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Decomposition of AG*-groupoids

Qaiser Mushtaq and Madad Khan

Abstract

We have shown that an AG*-groupoid S has associative powers, and S/p,
where apb if and only if ab™ = "', ba™ = a" "' V a,b € S, is a maximal
separative commutative image of S.

An Abel-Grassmann’s groupoid |9], abbreviated as an AG-groupoid, is a
groupoid S whose elements satisfy the invertive law:

(ab)e = (cb)a. (1)

It is also called a left almost semigroup [3, 4, 5, 7]. In [1], the same structure

is called a left invertive groupoid. In this note we call it an AG-groupoid. It

is a useful non-associative algebraic structure, midway between a groupoid

and a commutative semigroup, with wide applications in the theory of flocks.
An AG-groupoid S is medial [2], i.e., it satisfies the identity

(ab)(ed) = (ac) (bd). (2)

It is known [3] that if an AG-groupoid contains a left identity then it
is unique. It has been shown in [3] that an AG-groupoid contains a left
identity then it is unique. It has been proved also that an AG-groupoid
with right identity is a commutative monoid, that is, a semigroup with
identity element.

If an AG-groupoid satisfy one of the following equivalent identities:

(ab)c = b(ca) (3)

(ab)e = b(ac) (4)
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then it is called an AG*-groupoid [10].

Let S be an AG*-groupoid and a relation p be defined in S as follows.
For a positive integer n, apb if and only if ab”™ = b"+! and ba™ = o™+, for
all @ and b in S.

In this paper, we have shown that p is a separative congruence in S, that
is, a®pab and abpb? implies that apb when a,b € S.

The following four propositions have been proved in [10].

Proposition 1. Every AG*-groupoid has associative powers, i.e., aa” =

aa for all a.

Proposition 2. In an AG*-groupoid S, a™a" = a™*" for all a € S and
positive integers m,mn.

Proposition 3. In an AG*-groupoid S, (™)™ = a™ for all a € S and
positive integers m,n.

Proposition 4. If S is an AG*-groupoid, then for all a,b € S, (ab)™ = a™b"
and positive integer n > 1 and (ab)™ = b"a™ for n > 1.

Theorem 1. Let S be an AG*-groupoid. If ab™ = b™*! and ba" = a"+!
for a,b € S and positive integers m,n then apb.

Proof. For the sake of definiteness assume that m < n and m > 1. Then by
multiplying, ab™ = b1 by "™ and successively applying Proposition 1,
identities (1) and (2), we obtain

pmt+ipn—m — (abm)bn—m — a(bm—1b>bn—m — (bm—la)bbn—m
= (b""b) (K" a) = ("B a) = b (b6 a)
— bn—m((ab)bm—l) — ((ab)bn—m)bm—l — (b”_m+1a)bm_1
= q(b" ML) = gbn,
Thus ab™ = b"+! ba™ = a™*! and so apb. O

Theorem 2. The relation p on an AG*-groupoid is a congruence relation.

Proof. Evidently p is reflexive and symmetric. For transitivity we may
proceed as follows.
Let apb and bpc so that there exist positive integers n, m such that,

ab® =b"*t ba" = e and  be™ = ¢ eb™ = L
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Let k= (n+1)(m+1) — 1, that is, k = n(m + 1) + m. Using identities
(1), (2) and Propositions 2 and 3, we get

ack = acn(m+1)+m — CL( n(m+1) m) — a((chrl)ncm) — a((bcm)ncm)
((bn mn)cm) _ a( m( n+1 ) ( pn ) m(n+1) _ (bna)(cm(n+1)flc)
= (e D) ) = ((a) eI = (e(acm D)
(bn(acm (n+1)— )) ((ab") m(n+1)— 1) (bn+1cm(n+1)—1)c
((bbn) m(n+1)— Hn ( m(n+1)— ))C — (C(bcm(n+1)—1))bn
= ((b
=b"

= (
) m(n+1)— ) _ ( n m (n+1)— 1)(()6) — (bnb)(cm(n+1)—1c)
n+l.m(n+l) — (bc )n+1 — cm+1)(n+1) — k+1

Similarly, ca® = a¥*'. Thus p is an equivalence relation. To show that p is

compatible, assume that apb such that for some positive integer n,
ab™ =" and ba" = o™t
Let ¢ € S. Then by identity (2) and Propositions 4 and 1, we get
(ac)(be)™ = (ac)(b"c) = (ab™)(cc™) = b,
Similarly, (be)(ac)™ = (ac)™*t. Hence p is a congruence relation on S. [

Theorem 3. The relation p is separative.

Proof. Let a,b € S, abpa® and abpb®. Then by definition of p there exist
positive integers m and n such that,

(ab)(@)™ = (@)™, a(ab)"™ = (b)Y,
(@)(E)" = (02", B (ab)" = (ab)

Now using identities (3), (2), (1) and Proposition 1, we get

ba’>mt! = b(a®"a) = (ab)a®™ = (ab)(a™a™) = (aa™)(ba™)

= a1 (ba™) = (ba™t1)a™ = (b(a™a))a™ = ((a™b)a)a™

= (a™a)(a™b) = (aa )(amb) = a™(a(a™b))
= a™((ba)a™) = ((ba)a™)a™ = ((a™a)b)a™
— ( m+1b) =? m) ba?mtl = p a2ma>

(a™
— (ab)a (ab)( ) (a2)m+1 = g2mt+2,
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Using identities (3), (2) and (1) and Theorem 2, 3, we get
ab? ) = a(?"b) = (ba)b?" = (ba) (b7b") = (bb")(ab")
= (b™(0b"))a = ((b"b")b)a = (ab)(b"")
= (ab)(12") = (ab)(B2)" = (B2)"+1 = b2,
Now by Theorem 1, apb. Hence p is separative. O]

The following Lemma has been proved in [10]. We re-state it without
proof for use in our later results.

Lemma 1. Let o be a separative congruence on an AG*-groupoid S, then
for all a,b € S it follows that aboba.

Theorem 4. Let S be an AG*-groupoid. Then S/ p is a maximal separative
commutative 1mage of S.

Proof. By Theorem 3, p is separative, and hence S,/ p is separative. We
now show that p is contained in every separative congruence relation o on
S. Let apb so that there exists a positive integer n such that,

ab® ="t and  ba" = o™t

We need to show that ach, where o is a separative congruence on S. Let k
be any positive integer such that,

abfobf Tt and  baFod .

Suppose k > 2. Putting ab’ = a in the next term (if k = 2)

(abkfl)Q — (abkil)(abkfl) = q2b?F—2 = ( a)(bkink)
— (abk’z)(abk) (abk Z)bk+1

ie., ab"=2)(ab¥)o(abF=2)bk 1,
Using identity (1) and Proposition 2 we get

(abk 2)bk+1 (bk—l-lbk 2)0, _ ka la _ (bkbk l)a _ (abk l)bk
(abF~ )bk = (VFbF)a = b?*~1a = (BF10%)a = (ab¥)bF 1.

Thus (ab*~1)20(ab®)pF1.
Since ab®ob* ! and (ab®)bF~lobF+1pE=1 hence (ab*~1)20(bF)2. It fur-

ther implies that, (ab*1)20(abF~1)bFa(b)2. Thus abF~lob*. Similarly,
bak~toak
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Thus if (1) holds for k, it holds for k£ + 1. By induction down from k, it
follows that (1) holds for k = 1, abob? and baca?. Hence by Lemma 1 and
separativity of o it follows that acb. O

Lemma 2. If xza = x for some x and for some a in an AG*-groupoid, then
x"a = x™ for some positive integer n.
Proof. Let n = 2, then identity (3) implies that

220 = (zz)a = z(za) = zx = 2°.

Let the result be true for k, that is 2¥a = z*. Then by identity (3) and
Proposition 1, we get

k+1 k k+1

"l = (zaF)a = 2 (za) = ¥z = 2P

Hence z"a = z™ for all positive integers n. O

Theorem 5. Let a be a fired element of an AG*-groupoid S, then
Q={r€S|ra=xand a=a?}
15 a commutative subsemigroup.

Proof. As aa = a, we have a € Q. Now if x,y € @ then by identity (2),

zy = (va)(ya) = (zy)(aa) = (zy)a.

To prove that @ is commutative and associative, assume that x and y belong
to Q. Then by using identity (1), we get xy = (xa)y = (ya)xr = yz, and
commutativity gives associativity. Hence @ is a commutative subsemigroup

Theorem 6. Let n and £ be separative congruences on an AG*-groupoid S
and 2%a =22, forallz € S. If nN(Q x Q) CEN(Q x Q), thenn C .

Proof. If xny then,
(@®(2y))*n (2 (zy) (a?y?)n(2?y?).
It follows that (z%(zy))?, (z%y*)? € Q. Now by identities (2), (1), (3),
respectively and Lemma 2, it means that,
(@?(zy))(2°y?) = (z°2%)((zy)y?) = (a%2°)(y )
=a'(y’s) = (zat)y’ = 2%,
(2°y*)a = (2°y°)(aa) = (2°a)(y’a) = 2%’
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So, z2(zy)(z%y?) € Q. Hence (22 (xy))2¢(2?(2y) (22y?)€(2?y?)? implies that
2?(zy)Exy®.

Since z?y’nz* and z%a = 22 for all x € S, so (2%¢?),z* € Q.
Thus z2y?¢z? and it follows from Proposition 4 that 2%y?> = (zy)?. So
(22)262% (zy)€(2y)? which means that 226zy. Finally, 22ny? and 22, y? € Q,
means that x2&y?, 2€xyéy®. As € is separative so x&y. Hence n C & and
by Lemma 1, S /7 is the maximal separative commutative image of S. O
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