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Fuzzy (strong) congruence relations
on hypergroupoids and hyper BCK-algebras

Reza Ameri, Mahmoud Bakhshi, Seyyed A. Nematollah Zadeh

and Rajabali Borzooei

Abstract
We de�ne the concept of fuzzy (strong) congruence relations on hyper-
groupoids and hyper BCK-algebras and construct a quotient hyperstruc-
ture on a hypergroupoid. In particular, we prove that if H is a (semi)
hypergroup and R is a fuzzy (strong) congruence relation on H, then H/R

is a (semi) group. Finally, by considering the notion of a hyper BCK-
algebra, we construct a quotient hyper BCK-algebra.

1. Introduction
The notion of a hyperstructure was introduced by F. Marty [13] in 1934 at
the 8th congress of Scandinavian Mathematicians and the notion of a fuzzy
set was introduced by Zadeh [16] in 1965. The study of BCK-algebras
was initiated by Y. Imai and K. Iséki [7] in 1966 as a generalization of
the concept of the set-theoretic di�erence and propositional calculi. In this
paper, we use the notion of a fuzzy set and de�ne the concept of a fuzzy
(strong) congruence relation on hypergroupoids and hyper BCK-algebras
and we obtain some results as mentioned in the abstract.

2. Fuzzy (strong) congruence relations
De�nition 1. By a hypergroupoid we mean a nonempty set H endowed
with a binary hyperoperation "◦" (i.e., a function ◦ : H × H −→ P (H),
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where P (H) is the set of all nonempty subsets of H.)
Let Θ be a binary relation on a hypergroupoid H and A,B ⊆ H. Then:

(a) AΘB means that there exist a ∈ A and b ∈ B such that aΘb,
(b) AΘB means that for a ∈ A there exists b ∈ B and for b ∈ B there

exists a ∈ A such that aΘb,
(c) AΘB means that aΘb for each a ∈ A and for b ∈ B,
(d) Θ is left (resp. right) compatible if xΘy implies a ◦ xΘa ◦ y (resp.

x ◦ aΘy ◦ a) for all x, y, a ∈ H,
(e) Θ is strong left (resp. right) compatible if xΘy implies a ◦ xΘa ◦ y

(resp. x ◦ a ¯̄Θy ◦ a),
(f) Θ is (resp. strong) compatible if it is both (resp. strong) left and right

compatible,
(g) Θ is a (resp. strong) congruence relation on H if it is a (resp. strong)

compatible equivalence relation on H.

De�nition 2. Let H be a nonempty set and R be a fuzzy relation on H.
We say that R satis�es the sup property if for every subset T of H there
exists (u, v) ∈ T 2 such that sup

(x,y)∈T 2

R(x, y) = R(u, v). R is said to be a

fuzzy equivalence relation if
R(x, x) =

∨

(y,z)∈H2

R(y, z), (fuzzy re�exive)

R(y, x) = R(x, y), (fuzzy symmetric)

R(x, y) >
∨

z∈H

(R(x, z) ∧R(z, y)), (fuzzy transitive).

De�nition 3. Let H be a nonempty set and R be a fuzzy relation on H.
Then, for all α ∈ [0, 1], the α-level subset and strong α-level subset of R
respectively, is de�ned as follows:

Rα = {(x, y) ∈ H2 : R(x, y) > α}
Rα>

= {(x, y) ∈ H2 : R(x, y) > α}
Lemma 1. Let R be a fuzzy relation on a nonempty set H. Then:

Rα =
⋂

β∈[0,α)

Rβ>
and Rα>

=
⋃

β∈(α,1]

Rβ

for all α ∈ [0, 1].
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Proof. Let α ∈ [0, 1] and β < α. Then Rα ⊆ Rβ and so Rα ⊆
⋂

β∈[0,α)

Rβ.

Conversely, let ε > 0 be given and (x, y) ∈
⋂

β∈[0,α)

Rβ . Then R(x, y) > α−ε,

which implies that R(x, y) > α and hence (x, y) ∈ Rα. Similarly, the other
part can be proved.

Theorem 1. (cf. [3]) Let R be a fuzzy relation on nonempty set H. Then
the following properties are equivalent:

(i) R is a fuzzy equivalence relation on H,
(ii) Rα 6= ∅ is an equivalence relation on H for all α ∈ [0, 1],

(iii) Rα> 6= ∅ is an equivalence relation on H for all α ∈ [0, 1].

De�nition 4. Fuzzy relation R on hypergroupoid H is said to be

(i) fuzzy left compatible i�
( ∧

u∈c◦a

∨

v∈c◦b
R(u, v)

)
∧

( ∧

v∈c◦b

∨
u∈c◦a

R(u, v)
)

> R(a, b) ∀a, b, c ∈ H,

and fuzzy right compatible i�
( ∧

u∈a◦c

∨

v∈b◦c
R(u, v)

)
∧

( ∧

v∈b◦c

∨
u∈a◦c

R(u, v)
)

> R(a, b) ∀a, b, c ∈ H,

(ii) fuzzy strong left compatible i�
∧

u∈c◦a,v∈c◦b
R(u, v) > R(a, b) ∀a, b, c ∈ H.

and fuzzy strong right compatible i�
∧

u∈a◦c,v∈b◦c
R(u, v) > R(a, b), ∀a, b, c ∈ H

Clearly, every fuzzy strong left (resp. right) compatible relation is a
fuzzy left (resp. right) compatible relation, but the converse is not true.

Theorem 2. Let R be a fuzzy relation on a hypergroupoid H that satis�es
the sup property. Then the following statements are equivalent:

(i) R is fuzzy left (resp. right) compatible,



222 R. Ameri, M. Bakhshi, S. A. Nematollah Zadeh and R. Borzooei

(ii) Rα 6= ∅ is left (resp. right) compatible, for all α ∈ [0, 1],

(iii) Rα> 6= ∅ is left (resp. right) compatible, for all α ∈ [0, 1].

Proof. We prove only for "left" compatible, the other cases can be proved
in a similar way.

(i) =⇒ (ii) Let Rα 6= ∅. For α ∈ [0, 1] and x, y, a ∈ H let xRαy and
u ∈ x ◦ a. Since by (i), R is fuzzy left compatible, then

( ∧
u∈a◦x

∨
v∈a◦y

R(u, v)
)
∧

( ∧
v∈a◦y

∨
u∈a◦x

R(u, v)
)

> R(x, y) > α

and so ∧
u∈a◦x

∨
v∈a◦y

R(u, v) > α and
∧

v∈a◦y

∨
u∈a◦x

R(u, v) > α.

Hence, for all u ∈ a◦x,
∨

v∈a◦y
R(u, v) > α and for all v ∈ a◦y,

∨
u∈a◦x

R(u, v) >

α. Since, R satis�es the sup property, then there exist v0 ∈ a ◦ y and
u0 ∈ a ◦ x such that R(u, v0) =

∨
v∈a◦y

R(u, v) > α for all u ∈ a ◦ x and

R(u0, v) =
∨

u∈a◦x
R(u, v) > α for all v ∈ a ◦ y. Hence, (u, v0) ∈ Rα and

(u0, v) ∈ Rα, for all u ∈ a ◦ x and v ∈ a ◦ y. This implies that Rα is left
compatible.

(ii) =⇒ (iii) Let Rα> 6= ∅, for α ∈ [0, 1] and x, y, a ∈ H be such that
xRα>

y and u ∈ a ◦ x. Thus by Lemma 1, there exists β ∈ (α, 1] such that
xRβy. Since Rβ is left compatible, then a ◦ xR̄βa ◦ y, and so there exists
v ∈ a ◦ y such that uRβv. Thus, R(u, v) > β > α. This shows that uRα>

v.
Similarly, if v ∈ a ◦ y, then there exists u ∈ a ◦ x such that R(u, v) > α and
so uRα>

v. Therefore, Rα> is left compatible.
(iii) =⇒ (i) Suppose that x, y, a ∈ H are such that R(x, y) = α. Then

by Lemma 1, for all β ∈ [0, α) we have xRβ>
y. So, by (iii) we have

a◦x ¯Rβ>a◦ y, and so for all u ∈ a◦x there exists v ∈ a◦ y such that uRβ>
v

i.e., R(u, v) > β. This implies that
∧

u∈a◦x

∨
v∈a◦y

R(u, v) > β, for all β ∈ [0, α).

Similarly, for all v ∈ a ◦ y there exists u ∈ a ◦ x such that uRβ>
v and so∧

v∈a◦y

∨
u∈a◦x

R(u, v) > β, for all β ∈ [0, α). Hence,
∧

u∈a◦x

∨
v∈a◦y

R(u, v) > α =



Fuzzy (strong) congruence relations on hypergroupoids 223

R(x, y) and
∧

v∈a◦y

∨
u∈a◦x

R(u, v) > α = R(x, y), which implies

( ∧
u∈a◦x

∨
v∈a◦y

R(u, v)
)
∧

( ∧
v∈a◦y

∨
u∈a◦x

R(u, v)
)

> R(x, y).

Thus, R is fuzzy left compatible.

Theorem 3. For a fuzzy relation R on a hypergroupoid H satisfying the
sup property the following properties are equivalent:

(i) R is fuzzy strong left (resp. right) compatible,
(ii) Rα 6= ∅ is strong left (resp. right) compatible, for all α ∈ [0, 1],

(iii) Rα> 6= ∅ is strong left (resp. right) compatible, for all α ∈ [0, 1].

Proof. (i) =⇒ (ii) Let R be a fuzzy strong left compatible relation on H,
a ∈ H and x, y ∈ H be such that xRαy, for some α ∈ [0, 1]. Then for all
u ∈ a ◦ x and v ∈ a ◦ y,

R(u, v) >
∧

w∈a◦x, w′∈a◦y
R(w, w′) > R(x, y) > α

that is uRαv. This shows that Rα is a strong left compatible relation on H.
(ii) =⇒ (iii) Let Rα 6= ∅ be a strong left compatible relation on H,

for α ∈ L, x, y ∈ H be such that xRα>
y and a ∈ H. Then, there exists

β ∈ (α, 1] such that xRβy and so by (ii), a◦x
¯̄

Rβa◦ y. This implies that for
all u ∈ a ◦ x and for all v ∈ a ◦ y, R(u, v) > β > α and so uRα>

v. Hence,
a ◦ x

¯̄
Rα>

a ◦ y, which implies that Rα> is a strong left compatible relation
on H.

(iii) =⇒ (i) Let a ∈ H and x, y ∈ H be such that R(x, y) = α, for
α ∈ [0, 1]. Then, by Lemma 1, for all β ∈ [0, α) we have xRβ>

y and so by
(iii), a ◦ x

¯̄
Rβ>

a ◦ y; i.e., for all u ∈ a ◦ x and for all v ∈ a ◦ y, uRβ>
v i.e.,

R(u, v) > β, for all β ∈ [0, α). Thus R(u, v) > α, and hence
∧

u∈a◦x,v∈a◦y
R(u, v) > α = R(x, y).

Therefore, R is a fuzzy strong left compatible relation on H.
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De�nition 5. Let R be a fuzzy relation on a hypergroupoid H. Then, R
is said to be
(i) fuzzy compatible if
( ∧

u∈a◦c

∨

v∈b◦d
R(u, v)

)
∧

( ∧

v∈b◦d

∨
u∈a◦c

R(u, v)
)

> R(a, b)∧R(c, d), ∀a, b, c, d ∈ H,

(ii) fuzzy strong compatible if
∧

u∈a◦c,v∈b◦d
R(u, v) > R(a, b) ∧R(c, d), ∀a, b, c, d ∈ H.

De�nition 6. By a fuzzy (resp. strong) congruence relation we mean a
fuzzy (resp. strong) compatible equivalence relation.

Theorem 4. A fuzzy relation R is a (resp. strong) fuzzy congruence relation
if and only if it is both a (resp. strong) left and right fuzzy compatible
equivalence relation.

Proof. Let R be a fuzzy congruence relation on H and a, x, y ∈ H. Then
( ∧

u∈a◦x

∨
v∈a◦y

R(u, v)
)
∧

( ∧
v∈a◦y

∨
u∈a◦x

R(u, v)
)

> R(x, y) ∧R(a, a) = R(x, y)

which shows that R is a fuzzy left compatible relation on H. Similarly, it
can be shown that R is a fuzzy right compatible relation on H.

Conversely, suppose that R is both a fuzzy left and right compatible
equivalence relation on H and a, b, c, d ∈ H. Now, for every u ∈ a ◦ c and
every v ∈ b ◦ d, by transitivity of R, we have

R(u, v) >
∨

y∈H

(R(u, y) ∧R(y, v)) > R(u,w) ∧R(w, v), ∀w ∈ b ◦ c

and so
R(u, v) >

( ∨

w∈b◦c
R(u,w)

)
∧

( ∨

w∈b◦c
R(w, v)

)
.

Thus
∨

v∈b◦d
R(u, v) >

∧

v∈b◦d
R(u, v) >

( ∨

w∈b◦c
R(u,w)

)
∧

( ∧

v∈b◦d

∨

w∈b◦c
R(w, v)

)
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and hence
∧

u∈a◦c

∨

v∈b◦d
R(u, v) >

( ∧
u∈a◦c

∨

w∈b◦c
R(u,w)

)
∧

( ∧

v∈b◦d

∨

w∈b◦c
R(w, v)

)

> R(a, b) ∧R(c, d).

Therefore, R is a fuzzy congruence relation on H.
Now, let R be a fuzzy strong congruence relation on H and x, y, a ∈ H.

Then, ∧
u∈a◦x, v∈a◦y

R(u, v) > R(a, a) ∧R(x, y) = R(x, y).

Hence, R is fuzzy strong left compatible. The proof for "fuzzy strong right"
is similar.

Conversely, let R be a fuzzy strong left and right compatible, a, b, c, d ∈
H. Then,

R(a, b) 6
∧

u∈a◦c, v∈b◦c
R(u, v) and R(c, d) 6

∧

u∈b◦c, v∈b◦d
R(u, v)

and so

R(a, b) ∧R(c, d) 6
( ∧

u∈a◦c, v∈b◦c
R(u, v)

)
∧

( ∧

u∈b◦c, v∈b◦d
R(u, v)

)
.

For every u ∈ a ◦ c and v ∈ b ◦ d, by transitivity of R, we have

R(u, v) >
∨

y∈H

(R(u, y) ∧R(y, v)) > R(u,w) ∧R(w, v), ∀w ∈ b ◦ c

> (
∧

u∈a◦c, v∈b◦c
R(u, v)) ∧ (

∧
w∈b◦c, z∈b◦d

R(u, v)) > R(a, b) ∧R(c, d).

Thus R is a fuzzy strong congruence relation on H.

By Theorems 1, 2, 3 and 4 we have the following corollary.

Corollary 1. Let R be a fuzzy relation on a hypergroupoid H that satis�es
the sup property. Then,

(i) R is a fuzzy congruence relation on H if and only if every nonempty α-
level set Rα of R is both left and right compatible equivalence relation,

(ii) R is a fuzzy strong congruence relation on H if and only if every
nonempty α-level set Rα of R is both strong left and right compatible
equivalence relation on H.
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Let R be a fuzzy relation on H. For all x ∈ H, de�ne a fuzzy subset µ
on H by µx(y) = R(y, x), for all y ∈ H.

Lemma 2. Let R be a fuzzy equivalence relation on a hypergroupoid H.
Then, µx = µy if and only if R(x, y) =

∨

u,v∈H

R(u, v).

Proof. (i) Let µx = µy, for x, y ∈ H. Since, R is fuzzy re�exive, then

R(x, y) = µy(x) = µx(x) = R(x, x) =
∨

u,v∈H

R(u, v).

Conversely, suppose that R(x, y) =
∨

u,v∈H

R(u, v), for x, y ∈ H and w ∈ H.

Since R is fuzzy symmetric and fuzzy transitive, we obtain

µx(w) = R(w, x) = R(x,w) > R(x, y) ∧R(y, w)
=

(∨
u,v∈H R(u, v)

)
∧R(y, w) = R(y, w) = µy(w).

Similarly, we can show that µy(w) > µx(w). Thus, µx(w) = µy(w) and so
µx = µy.

Theorem 5. Let R be a fuzzy congruence relation on H with the sup prop-
erty and H/R = {µx : x ∈ H}. Then (H/R, ¦) is a hypergroupoid, where
binary hyperoperation "¦" is de�ned by

µx ¦ µy = {µz : z ∈ x ◦ y} = µx◦y.

Proof. First, we show that "¦" is well-de�ned. Let µx = µx′ and µy = µy′ ,
for µx, µx′ , µy, µy′ ∈ H/R. Then, by Lemma 2, R(x, x′) =

∨

u,v∈H

R(u, v) =

R(y, y′). Let α =
∨

u,v∈H

R(u, v). Then xRαx′ and yRαy′ and by Corollary

1, Rα is a congruence relation on H, then x ◦ yR̄αx′ ◦ y′. Now, let µz ∈
µx ¦ µy = µx◦y. Then there exists z′ ∈ x ◦ y such that µz = µz′ . On the
other hand, since x◦yR̄αx′ ◦y′, then there exists u ∈ x′ ◦y′ such that z′Rαu

and so R(z′, u) > α =
∨

u,v∈H

R(u, v) > R(z′, u). Hence, R(z′, u) = α. Now,

for w ∈ H we have
µz(w) = µz′(w) = R(w, z′) = R(z′, w) > R(z′, u) ∧R(u,w) = α ∧R(u,w)

= R(u,w) = R(w, u) = µu(w)
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and so µz > µu. Similarly µu > µz. Hence, µz = µu and so µz = µu ∈
µx′◦y′ = µx′ ¦ µy′ , since u ∈ x′ ◦ y′. Thus µx ¦ µy ⊆ µx′ ¦ µy′ . Analogously,
µx′ ¦ µy′ ⊆ µx ¦ µy. Thus µx ¦ µy = µx′ ¦ µy′ . This completes the proof.

In the following, we brie�y give some preliminaries about hypergroups.

De�nition 7. (cf. [5]) Let (H, ◦) be a hypergroupoid. Then H is called a
semihypergroup if "◦" is associative i.e., (x◦y)◦z = x◦(y◦z), for all x, y, z ∈
H. Moreover, if H is a semihypegroup that satis�es the reproduction axioms
that is, x◦H = H◦x = H, for all x ∈ H, then we say that H is a hypergroup.
Now, let H be a hypergroup. An, element e ∈ H is called an identity if
for all x ∈ H, x ∈ (x ◦ e) ∩ (e ◦ x), an element a ∈ H is said to be a scalar
identity if for all x ∈ H, |a ◦ x| = |x ◦ a| = 1. Let H has an identity e, an
element a′ ∈ H is said to be an inverse of a ∈ H if e ∈ (a ◦ a′)∩ (a′ ◦ a). H
is called regular if it has at least one identity and each element has at least
one inverse. H is said to be reversible if for all x, y, z ∈ H, y ∈ a◦x implies
that there exists an inverse a′ of a such that x ∈ a′ ◦ y and y ∈ x ◦ a implies
that there exists an inverse a” of a such that x ∈ y ◦ a”, a hypergroup
(H, ◦) is called canonical if it is commutative, with a scalar identity, such
that every element has an unique inverse and it is reversible.

Theorem 6. If (H, ◦) is a semihypergroup and R is a fuzzy congruence
relation on H, then H/R is a semihypergroup. In particular, if (H, ◦) is a
hypergroup then H/R is a hypergroup.

Proof. Let µx, µy, µz ∈ H/R and µu ∈ (µx¦µy)¦µz. Then there exists µw ∈
µx¦µy such that µu ∈ µw ¦µz = µw◦z and so there exists v ∈ w◦z such that
µu = µv. But, v ∈ w◦z ⊆ (x◦y)◦z = x◦(y◦z) and so there exists u′ ∈ y◦z
such that v ∈ x ◦ u′. Hence, µu = µv ∈ µx◦u′ = µx ¦ µu′ ⊆ µx ¦ (µy ¦ µz),
which shows that (µx ¦ µy) ¦ µz ⊆ µx ¦ (µy ¦ µz). By a similar way, we can
show that µx¦(µy ¦µz) ⊆ (µx¦µy)¦µz. Hence, (µx¦µy)¦µz = µx¦(µy ¦µz),
which shows that "¦" is associative. Therefore, H/R is a semihypergroup.

Now, suppose that (H, ◦) is a hypergroup and µx ∈ H/R. Obviously
µx ¦H/R ⊆ H/R. Now, let µu ∈ H/R. Since, u ∈ H = x ◦H, then there
exists y ∈ H such that u ∈ x ◦ y and so µu ∈ µx◦y = µx ¦ µy ⊆ µx ¦H/R.
Hence, H/R ⊆ µx ¦H/R and so µx ¦H/R = H/R. Similarly, H/R ¦ µx =
H/R and hence H/R satis�es the reproduction axioms. Therefore, H/R is
a hypergroup.

Theorem 7. Let (H, ◦) be a semihypergroup and R be a fuzzy strong con-
gruence relation on H. Then:
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(i) H/R is a semigroup,
(ii) if H is a hypergroup, then H/R is a group.

Proof. (i) By Theorem 6, H/R is a semihypergroup. It is enough to show
that |µx ¦ µy| = 1, for all µx, µy ∈ H/R. Let µx, µy ∈ H/R. Since, R is a
fuzzy strong congruence relation, then

∧

a∈x◦y, b∈x◦y
R(a, b) > R(x, x) ∧R(y, y) =

∨

u,v∈H

R(u, v).

Thus for all a, b ∈ x◦y, R(a, b) >
∨

u,v∈H

R(u, v) and so R(a, b) =
∨

u,v∈H

R(u, v).

Hence, by Lemma 1, µa = µb, for all a, b ∈ x ◦ y, which implies that
|µx ¦ µy| = 1.

(ii) Similar to the proof of (i), it is enough to show that for all µx, µy ∈
H/R, |µx ¦ µy| = 1. But, this immediately follows from (i).

Theorem 8. If (H, ◦) is a canonical hypergroup, then H/R is a canonical
hypergroup.

Proof. Let H be a canonical hypergroup and µx, µy ∈ H/R. Then,

µx ¦ µy = {µz : z ∈ x ◦ y} = {µz : z ∈ y ◦ x} = µy ¦ µx

which shows that H/R is commutative. Since, H has a scalar identity, then
there exists e ∈ H, such that e ◦ x = x ◦ e = {x}. Hence, for all µx ∈ H/R,

µx ¦ µe = µx◦e = µx = µe◦x = µe ¦ µx.

This shows that µe is a scalar identity. Let µx ∈ H/R and x′ be the unique
inverse of x. Since, e ∈ (x◦x′)∩(x′◦x), then µe ∈ (µx¦µx′)∩(µx′¦µx), which
shows that µx′ is an inverse of µx. Now, let µy be another inverse of µx.
Then µe ∈ (µx¦µy)∩(µy¦µx) and so there exists b ∈ y◦x such that µe = µb.
Hence, by Lemma 1, R(e, b) =

∨

u,v∈H

R(u, v). Let α =
∨

u,v∈H

R(u, v). Then,

eRαb i.e., {e}Rαy ◦ x. Since, Rα is compatible, then e ◦ x′R̄α(y ◦ x) ◦ x′

and so x′R̄αy ◦ (x ◦ x′). Since, y ∈ y ◦ e ⊆ y ◦ (x ◦ x′), then x′Rαy and
so R(x′, y) > α =

∨

u,v∈H

R(u, v). Hence, R(x′, y) =
∨

u,v∈H

R(u, v) and so by

Lemma 1, µy = µx′ , says that the inverse of µx is unique. Now, we show that
H/R is reversible. For this, let µx, µy, µa ∈ H/R and µy ∈ µa ¦ µx = µa◦x.
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Then, there exists u ∈ a ◦ x such that µy = µu. Since, u ∈ a ◦ x, then there
exists an inverse a′ of a such that x ∈ a′ ◦ y and so µx ∈ µa′ ¦ µy, and µa′ is
an inverse of µa. Similarly, if µy ∈ µx ¦ µa, then there exists an inverse a”
of a such that µx ∈ µy ¦ µa”. Hence, H/R is reversible. Therefore, H/R is
a canonical hypergroup.

3. Fuzzy congruence relations on hyper BCK-algebras
De�nition 8. (cf. [10, 11]) By a hyper BCK-algebra we mean a hyper-
groupoid (H, ◦) equipped a constant element "0" that satis�es the following
axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) ¿ x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ◦H ¿ {x},
(HK4) x ¿ y and y ¿ x imply x = y,

for all x, y, z ∈ H, where by x ¿ y we mean 0 ∈ x ◦ y and for every
A,B ⊆ H, A ¿ B is de�ned by ∀a ∈ A, ∃b ∈ B such that a ¿ b.
De�nition 9. Let R be a fuzzy relation on a hyper BCK-algebra H. Then,
R is said to be fuzzy regular if

R(x, y) >
( ∨

a∈x◦y
R(a, 0)

)
∧

( ∨

b∈y◦x
R(b, 0)

)
.

Lemma 3. Let R be a fuzzy relation on a hyper BCK-algebra H with the
sup property. Then, R is fuzzy regular if and only if for all α ∈ [0, 1], each
nonempty α-level subset Rα is regular.
Proof. Let R be a fuzzy regular relation on H. Then x ◦ yRα{0} and
y ◦ xRα{0}, for x, y ∈ H and α ∈ [0, 1]. Then, there exist a ∈ x ◦ y and
b ∈ y ◦ x such that aRα0 and bRα0. This implies that R(a, 0), R(b, 0) > α

and so
∨

a∈x◦y
R(a, 0) > α and

∨

b∈y◦x
R(b, 0) > α. Thus,

R(x, y) >
( ∨

a∈x◦y
R(a, 0)

)
∧

( ∨

b∈y◦x
R(b, 0)

)
> α

and so xRαy, which shows that Rα is regular.
Conversely, suppose that

( ∨
a∈x◦y

R(a, 0)
)
∧

( ∨

b∈y◦x
R(b, 0)

)
= α
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for x, y ∈ H. Then
∨

a∈x◦y
R(a, 0) > α and

∨

b∈y◦x
R(b, 0) > α and since R

has the sup property, then there exist a0 ∈ x ◦ y and b0 ∈ y ◦ x such that
R(a0, 0) =

∨
a∈x◦y

R(a, 0) > α and similarly R(b0, 0) =
∨

b∈y◦x
R(b, 0) > α.

Hence, a0R
α0 and b0R

α0 and so x ◦ yRα{0} and y ◦ xRα{0}. Since Rα is
regular, then xRαy and so

R(x, y) > α =
( ∨

a∈x◦y
R(a, 0)

)
∧

( ∨

b∈y◦x
R(b, 0)

)

Therefore, R is a fuzzy regular relation.

Theorem 9. Let (H, ◦) be a hyper BCK-algebra and R be a fuzzy regular
congruence relation on H. Then, H/R is a hyper BCK-algeba.

Proof. It is enough to establish the axioms of a hyper BCK-algebra.
(HK1) Let µx, µy, µz, µv ∈ H/R be such that µv ∈ (µx ¦ µz) ¦ (µy ¦ µz).

Then there exist µu ∈ µx ¦ µz and µw ∈ µy ¦ µz such that µv ∈ µu ¦ µw

and so there exists a ∈ u ◦ w such that µv = µa. Since a ∈ u ◦ w ⊆
(x ◦ z) ◦ (y ◦ z) ¿ x ◦ y, then there exists b ∈ x ◦ y such that a ¿ b and so
0 ∈ a ◦ b. This implies that µ0 ∈ µa ¦ µb = µv ¦ µb ⊆ (µu ¦ µw) ¦ (µx ¦ µy) ⊆
((µx ◦ µz) ¦ (µy ¦ µz)) ¦ (µx ¦ µy). Thus (µx ¦ µz) ¦ (µy ¦ µz) ¿ µx ¦ µy.

(HK2) Let µu ∈ (µx ¦µy)¦µz. Then there exists v ∈ (x◦y)◦z such that
µu = µv. Since by (HK2) of H, (x ◦ y) ◦ z = (x ◦ z) ◦ y, then v ∈ (x ◦ z) ◦ y
and so µu = µv ∈ (µx ¦ µz) ¦ µy. This implies that (µx ¦ µy) ¦ µz ⊆
(µx ¦ µz) ¦ µy. Similarly, we can show that (µx ¦ µz) ¦ µy ⊆ (µx ¦ µy) ¦ µz.
Thus (µx ◦ µy) ¦ µz = (µx ¦ µz) ¦ µy.

(HK3) Let µz ∈ µx ¦H/R, for µx ∈ H/R. Then there exists µy ∈ H/R
such that µz ∈ µx ¦ µy and so there exists w ∈ x ◦ y such that µz = µw.
Since by (HK3) of H, x ◦ y ¿ x, then w ¿ x and so 0 ∈ w ◦ x. Thus
µ0 ∈ µw ¦ µx = µz ¦ µx. This implies that µz ¿ µx and so µx ¦H/R ¿ µx.

(HK4) Let µx ¿ µy and µy ¿ µx, for µx, µy ∈ H/R. Then µ0 ∈ µx ¦µy

and µ ∈ µx ¦ µy. Hence there exist z ∈ x ◦ y and w ∈ y ◦ x such that
µz = µ0 = µw. Since, µz = µ, then by Lemma 1, R(z, w) =

∨

u,v∈H

R(u, v).

Since µz = µ (and also µw = µ), then R(z, 0) =
∨

u,v∈H

R(u, v) = R(w, 0).

Let α =
∨

u,v∈H

R(u, v). Then zRα0 and wRα0, means that x ◦ yRα{0} and
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y ◦ xRα{0} and since Rα is regular, then xRαy. Hence, R(x, y) > α =∨

u,v∈H

R(u, v) and so R(x, y) =
∨

u,v∈H

R(u, v), which implies that µx = µy,

by Lemma 1. Therefore, H/R is a hyper BCK-algebra.
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