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Decomposition of AG∗-groupoids

Qaiser Mushtaq and Madad Khan

Abstract
We have shown that an AG∗-groupoid S has associative powers, and S/ρ,
where aρb if and only if abn = bn+1, ban = an+1 ∀ a, b ∈ S, is a maximal
separative commutative image of S.

An Abel-Grassmann's groupoid [9], abbreviated as an AG-groupoid, is a
groupoid S whose elements satisfy the invertive law:

(ab)c = (cb)a. (1)

It is also called a left almost semigroup [3, 4, 5, 7]. In [1], the same structure
is called a left invertive groupoid. In this note we call it an AG-groupoid. It
is a useful non-associative algebraic structure, midway between a groupoid
and a commutative semigroup, with wide applications in the theory of �ocks.

An AG-groupoid S is medial [2], i.e., it satis�es the identity

(ab)(cd) = (ac)(bd). (2)

It is known [3] that if an AG-groupoid contains a left identity then it
is unique. It has been shown in [3] that an AG-groupoid contains a left
identity then it is unique. It has been proved also that an AG-groupoid
with right identity is a commutative monoid, that is, a semigroup with
identity element.

If an AG-groupoid satisfy one of the following equivalent identities:

(ab)c = b(ca) (3)

(ab)c = b(ac) (4)
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then it is called an AG∗-groupoid [10].
Let S be an AG∗-groupoid and a relation ρ be de�ned in S as follows.

For a positive integer n, aρb if and only if abn = bn+1 and ban = an+1, for
all a and b in S.

In this paper, we have shown that ρ is a separative congruence in S, that
is, a2ρab and abρb2 implies that aρb when a, b ∈ S.

The following four propositions have been proved in [10].

Proposition 1. Every AG∗-groupoid has associative powers, i.e., aan =
ana for all a.

Proposition 2. In an AG∗-groupoid S, aman = am+n for all a ∈ S and
positive integers m,n.

Proposition 3. In an AG∗-groupoid S, (am)n = amn for all a ∈ S and
positive integers m,n.

Proposition 4. If S is an AG∗-groupoid, then for all a, b ∈ S, (ab)n = anbn

and positive integer n > 1 and (ab)n = bnan for n > 1.

Theorem 1. Let S be an AG∗-groupoid. If abm = bm+1 and ban = an+1

for a, b ∈ S and positive integers m,n then aρb.

Proof. For the sake of de�niteness assume that m < n and m > 1. Then by
multiplying, abm = bm+1 by bn−m and successively applying Proposition 1,
identities (1) and (2), we obtain

bm+1bn−m = (abm)bn−m = a(bm−1b)bn−m = (bm−1a)bbn−m

= (bn−mb)(bm−1a) = (bbn−m)(bm−1a) = bn−m(b(bm−1a))
= bn−m((ab)bm−1) = ((ab)bn−m)bm−1 = (bn−m+1a)bm−1

= a(bn−m+1bm−1) = abn.

Thus abn = bn+1, ban = an+1 and so aρb.

Theorem 2. The relation ρ on an AG∗-groupoid is a congruence relation.

Proof. Evidently ρ is re�exive and symmetric. For transitivity we may
proceed as follows.

Let aρb and bρc so that there exist positive integers n, m such that,

abn = bn+1, ban = an+1 and bcm = cm+1, cbm = bm+1.
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Let k = (n + 1)(m + 1)− 1, that is, k = n(m + 1) + m. Using identities
(1), (2) and Propositions 2 and 3, we get

ack = acn(m+1)+m = a(cn(m+1)cm) = a((cm+1)ncm) = a((bcm)ncm)

= a((bncmn)cm) = a(cm(n+1)bn) = (bna)cm(n+1) = (bna)(cm(n+1)−1c)

= (bncm(n+1)−1)(ac) = ((ac)cm(n+1)−1)bn = (c(acm(n+1)−1))bn

= (bn(acm(n+1)−1))c = ((abn)cm(n+1)−1)c = (bn+1cm(n+1)−1)c

= ((bbn)cm(n+1)−1)c = (bn(bcm(n+1)−1))c = (c(bcm(n+1)−1))bn

= ((bc)cm(n+1)−1)bn = (bncm(n+1)−1)(bc) = (bnb)(cm(n+1)−1c)

= bn+1cm(n+1) = (bcm)n+1 = c(m+1)(n+1) = ck+1.

Similarly, cak = ak+1. Thus ρ is an equivalence relation. To show that ρ is
compatible, assume that aρb such that for some positive integer n,

abn = bn+1 and ban = an+1.

Let c ∈ S. Then by identity (2) and Propositions 4 and 1, we get

(ac)(bc)n = (ac)(bncn) = (abn)(ccn) = bn+1cn+1.

Similarly, (bc)(ac)n = (ac)n+1. Hence ρ is a congruence relation on S.

Theorem 3. The relation ρ is separative.

Proof. Let a, b ∈ S, abρa2 and abρb2. Then by de�nition of ρ there exist
positive integers m and n such that,

(ab)(a2)m = (a2)m+1, a2(ab)m = (ab)m+1,

(ab)(b2)n = (b2)n+1, b2(ab)n = (ab)n+1.

Now using identities (3), (2), (1) and Proposition 1, we get

ba2m+1 = b(a2ma) = (ab)a2m = (ab)(amam) = (aam)(bam)
= am+1(bam) = (bam+1)am = (b(ama))am = ((amb)a)am

= (ama)(amb) = (aam)(amb) = am(a(amb))
= am((ba)am) = ((ba)am)am = ((ama)b)am

= (am+1b)am = b(am+1am) = ba2m+1 = b(a2ma)
= (ab)a2m = (ab)(a2)m = (a2)m+1 = a2m+2.
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Using identities (3), (2) and (1) and Theorem 2, 3, we get

ab2n+1 = a(b2nb) = (ba)b2n = (ba)(bnbn) = (bbn)(abn)
= (bn(bbn))a = ((bnbn)b)a = (ab)(bnbn)
= (ab)(b2n) = (ab)(b2)n = (b2)n+1 = b2n+2.

Now by Theorem 1, aρb. Hence ρ is separative.

The following Lemma has been proved in [10]. We re-state it without
proof for use in our later results.

Lemma 1. Let σ be a separative congruence on an AG∗-groupoid S, then
for all a, b ∈ S it follows that abσba.

Theorem 4. Let S be an AG∗-groupoid. Then S�ρ is a maximal separative
commutative image of S.

Proof. By Theorem 3, ρ is separative, and hence S�ρ is separative. We
now show that ρ is contained in every separative congruence relation σ on
S. Let aρb so that there exists a positive integer n such that,

abn = bn+1 and ban = an+1.

We need to show that aσb, where σ is a separative congruence on S. Let k
be any positive integer such that,

abkσbk+1 and bakσak+1.

Suppose k > 2. Putting ab0 = a in the next term (if k = 2)

(abk−1)2 = (abk−1)(abk−1) = a2b2k−2 = (aa)(bk−2bk)
= (abk−2)(abk) = (abk−2)bk+1,

i.e., abk−2)(abk)σ(abk−2)bk+1.
Using identity (1) and Proposition 2 we get

(abk−2)bk+1 = (bk+1bk−2)a = b2k−1a = (bkbk−1)a = (abk−1)bk,

(abk−1)bk = (bkbk−1)a = b2k−1a = (bk−1bk)a = (abk)bk−1.

Thus (abk−1)2σ(abk)bk−1.
Since abkσbk+1 and (abk)bk−1σbk+1bk−1, hence (abk−1)2σ(bk)2. It fur-

ther implies that, (abk−1)2σ(abk−1)bkσ(bk)2. Thus abk−1σbk. Similarly,
bak−1σak.
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Thus if (1) holds for k, it holds for k + 1. By induction down from k, it
follows that (1) holds for k = 1, abσb2 and baσa2. Hence by Lemma 1 and
separativity of σ it follows that aσb.

Lemma 2. If xa = x for some x and for some a in an AG∗-groupoid, then
xna = xn for some positive integer n.

Proof. Let n = 2, then identity (3) implies that

x2a = (xx)a = x(xa) = xx = x2.

Let the result be true for k, that is xka = xk. Then by identity (3) and
Proposition 1, we get

xk+1a = (xxk)a = xk(xa) = xkx = xk+1.

Hence xna = xn for all positive integers n.

Theorem 5. Let a be a �xed element of an AG∗-groupoid S, then
Q = {x ∈ S |xa = x and a = a2}

is a commutative subsemigroup.

Proof. As aa = a, we have a ∈ Q. Now if x, y ∈ Q then by identity (2),

xy = (xa)(ya) = (xy)(aa) = (xy)a.

To prove that Q is commutative and associative, assume that x and y belong
to Q. Then by using identity (1), we get xy = (xa)y = (ya)x = yx, and
commutativity gives associativity. Hence Q is a commutative subsemigroup
of S.

Theorem 6. Let η and ξ be separative congruences on an AG∗-groupoid S
and x2a = x2, for all x ∈ S. If η ∩ (Q×Q) ⊆ ξ ∩ (Q×Q), then η ⊆ ξ.

Proof. If xηy then,

(x2(xy))2η(x2(xy)(x2y2)η(x2y2)2.

It follows that (x2(xy))2, (x2y2)2 ∈ Q. Now by identities (2), (1), (3),
respectively and Lemma 2, it means that,

(x2(xy))(x2y2) = (x2x2)((xy)y2) = (x2x2)(y3x)
= x4(y3x) = (xx4)y3 = x5y3,

(x5y3)a = (x5y3)(aa) = (x5a)(y3a) = x5y3.
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So, x2(xy)(x2y2) ∈ Q. Hence (x2(xy))2ξ(x2(xy)(x2y2)ξ(x2y2)2 implies that
x2(xy)ξx2y2.

Since x2y2ηx4 and x2a = x2 for all x ∈ S, so (x2y2), x4 ∈ Q.
Thus x2y2ξx4 and it follows from Proposition 4 that x2y2 = (xy)2. So
(x2)2ξx2(xy)ξ(xy)2 which means that x2ξxy. Finally, x2ηy2 and x2, y2 ∈ Q,
means that x2ξy2, x2ξxyξy2. As ξ is separative so xξy. Hence η ⊆ ξ and
by Lemma 1, S�η is the maximal separative commutative image of S.
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