Thus for all a, b € zoy, R(a, \/ R(u,v) and so R(a,b) = \/ R(u,v).
u,veEH u,veH
Hence, by Lemma 1, p, = up, for all a,b € x oy, which implies that
Kz © py| = 1.
() Similar to the proof of (i), it is enough to show that for all ., pty €
H/R, |pg © py| = 1. But, this immediately follows from (). O

Theorem 8. If (H,0) is a canonical hypergroup, then H/R is a canonical
hypergroup.

Proof. Let H be a canonical hypergroup and i, 1y € H/R. Then,

oo py ={p. 1z €xoyt ={p.:z €yox} = py oy

which shows that H/R is commutative. Since, H has a scalar identity, then
there exists e € H, such that eox = x oe = {x}. Hence, for all u, € H/R,

MUz © e = Ugoe = MUz = MHeox = e © Ug-

This shows that p. is a scalar identity. Let pu, € H/R and 2’ be the unique
inverse of . Since, e € (xoz')N(z'ox), then pe € (UpOpy ) N(fiar Otz ), which
shows that p,/ is an inverse of u,. Now, let u, be another inverse of fi;.
Then pe € (ppopy)N (uyo,ugg) and so there exists b € yox such that pe = up.
Hence, by Lemma 1, R(e,b) \/ R(u,v). Let a = \/ R(u,v). Then,
u,veH u,veH
eR% i.e., {e} R o x. Since, R* is compatible, then e o 2’ R*(y o x) o a’
and so 2’Ry o (rox’). Since, y € yoe C yo (xoa'), then 2’ R and
so R(z',y) > a = \/Ruv) Hence, R(z',y) = \/Ruv)andsoby

u,veEH u,veH
Lemma 1, jty = py, says that the inverse of p, is unique. Now, we show that

H/R is reversible. For this, let iz, jty, pta € H/R and piy € piq © fla = Haox-
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Then, there exists u € a oz such that p, = p,. Since, u € a oz, then there
exists an inverse a’ of a such that x € @’ oy and so pz € e © fiy, and piy is
an inverse of fi,. Similarly, if p, € pz ¢ pia, then there exists an inverse a”
of a such that pi, € py © pg». Hence, H/R is reversible. Therefore, H/R is
a canonical hypergroup. O

3. Fuzzy congruence relations on hyper BC K-algebras

Definition 8. (cf. [10, 11]) By a hyper BCK-algebra we mean a hyper-
groupoid (H, o) equipped a constant element "0" that satisfies the following
axioms:

(HK1) (zoz)o(yoz) < zoy,
(HK2) (zoy)oz=(xoz)oy,

(HK3) zoH < {x},

(HK4) z < y and y < x imply = = y,

for all z,y,z € H, where by © < y we mean 0 € z oy and for every
A,BC H, A< B is defined by Ya € A, 9b € B such that a < b.

Definition 9. Let R be a fuzzy relation on a hyper BC K-algebra H. Then,
R is said to be fuzzy reqular if

(\/Rao) (\/Rbo)

acExoy beyox

Lemma 3. Let R be a fuzzy relation on a hyper BCK -algebra H with the
sup property. Then, R is fuzzy regular if and only if for all o € [0, 1], each
nonempty a-level subset R is reqular.

Proof. Let R be a fuzzy regular relation on H. Then z o yR*{0} and
y o xR*{0}, for x,y € H and « € [0,1]. Then, there exist a € x oy and
b € y o x such that aR*0 and bR*0. This implies that R(a,0), R(b,0) > «

and so \/ R(a,0) > «a and \/ R(b,0) > a. Thus,

a€xoy beyox
)2 (V R@o)A( RG,0)>a
aczoy beyox

and so zR%y, which shows that R® is regular.
Conversely, suppose that

(V B@o)r(\ EEG.0)=a

a€xoy beyox
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for z,y € H. Then \/ R(a,0) > a and \/ R(b,0) > « and since R

a€xoy beyox
has the sup property, then there exist ag € x oy and bo € yox such that
R(ap,0) = \/ R(0,0) > a and similarly R(by,0) = \/ R(b,0)
aczoy beyox

Hence, agR*0 and byR*0 and so x o yR*{0} and y o xR*{0}. Since R is
regular, then x R%y and so

R(z,y) > (\/Rao) (\/Rbo)

acxoy beyox
Therefore, R is a fuzzy regular relation. U

Theorem 9. Let (H,0) be a hyper BCK-algebra and R be a fuzzy reqular
congruence relation on H. Then, H/R is a hyper BCK -algeba.

Proof. Tt is enough to establish the axioms of a hyper BC K-algebra.

(HK1) Let pig, iy, ftz, fto € H/R be such that p, € (pz 0 p12) 0 (phy © 12)-
Then there exist py, € g © p> and fry € iy © p such that p, € py ©
and so there exists a € w o w such that g, = pe. Since a € uow C
(roz)o(yoz) <K xoy, then there exists b € x oy such that a < b and so
0 € aob. This implies that po € g oty = 1o © fy C (fbu © o) © (phz © fty) €
(a0 p1z) © (py © p12)) & (pa © py)- Thus (pe © p12) © (py © pr2) < g © .

(HK2) Let fty € (120 fty) © pb-. Then there exists v € (zoy) oz such that
oy = . Since by (HK2) of H, (xoy)oz = (xoz)oy, thenv € (xoz)oy
and SO fy = fy € (Ha O ftz) © py. This implies that (g © py) © p. C
(ftg © f1z) © fty. Similarly, we can show that (g o p12) © fry C (g © fy) © .
Thus (pz 0 py) © pz = (piz © p2) © fy.

(HK3) Let p, € pp o H/R, for p, € H/R. Then there exists pu, € H/R
such that p, € pg ¢ py and so there exists w € x oy such that p, = py,.
Since by (HK3) of H, x oy < z, then w < x and so 0 € w o x. Thus
[0 € fhay © fly = iz © fz. This implies that p, < p, and so p, © H/R < fig.

(HK4) Let p1p < py and puy < fig, for pig, gy € H/R. Then pg € piz © iy
and pu € pz o py. Hence there exist 2 € z oy and w € y o x such that
Wz = [ = - Since, p, = u, then by Lemma 1, R(z,w) = \/ R(u,v).

u,veEH
Since pu, = p (and also py = p), then R(z,0) \/ R(u,v) = R(w,0).
u,veH
Let a = \/ R(u,v). Then zR*0 and wR*0, means that x o yR*{0} and
u,veH
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y o zR*{0} and since R“ is regular, then zR%y. Hence, R(z,y) > a =
\/ R(u,v) and so R(x,y) = \/ R(u,v), which implies that p, = p,

u,veEH u,veEH
by Lemma 1. Therefore, H/R is a hyper BC' K-algebra. O
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