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 Dynami
sTzvi S
arrAbstra
tThe Einstein velo
ity addition loop and the symmetri
 velo
ity addition loop are used todevelop relativisti
 dynami
 equations. Sin
e these loops are highly non-
ommutative,the question arises whether one should use the left or the right translations of theseloops. We show that while the left translations are well-suited to relativisti
 dynami
s,the right translations are problemati
. We hypothesize that using the left translations isequivalent to a generalized form of the Equivalen
e Prin
iple.1. Introdu
tionThis paper is about two loops whi
h play a 
entral role in Spe
ial Relativity.The �rst is the Einstein velo
ity addition loop (Dv,⊕E), where
Dv = {v ∈ R

3 : |v| < c}(c = the speed of light) is the ball of relativisti
ally admissible velo
itiesand v⊕E u is the relativisti
 sum of the two velo
ities v and u. This is a leftBru
k loop. The loop operation ⊕E is 
onstru
ted from the Lorentz trans-formations between two inertial systems. This 
onstru
tion will be 
arriedout in Se
tion 2. Einstein velo
ity addition is, in general, not 
ommutative.In fa
t, v ⊕E u = u ⊕E v if and only if v and u are parallel.The se
ond loop under investigation involves a new dynami
 variable,
alled symmetri
 velo
ity, de�ned as follows. If the relative velo
ity betweentwo inertial systems is v, then the symmetri
 velo
ity between the systemsis the unique velo
ity w su
h that w⊕Ew = v. Thus the symmetri
 velo
ityis the relativisti
 half of the given velo
ity. Let Ds = {v ∈ R
3 : |v| < 1}2000 Mathemati
s Subje
t Classi�
ation: 20N05, 83A05Keywords: loops, spe
ial relativity, relativisti
 dynami
s, Einstein velo
ity addition,symmetri
 velo
ity, Equivalen
e Prin
iple
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arrdenote the set of relativisti
ally admissible symmetri
 velo
ities (normalizedto c = 1). The set Ds admits a binary operation ⊕s, the addition ofsymmetri
 velo
ities, whi
h makes (Ds,⊕s) a loop.The two loops (Dv,⊕E) and (Ds,⊕s) are isotopi
 as topologi
al loops.Indeed, the fun
tion Ψ : Dv → Ds whi
h maps a given velo
ity v to its 
or-responding symmetri
 velo
ity w is a homeomorphism whi
h also respe
tsthe loop operations:
Ψ(v ⊕E u) = Ψ(v) ⊕s Ψ(u). (1)See Se
tion 5 for expli
it de�nitions of Ψ and Ψ−1.Despite the above isotopy, these loops are di�erent. (Dv,⊕E) is a leftBru
k loop, whereas (Ds,⊕s) is not. Moreover, these two loops behave dif-ferently geometri
ally. Friedman and Semon [2℄ have already exploited thisdi�eren
e. They used symmetri
 velo
ity and obtained an analyti
 solutionfor the motion of an ele
tri
 
harge in a uniform, 
onstant ele
tromagneti
�eld E,B in whi
h E and B are perpendi
ular. The �rst expli
it solutionto this problem was found in 2002 by Takeu
hi [5℄.The left translations of (Dv,⊕E) (respe
tively, (Ds,⊕s)) generate agroup of automorphisms of Dv (respe
tively, Ds). In turns out that inthe 
ase of (Dv,⊕E), the automorphisms are proje
tive (also 
alled a�ne).This means that line segments are mapped to line segments. In this way,

Dv 
an be seen as a subset of proje
tive spa
e P3. In 
ontrast, the auto-morphisms indu
ed by symmetri
 velo
ity are 
onformal. Thus while thetwo automorphism groups are isomorphi
 as groups, they are quite di�erentgeometri
ally.The use of these two loops in developing relativisti
 dynami
s is new andbrings with it an interesting dilemma. Relativisti
 dynami
s is 
on
ernedwith des
ribing the motion of an obje
t whose velo
ity is 
hanging withtime due to a for
e. Sin
e the velo
ities are bounded by c, they must beadded relativisti
ally. Over an in�nitesimal time period dt, the for
e addsa 
hange dv to the velo
ity v. The new velo
ity will be v ⊕E dv. Thus,velo
ity addition lies at the heart of relativisti
 dynami
s, and it is naturalto use the loop (Dv,⊕E) to develop relativisti
 dynami
s.Now 
omes the dilemma. Is the new velo
ity really v ⊕E dv? Or is it
dv⊕Ev? Sin
e Einstein velo
ity addition is, in general, not 
ommutative, wemust 
hoose between having the for
e a
t on the left or on the right. At �rstglan
e, this 
hoi
e seems arbitrary. There is no a priori preferen
e. Whyshould we prefer one over the other? And how does the for
e know whi
h
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s 93side to a
t on? Furthermore, does it matter? Does the dynami
s basedon left translations 
oin
ide with the dynami
s based on right translations?The answer to this last question will be interesting either way. Agreementof �left� and �right� dynami
s would be fas
inating given the highly non-
ommutative nature of the velo
ity addition. On the other hand, if the twodynami
s are at odds, we will then be fa
ed with two additional questions:Whi
h dynami
s does nature use? Why does nature use this one?Unfortunately, we 
annot yet 
ompare �left� and �right� dynami
s be-
ause no one to date has su

eeded in using the right translations to developrelativisti
 dynami
s. Indeed, Friedman [1℄ uses the left translations of theEinstein velo
ity addition loop (Dv,⊕E) to derive the relative dynami
sequation
m0

dv(τ)

dτ
= q(E + v(τ) × B − c−2〈v(τ)|E〉v(τ)) (2)for a parti
le of 
harge q and rest-mass m0 in an ele
tromagneti
 �eld

E,B. Here, τ is the proper time of the parti
le. Friedman's developmentis straightforward. The right translations, on the other hand, possess someinherent pathologies. We will attempt to explain this asymmetry in termsof the physi
al interpretation of the loop operations.Note that the traditional approa
h to relativisti
 dynami
s does noten
ounter the above dilemma. In fa
t, relativisti
 dynami
s is usually de-veloped without referen
e to Einstein velo
ity addition at all. In [3℄, forexample, one starts with the assumption that the for
e on, say, a 
hargedparti
le is equal to the rate of 
hange of the parti
le's relativisti
 momen-tum. Sin
e a parti
le with 
harge q and velo
ity v in an ele
tromagneti
�eld E,B experien
es a for
e F = q(E + v × B), the relativisti
 dynami
sequation in this 
ase is
m0

d(γv)

dt
= q(E + v × B). (3)In [1℄, it is shown that (2) and (3) are equivalent. Note that although thetraditional approa
h avoids our dilemma, the equivalen
e of (2) and (3)means that the traditional approa
h impli
itly assumes that the for
e a
tson the left. See also [4℄.This paper is organized as follows. In the next se
tion, we 
onstru
tthe Einstein velo
ity addition loop from the Lorentz transformations. InSe
tion 3, the left translations of this loop are used to derive the relativisti
dynami
s equation (2). Se
tion 4 des
ribes the di�
ulties inherent in usingthe right translations to develop relativisti
 dynami
s. Se
tion 5 is devoted
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arrto the symmetri
 velo
ity addition loop. Here, also, we will see that the lefttranslations are preferred over the right. In Se
tion 6, we dis
uss possiblereasons why the left and right translations should behave so di�erently.The �nal se
tion o�ers suggestions for further resear
h. One dire
tion isto develop relativisti
 dynami
s using the triple produ
t to over
ome thedi�
ulties of the right translations. Another approa
h is to show that usingthe left translations is a
tually equivalent to the Equivalen
e Prin
iple. Thelatter idea will be taken up in a forth
oming paper.2. Constru
tion of the Einstein velo
ity addition loopIn this se
tion, we will 
onstru
t the Einstein velo
ity addition loop fromthe Lorentz spa
etime transformation between two inertial systems K and
K ′. We assume that the spatial axes of K are parallel to those of K ′ andthat at time t = 0, the origins of the two systems 
oin
ided. The spa
etime
oordinates of an event in K will be denoted by (

t
r

), where t ∈ R isthe time of the event and r ∈ R
3 represents the lo
ation of the event. The
oordinates of the same event in K ′ will be denoted by (

t′

r′

).Suppose that the velo
ity of K ′ with respe
t to K is v. Then the Lorentztransformation from K ′ to K is
(

t
r

)
= γ

(
1 c−2vT

v Pv + α(I − Pv)

) (
t′

r′

)
, (4)where γ = γ(v) = 1√

1−
|v|2

c2

, α = α(v) = 1
γ(v) , vT denotes the transpose of

v, and Pv denotes the proje
tion operator onto v.The physi
al de�nition of the Einstein velo
ity addition is as follows.We are given that the velo
ity of K ′ with respe
t to K is v. Suppose thatan observer at rest in system K ′ measures an obje
t's velo
ity as u. Thenthe velo
ity of this obje
t as measured by an observer at rest in system Kis 
alled the relativisti
 sum of v and u and is denoted by v ⊕E u.Consider motion with uniform velo
ity u in system K ′. The world-lineof this motion is (
t′

ut′

)
. From (4), this world-line in system K is

γ

(
t′ + v

T
ut′

c2

vt′ + t′Pvu + αt′(I − Pv)u

) (5)
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γt′

(
1 + 〈v|u〉

c2

v + u‖ + αu⊥

)
, (6)where u‖ = Pvu denotes the 
omponent of u parallel to v and u⊥ =

(I − Pv)u denotes the 
omponent of u perpendi
ular to v. This de�nes auniform motion in system K with velo
ity
v ⊕E u =

v + u‖ + αu⊥

1 + 〈v|u〉
c2

, (7)with α = α(v) =
√

1 − |v|2

c2
. This de�nes the binary operation ⊕E on Dv.The pair (Dv,⊕E) is a left Bru
k loop.In 
ase v and u are parallel, the Einstein velo
ity addition redu
es to
v ⊕E u =

v + u

1 + vu
c2

, (8)where v = |v| and u = |u|. In 
ase v and u are perpendi
ular, the formulabe
omes
v ⊕E u = v + α(v)u. (9)Note that the velo
ity addition is 
ommutative only for parallel velo
ities.3. Left translationsIn [1℄, the left translations of the loop (Dv,⊕E) are used to obtain therelativisti
 dynami
s equation

m0
dv(τ)

dτ
= q(E + v(τ) × B − c−2〈v(τ)|E〉v(τ)), (10)where τ is the proper time of the parti
le. It is then shown that (10) isequivalent to (3). Here we give an outline of that development. For details,see [1℄.For ea
h v in the velo
ity ball Dv, we de�ne the left translation Lv :

Dv → Dv by
Lv(u) = v ⊕E u. (11)See Figure 1.
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(a)
(b)Figure 1. A
tion of the velo
ity addition on Dv.

(a) A set of 5 uniformly spa
ed dis
s ∆j obtained by interse
ting the three-dimensional ve-lo
ity ball Dv of radius c = 3·108m/s with y-z planes at x = 0,±108,±2·108m/s. (b) Theimages of these ∆j under the left translation Lv(u) = v ⊕E u, with v = (108, 0, 0)m/s.Note that Lv(∆j) is also a dis
 in Dv, perpendi
ular to v and moved in the dire
tion of
v. On ea
h dis
 ∆j , the map Lv a
ts as multipli
ation by a 
onstant in the 
omponentof u perpendi
ular to v.The left translations have some ni
e properties. First, ea
h left transla-tion Lv is a proje
tive automorphism of Dv. To appre
iate the proje
tivegeometry at work here, envision the a
tion of Lv on Dv as follows. Fix a ve-lo
ity u ∈ Dv. Identify u with the interse
tion of the world-line L =

(
t
ut

)in the inertial system K and the plane Π = {(1, r) : r ∈ R}. Let K ′ be aninertial system moving with relative velo
ity v with respe
t to K. Applyingthe Lorentz transformation from K to K ′ to the line L yields a line L′ in
K ′ whose interse
tion with Π is v ⊕E u.The se
ond ni
e property is 
losure under inverses. In fa
t L−1

v = L−v.The above two properties 
ombine to make the following useful 
hara
ter-ization of the group Autp(Dv) of all proje
tive automorphisms of Dv. Let
ψ be any proje
tive automorphism of Dv. Set v = ψ(0) and U = L−1

v ψ.Then U is a proje
tive map that maps 0 → 0 and is thus a linear map whi
h
an be represented by a 3× 3 matrix. Sin
e U maps Dv onto itself, it is anisometry and is represented by an orthogonal matrix. Sin
e ψ = LvU , thegroup Autp(Dv) is de�ned by
Autp(Dv) = {LvU : v ∈ Dv, U ∈ O(3)}. (12)We write Lv,U instead of LvU .The group Autp(Dv) is a representation of the Lorentz group by a�nemaps. It is a real Lie group of dimension 6, sin
e any element of the group
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s 97is determined by an element v of the three-dimensional open ball of radius
c in R

3 and an element U of the three-dimensional orthogonal group O(3).The dynami
s equation (10) will be 
onstru
ted from the elements ofthe Lie algebra autp(Dv) of Autp(Dv). The elements of a Lie algebra are, byde�nition, the tangent spa
e of the identity of the 
orresponding Lie group.To obtain the elements of autp(Dv), let g(s) be a di�erentiable 
urve froma neighborhood I0 of 0 into Autp(Dv), with g(0) = L0,I , the identity of
Autp(Dv). Then g(s) has the form

g(s) = Lv(s),U(s), (13)where v : I0 → Dv is a di�erentiable fun
tion satisfying v(0) = 0 and
U(s) : I0 → O(3) is di�erentiable and satis�es U(0) = I.For an example of su
h a 
urve g(s), �x v ∈ Dv. Let j = v/|v| andde�ne k = tanh−1(|v|/c). For s ∈ R, de�ne b(s) = tanh(sk)cj. Theresulting 
urve g(s) := Lb(s) is 
alled the one-parameter subgroup generatedby Lv. See Figure 2.
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Figure 2. A
tion of a one-parameter subgroup on Dv.The e�e
t on a two-dimensional se
tion of Dv by the one-parameter subgroup g(s) gen-erated by the map Lv, for s = −1, 0, 1, 2. One 
ell of the grid has been darkenedalong with its images to help visualize the e�e
t of the transformation. Note that
g(−1) = L−1

v = L−v, g(0) = I-the identity, g(1) = Lv and g(2) = L2
v = Lv⊕Ev.
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arrWe denote by δ the element of autp(Dv) generated by g(s). For any�xed u ∈ Dv, g(s)(u) is a smooth 
urve in Dv, with g(0)(u) = u, and δ(u)is a tangent ve
tor to this line. Thus, the elements of autp(Dv) are ve
tor�elds δ(u) on Dv de�ned by
δ(u) =

d

ds
g(s)(u)

∣∣∣
s=0

. (14)Note that (14) is equivalent to using dv ⊕E v and not v ⊕E dv for thevelo
ity at time t + dt.The expli
it form of δ(u) is 
al
ulated in [1℄. There it is shown that theLie algebra
autp(Dv) = {δE,B : E,B ∈ R

3}, (15)where δE,B : Dv → R
3 is the ve
tor �eld de�ned by

δE,B(u) = E + u × B − c−2〈u |E〉u. (16)Note that ea
h generator δE,B(u) is a se
ond-degree polynomial in u. Thequadrati
 term 
an be used to derive the triple produ
t asso
iated with
Dv as a Bounded Symmetri
 Domain. Moreover, these generators give the
orre
t formulas for the transformation of an ele
tromagneti
 �eld betweentwo inertial systems. Two examples of these ve
tor �elds are shown inFigures 3 and 4.
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Figure 3. The ve
tor �eld generated by an ele
tri
 �eld E.The ve
tor �eld q/m · δE,B on a two-dimensional se
tion of Dv, with q/m = 107C/kg,
E = (2, 0, 0)V/m and B = 0. Sin
e E is in the positive dire
tion of the vx-axis, the
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s 99�eld tends to move parti
les in this dire
tion. However, near the edge of Dv, the ve
torseither shrink to zero magnitude or be
ome nearly tangent to Dv, re�e
ting the fa
t thatthe �ow generated by this �eld 
annot leave Dv.
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Figure 4. The ve
tor �eld generated by an ele
tromagneti
 �eld E,B.The ve
tor �eld q/m · δE,B on a two-dimensional se
tion of Dv, with q/m = 107C/kg,
E = (2, 0, 0)V/m and cB = (0, 0, 3)V/m. Here, the addition of a magneti
 �eld B 
ausesa rotation.Using the generator δE,B ∈ autp(Dv) de�ned by (16) to represent thefor
e on a parti
le with 
harge q and rest-mass m0, we obtain the relativisti
dynami
s equation

dv(τ)

dτ
=

q

m0
δE,B(v(τ))or

m0
dv(τ)

dτ
= q(E + v(τ) × B − c−2〈v(τ)|E〉v(τ)), (17)where τ is the proper time of the parti
le. It is shown in [1℄ that (17) isequivalent to (3). 4. Right translationsWhen we try to mimi
 the development of the previous se
tion using theright translations, we run into problems.For ea
h v ∈ Dv, we de�ne the right translation Rv : Dv → Dv by

Rv(u) = u ⊕E v. (18)
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arrUnfortunately, the right translations do not possess any of the ni
e prop-erties of the left translations. The map Rv is not proje
tive. It's not evenanalyti
. Moreover,
R−1

v 6= R−v. (19)In fa
t, R−1
v is not a right translation at all. We will express R−1

v (u)using Ungar's gyration operator [6℄. For x,y ∈ Dv, de�ne gyr[x,y] : Dv →
Dv by

gyr[x,y](z) = −(x ⊕E y) ⊕E (x ⊕E (y ⊕E z)). (20)Then
R−1

v (u) = u ⊕E − gyr[u,v]v. (21)This last equation shows that R−1
v is not a right translation. It is not 
learat all how to pro
eed from this point in developing relativisti
 dynami
s.We think the di�
ulties might be over
ome by using the triple produ
tasso
iated with Dv as a Bounded Symmetri
 Domain, but this approa
h isstill in the beginning stages. See Se
tion 7.5. Symmetri
 velo
ity additionIn this se
tion, we 
onstru
t the loop (Ds,⊕s) of symmetri
 velo
ities. Wederive the formula for the addition of symmetri
 velo
ities from the physi
alde�nition of this addition. The left translations of (Ds,⊕s), whi
h belongto the group Autc(Ds) of all 
onformal automorphisms of Ds, are thenused to derive the relativisti
 dynami
s equation for symmetri
 velo
ities.The elements of the Lie algebra autc(Ds) will be expressed in terms ofa triple produ
t. We also obtain a very useful two-dimensional version of

(Ds,⊕s). This version is usually simpler to work with and yet 
aptures allof the properties of the full three-dimensional version. Here too, in the 
aseof symmetri
 velo
ity, we will see that while the left translations yield ani
e development of relativisti
 dynami
s, the right translations are ratherproblemati
, even in the simpler, two-dimensional 
ase.The de�nition of symmetri
 velo
ity is as follows. If the relative velo
itybetween two inertial systems is v, then the symmetri
 velo
ity between thesystems is the unique velo
ity w1 su
h that
v = w1 ⊕E w1 =

w1 + w1

1 + |w1|
c

|w1|
c

=
2w1

1 + |w1|2/c2
.
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 Dynami
s 101Instead of w1, we use a dimensionless ve
tor w = w1/c and 
all it s-velo
ity.Thus, the relationship between an s-velo
ity w and its 
orresponding ve-lo
ity v is given by the two formulas
w = Ψ(v) =

v/c

1 +
√

1 − |v|2/c2
(22)and

v = Ψ−1(w) =
2cw

1 + |w|2
. (23)The set of all relativisti
ally admissible s-velo
ities form a unit ball

Ds = {w ∈ R
3 : |w| < 1}. (24)The physi
al meaning of symmetri
 velo
ity is as follows. Consider twoinertial systems with relative velo
ity v between them. Pla
e two obje
ts ofequal mass (test masses) at the origin of ea
h inertial system. The 
enter ofmass of the two obje
ts will be 
alled the 
enter of the two inertial systems.The symmetri
 velo
ity is the velo
ity of ea
h system with respe
t to the
enter of the systems, and the s-velo
ity is the dimensionless velo
ity of thesystems with respe
t to their 
enter (see Figure 5).
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Figure 5. The physi
al meaning of symmetri
 velo
ity.The physi
al meaning of symmetri
 velo
ity. Two inertial systems K and K′ with relativevelo
ity v between them are viewed from the system 
onne
ted to their 
enter. In thissystem, K and K′ are ea
h moving with velo
ity ±w.
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arrThe physi
al de�nition of s-velo
ity addition is as follows. Considerthree inertial systems K1, K2 and K3. We 
hoose the spa
e axes of K2to be parallel to the axes of K1 and the axes of K3 to be parallel to thoseof K2. Denote their origins by O1, O2 and O3, respe
tively. Denote by athe s-velo
ity of system K2 with respe
t to K1 and by w the s-velo
ity ofsystem K3 with respe
t to K2. Then the s-velo
ity w3 of system K3 withrespe
t to K1 (i.e., the velo
ity of K3 with respe
t to the 
enter of systems
K1 and K3) is 
alled the sum of the s-velo
ities a and w and is denoted by
a⊕s w (see Figure 6). In other words, if ca⊕E ca = v and cw⊕E cw = u,then a ⊕s w is 1/c times the relativisti
 half of v ⊕E u.

O1
a ⊕s w

w

v ⊕E u

u
v

K13

K12K23

~

~
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Figure 6. The sum of s-velo
ities.The sum of s-velo
ities. Inertial systems K1, K2 and K3, with origins O1, O2 and O3,respe
tively, had a 
ommon origin at time t = 0. The line K̃12 is the world-line of the
enter of the two inertial systems K1 and K2. Similarly, the lines K̃23 and K̃13 representthe world-lines of the 
enters of the systems K2, K3 and K1, K3, respe
tively. Thevelo
ity of system K2 with respe
t to system K1 is v, and its s-velo
ity a is the velo
ityof K2 with respe
t to K̃12. Similarly, the velo
ity of system K3 with respe
t to system
K2 is u, and its s-velo
ity w is the velo
ity of K3 with respe
t to K̃23. By de�nitionof Einstein velo
ity addition, the velo
ity of system K3 with respe
t to system K1 is
v ⊕E u. The s-velo
ity of K3 with respe
t to K1, meaning the dimensionless velo
ity of
K3 with respe
t to K̃13, is 
alled the sum of symmetri
 velo
ities a and w and is denotedby a ⊕s w.
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 Dynami
s 103Using the above de�nition and formula (7) for Einstein velo
ity addition,we obtain the s-velo
ity-addition formula:
a ⊕s w =

(1 + |w|2 + 2〈a | w〉)a + (1 − |a|2)w

1 + |a|2|w|2 + 2〈a | w〉
. (25)As in the 
ase of Einstein velo
ity addition, it 
an be shown that a⊕s w =

w ⊕s a if and only if a and w are parallel.Note that a ⊕s w is a linear 
ombination of a and w and therefore be-longs to the plane Π generated by a and w. This allows us to obtain atwo-dimensional version of s-velo
ity addition. It is often su�
ient (andeasier!) to work with the two-dimensional version. Moreover, we obtain anew method of solving relativisti
 dynami
 equations. If the motion underinvestigation has an invariant plane, then the relativisti
 dynami
 equa-tion for the symmetri
 velo
ity be
omes a �rst-order analyti
 di�erentialequation in one 
omplex variable.We obtain the two-dimensional version of s-velo
ity addition by impos-ing a 
omplex stru
ture on the plane Π. In other words, we treat the disk
∆ = Ds ∩ Π as a 
opy of the unit disk |z| < 1 of the 
omplex plane C.Denote by a the 
omplex number 
orresponding to the ve
tor a and by wthe 
omplex number 
orresponding to the ve
tor w. We use the identities

Re 〈a | w〉 =
aw + aw

2
, |w|2 = ww, (26)where the bar denotes 
omplex 
onjugation, to 
onvert (25) into our two-dimensional version:

a ⊕s w =
(1 + ww + aw + aw)a + (1 − aa)w

1 + aaww + aw + aw
(27)

=
(a + w)(1 + aw)

(1 + aw)(1 + aw)
=

a + w

1 + aw
. (28)This is the well-known Möbius transformation of the 
omplex unit disk.Thus, s-velo
ity addition is a generalization of the Möbius addition of 
om-plex numbers (see Figure 7).
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 velo
ity addition on Ds.Symmetri
 velo
ity addition a ⊕s w for a = 0.4. The lower 
ir
le in the �gure is theunit dis
 of the 
omplex plane, representing a two-dimensional se
tion of the s-velo
ityball Ds. The upper 
ir
le is the image of the lower 
ir
le under the transformation w →

a+w

1+aw
. Ea
h 
ir
le is enhan
ed with a grid to highlight the e�e
t of this transformation.Noti
e how a typi
al square of the lower grid is deformed and 
hanges in size under thetransformation.For ea
h s-velo
ity a ∈ Ds, we de�ne the left translation La : Ds → Dsby

La(w) = a ⊕s w. (29)Ea
h left translation La is a 
onformal automorphism of Ds. In addition,the inverse of a left translation is again a left translation. In fa
t L−1
a =

L−a. As a result, the same argument as that in Se
tion 3 shows that thegroup Autc(Ds) of all 
onformal automorphisms of Ds has the following
hara
terization:
Autc(Ds) = {LaU : a ∈ Ds, U ∈ O(3)}. (30)We write La,U instead of LaU .The group Autc(Ds) is a representation of the Lorentz group by 
onfor-mal maps. It is a real Lie group of dimension 6, sin
e any element of thegroup is determined by an element a of the three-dimensional open unit ballin R

3 and an element U of the three-dimensional orthogonal group O(3).The two groups Autp(Ds) and Autc(Ds) are isomorphi
. In fa
t, theisomorphism is given by
Lv,U ←→ ΨLv,UΨ−1. (31)
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 Dynami
s 105Nevertheless, they lead to di�erent dynami
s, as we will see.The relativisti
 dynami
s equation for symmetri
 velo
ities will be 
on-stru
ted from the elements of the Lie algebra autc(Ds) of Autc(Ds). Tode�ne the elements of autc(Ds), 
onsider di�erentiable 
urves g(s) from aneighborhood I0 of zero into Autc(Ds), with g(0) = L0,I , the identity of
Autc(Ds). Then

g(s) = La(s),U(s), (32)where a : I0 → Ds is a di�erentiable fun
tion satisfying a(0) = 0 and
U(s) : I0 → O(3) is di�erentiable and satis�es U(0) = I. We denote by ξthe element of autc(Ds) generated by g(s). For any �xed w ∈ Ds, g(s)(w)is a smooth 
urve in Ds, with g(0)(w) = w, and ξ(w) is a tangent ve
torto this line. Thus, the elements of autc(Ds) are ve
tor �elds ξ(w) on Dsde�ned by

ξ(w) =
d

ds
g(s)(w)

∣∣∣
s=0

. (33)The expli
it form of ξ(w) is 
al
ulated in [1℄. There it is shown that
autc(Ds) = {ξb,A : b ∈ R

3, A is a 3 × 3 antisymmetri
 matrix}, (34)where
ξb,A(w) = b + Aw − 2〈b|w〉w + |w|2b. (35)It is useful to express the generator ξb,A in terms of the triple produ
t
{a,b, c} = 〈a|b〉c + 〈c|b〉a − 〈a|c〉b, (36)where a,b, c ∈ R

3. This produ
t is 
alled the spin triple produ
t. Thebounded symmetri
 domain Ds endowed with the spin triple produ
t is
alled the spin fa
tor and is a domain of type IV in Cartan's 
lassi�
ation.See Chapters 2 and 3 of [1℄ for a full treatment of the spin triple produ
t inthe theory of Bounded Symmetri
 Domains and Spe
ial Relativity.Rewriting the generators (35) using the triple produ
t, we �nd that
autc(Ds) = {ξb,B : b,B ∈ R

3}, (37)where ξb,B : Ds → R
3 is the ve
tor �eld de�ned by

ξb,B(w) = b + w × B − {w,b,w}. (38)See Figures 8 and 9 for two examples of these ve
tor �elds.The similarities between Figures 3 and 8 and between Figures 4 and 9
an be misleading. For example, the �ow generating Figure 4 is ellipti
al,while the traje
tories in Figure 9 are 
ir
les.
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tor �eld of the ele
tri
 �eld E on Ds.The ve
tor �eld ξb,B, with b = (0.07, 0, 0) and B = 0, on a two-dimensional se
tion ofthe s-velo
ity ball Ds. Note that this ve
tor �eld is similar to the 
orresponding one forthe Lie algebra autp(Dv) of the velo
ity ball (see Figure 3).
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Figure 9. The ve
tor �eld of the ele
tromagneti
 �eld E,B on Ds.The ve
tor �eld ξb,B with b = (0.07, 0, 0) and B = (0, 0, 0.1), on a two-dimensionalse
tion of the s-velo
ity ball Ds. Note that this ve
tor �eld is similar to the 
orrespondingone for the Lie algebra autp(Dv) of the velo
ity ball (see Figure 4).



Loops in Relativisti
 Dynami
s 107To obtain the relativisti
 dynami
s equation for symmetri
 velo
ities,we start with
m0

d(γv)

dt
= q(E + v × B) (39)and 
hange variables from velo
ity v to s-velo
ity w. We obtain

m0c
dw(τ)

dτ
= q(E/2 + w(τ) × cB − {w(τ),E/2,w(τ)}) = qξE/2,cB(w(τ)).(40)Thus the left translations yield a ni
e development of relativisti
 dy-nami
s also in the 
ase of symmetri
 velo
ity. The right translations, onthe other hand, are again problemati
. Even in the ostensibly simpler two-dimensional version of symmetri
 velo
ity addition, the inverses of righttranslations are rather unwieldy. Re
all that the two-dimensional versionof s-velo
ity addition is

a ⊕s b =
a + b

1 + ab
. (41)The left inverses are well-behaved, and we have

L−1
a (b) =

−a + b

1 − ab
= L−a(b). (42)Compare this to the right inverse, whi
h is not even analyti
:

R−1
a (b) =

b(1 − |a|2) − a(1 − |b|2)

1 − |b|2|a|2
. (43)Again the right translations have lead to an apparent dead end.6. Why are the left and righttranslations so di�erent?Why are the left translations so well-suited for relativisti
 dynami
s, whilethe right translations are not? Who told for
es that they have to a
t onthe left?Let's take another look at the physi
al de�nition of the Einstein velo
ityaddition. Suppose an observer is at rest in an inertial system K. Forany velo
ity a ∈ Dv, let Ka denote the inertial system whose axes areparallel to those of K and moves with relative velo
ity a with respe
t to K.Then the inverse fun
tions L−1

a and R−1
a now have the following physi
al
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arrinterpretation. The question �What is the value of L−1
a (u)?� is equivalent tothe question �Whi
h velo
ity measured in the system Ka will be measured byour observer as u?� whereas the question �What is the value of R−1

a (u)?�is equivalent to the question �In whi
h system K ′ will the velo
ity a bemeasured by our observer as u?� In other words, the two inverse fun
tionsare answering fundamentally di�erent questions.This might explain why the left and right translations behave di�erently.But it still does not explain the preferred status of left over right.7. Suggestions for further resear
hAs mentioned previously, we believe that the triple produ
t might be helpfulin over
oming the di�
ulties inherent in using the right translations. Inthe two-dimensional version of s-velo
ity addition, for example, the tripleprodu
t is derived from (36) and takes the form
{z, b, w} = zbw, (44)where z, b, w ∈ C. Then, although neither the right translation Ra norits inverse is analyti
, ea
h of these fun
tions does have a power seriesexpansion. More expli
itly, for the right translation we have

Ra(b) =
b + a

1 + ba
=

∞∑

n=0

(−1)nD(a, b)n(a + b), (45)where D(a, b)x = {a, b, x} and D(a, b)0 = Id. For the inverse, we have
R−1

a (b) =
b(1 − |a|2) − a(1 − |b|2)

1 − |b|2|a|2
=

∞∑

n=0

Q(a, b)n(−a + b), (46)where Q(a, b)x = {a, x, b} and Q(a, b)0 = Id. It will be interesting to see ifthese power series make the right translations more amenable to relativisti
dynami
s.Another line of investigation involves the Equivalen
e Prin
iple. Thisprin
iple has several versions. The 
lassi
al version ([3℄, p. 244) states thatmotion in a uniformly a

elerated system is the same as that in an inertialsystem in the presen
e of a gravitational �eld. A

ording to the generalizedEquivalen
e Prin
iple, motion in a uniformly a

elerated system is the sameas that in an inertial system in the presen
e of any for
e. We believe that
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 Dynami
s 109using the left translations of either the Einstein or the symmetri
 velo
ityloop is equivalent to the generalized Equivalen
e Prin
iple. In other words,the right translations are the wrong ones to use be
ause they 
ontradi
tthe generalized Equivalen
e Prin
iple. Moreover, if our belief is 
orre
t,then, on
e we su

eed in developing relativisti
 dynami
s from the righttranslations, we will have a way of testing the 
orre
tness of the Equivalen
ePrin
iple itself. These ideas will be taken up in a forth
oming paper.A
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