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Loops in Relativistic Dynamics

Tzvi Scarr

Abstract

The Einstein velocity addition loop and the symmetric velocity addition loop are used to
develop relativistic dynamic equations. Since these loops are highly non-commutative,
the question arises whether one should use the left or the right translations of these
loops. We show that while the left translations are well-suited to relativistic dynamics,
the right translations are problematic. We hypothesize that using the left translations is

equivalent to a generalized form of the Equivalence Principle.

1. Introduction

This paper is about two loops which play a central role in Special Relativity.
The first is the Einstein velocity addition loop (D,, ®g), where

D,={veR}:|v]<c}

(¢ = the speed of light) is the ball of relativistically admissible velocities
and vdgu is the relativistic sum of the two velocities v and u. This is a left
Bruck loop. The loop operation @p is constructed from the Lorentz trans-
formations between two inertial systems. This construction will be carried
out in Section 2. Einstein velocity addition is, in general, not commutative.
In fact, v g u =u ®g v if and only if v and u are parallel.

The second loop under investigation involves a new dynamic variable,
called symmetric velocity, defined as follows. If the relative velocity between
two inertial systems is v, then the symmetric velocity between the systems
is the unique velocity w such that w@gw = v. Thus the symmetric velocity
is the relativistic half of the given velocity. Let Dy = {v € R3 : |v| < 1}
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denote the set of relativistically admissible symmetric velocities (normalized
to ¢ = 1). The set Dy admits a binary operation @, the addition of
symmetric velocities, which makes (Ds, ®;) a loop.

The two loops (Dy,®g) and (Ds, @) are isotopic as topological loops.
Indeed, the function ¥ : D, — D, which maps a given velocity v to its cor-
responding symmetric velocity w is a homeomorphism which also respects
the loop operations:

U(vdgu)=Y(V) D Y(u). (1)

See Section 5 for explicit definitions of ¥ and W1,

Despite the above isotopy, these loops are different. (D,,®g) is a left
Bruck loop, whereas (Dg, @) is not. Moreover, these two loops behave dif-
ferently geometrically. Friedman and Semon [2] have already exploited this
difference. They used symmetric velocity and obtained an analytic solution
for the motion of an electric charge in a uniform, constant electromagnetic
field E, B in which E and B are perpendicular. The first ezplicit solution
to this problem was found in 2002 by Takeuchi [5].

The left translations of (D,,®g) (respectively, (Ds,®s)) generate a
group of automorphisms of D, (respectively, Ds). In turns out that in
the case of (D,, @), the automorphisms are projective (also called affine).
This means that line segments are mapped to line segments. In this way,
D, can be seen as a subset of projective space P3. In contrast, the auto-
morphisms induced by symmetric velocity are conformal. Thus while the
two automorphism groups are isomorphic as groups, they are quite different
geometrically.

The use of these two loops in developing relativistic dynamics is new and
brings with it an interesting dilemma. Relativistic dynamics is concerned
with describing the motion of an object whose velocity is changing with
time due to a force. Since the velocities are bounded by ¢, they must be
added relativistically. Over an infinitesimal time period dt, the force adds
a change dv to the velocity v. The new velocity will be v &g dv. Thus,
velocity addition lies at the heart of relativistic dynamics, and it is natural
to use the loop (D,, ®g) to develop relativistic dynamics.

Now comes the dilemma. Is the new velocity really v &g dv? Or is it
dv®gv? Since Einstein velocity addition is, in general, not commutative, we
must choose between having the force act on the left or on the right. At first
glance, this choice seems arbitrary. There is no a priori preference. Why
should we prefer one over the other? And how does the force know which
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side to act on? Furthermore, does it matter? Does the dynamics based
on left translations coincide with the dynamics based on right translations?
The answer to this last question will be interesting either way. Agreement
of “left” and “right” dynamics would be fascinating given the highly non-
commutative nature of the velocity addition. On the other hand, if the two
dynamics are at odds, we will then be faced with two additional questions:
Which dynamics does nature use? Why does nature use this one?

Unfortunately, we cannot yet compare “left” and “right” dynamics be-
cause no one to date has succeeded in using the right translations to develop
relativistic dynamics. Indeed, Friedman [1] uses the left translations of the
Einstein velocity addition loop (D,,®g) to derive the relative dynamics
equation
dv(r)

dr
for a particle of charge ¢ and rest-mass mg in an electromagnetic field
E,B. Here, 7 is the proper time of the particle. Friedman’s development
is straightforward. The right translations, on the other hand, possess some
inherent pathologies. We will attempt to explain this asymmetry in terms
of the physical interpretation of the loop operations.

Note that the traditional approach to relativistic dynamics does not
encounter the above dilemma. In fact, relativistic dynamics is usually de-
veloped without reference to Einstein velocity addition at all. In [3], for
example, one starts with the assumption that the force on, say, a charged
particle is equal to the rate of change of the particle’s relativistic momen-
tum. Since a particle with charge ¢ and velocity v in an electromagnetic
field E, B experiences a force F = ¢(E + v x B), the relativistic dynamics
equation in this case is

= q(E+v(r) x B~ X(v(7)[E)v(r)) (2)

d(yv)
dt

In [1], it is shown that (2) and (3) are equivalent. Note that although the
traditional approach avoids our dilemma, the equivalence of (2) and (3)
means that the traditional approach implicitly assumes that the force acts
on the left. See also |4].

This paper is organized as follows. In the next section, we construct
the Einstein velocity addition loop from the Lorentz transformations. In
Section 3, the left translations of this loop are used to derive the relativistic
dynamics equation (2). Section 4 describes the difficulties inherent in using
the right translations to develop relativistic dynamics. Section 5 is devoted

mo =q¢(E+v xB). (3)
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to the symmetric velocity addition loop. Here, also, we will see that the left
translations are preferred over the right. In Section 6, we discuss possible
reasons why the left and right translations should behave so differently.
The final section offers suggestions for further research. One direction is
to develop relativistic dynamics using the triple product to overcome the
difficulties of the right translations. Another approach is to show that using
the left translations is actually equivalent to the Equivalence Principle. The
latter idea will be taken up in a forthcoming paper.

2. Construction of the Einstein velocity addition loop

In this section, we will construct the Einstein velocity addition loop from
the Lorentz spacetime transformation between two inertial systems K and
K’. We assume that the spatial axes of K are parallel to those of K’ and
that at time ¢ = 0, the origins of the two systems coincided. The spacetime

coordinates of an event in K will be denoted by ( i >, where t € R is

the time of the event and r € R3 represents the location of the event. The
. . . t
coordinates of the same event in K’ will be denoted by o

Suppose that the velocity of K’ with respect to K is v. Then the Lorentz
transformation from K’ to K is

<i>_7<\1z PV+C;Z}/iPV)><i:), (4)

L_ o =a(v) = =, v denotes the transpose of

where 7 = y(v) = V)

12
02

v, and P, denotes the projection operator onto v.

The physical definition of the Einstein velocity addition is as follows.
We are given that the velocity of K’ with respect to K is v. Suppose that
an observer at rest in system K’ measures an object’s velocity as u. Then
the velocity of this object as measured by an observer at rest in system K
is called the relativistic sum of v and u and is denoted by v &g u.

Consider motion with uniform velocity u in system K’. The world-line

/
of this motion is < ) . From (4), this world-line in system K is

t
ut’

Y + vTut
y ( & (5)

vt' + ' Pbu+ ot'(I — Py)u
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or
(v]u)
S T (6)
Vv + u +au |
where u; = Pyu denotes the component of u parallel to v and u;, =

(I — Py)u denotes the component of u perpendicular to v. This defines a
uniform motion in system K with velocity

v+u+aug

(7)
1+

Vogpu=

with o = a(v) = — |‘c’—2|2 This defines the binary operation &g on D,,.
The pair (D,, ®g) is a left Bruck loop.

In case v and u are parallel, the Einstein velocity addition reduces to

vV+u

- 8
1+’é—’; (®)

vOpu=

where v = |v| and u = |u|. In case v and u are perpendicular, the formula
becomes

vépu=v+a(v)u 9)

Note that the velocity addition is commutative only for parallel velocities.

3. Left translations

In [1], the left translations of the loop (D,,®pg) are used to obtain the
relativistic dynamics equation

dv(r)

= gE+v(r)xB— C_2<V(T)|E>V(T)), (10)

mo

where 7 is the proper time of the particle. It is then shown that (10) is
equivalent to (3). Here we give an outline of that development. For details,
see [1].
For each v in the velocity ball D,, we define the left translation Ly :
D, — D, by
Ly(u) =v &g u (11)

See Figure 1.
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Figure 1. Action of the velocity addition on D.,,.
(a) A set of 5 uniformly spaced discs A; obtained by intersecting the three-dimensional ve-
locity ball D,, of radius ¢ = 3-10%m /s with y-z planes at = = 0, £10%, £2-10%m//s. (b) The
images of these A; under the left translation Ly(u) = v @x u, with v = (10%,0,0)m/s.
Note that Ly (A;) is also a disc in D,, perpendicular to v and moved in the direction of
v. On each disc Aj, the map L, acts as multiplication by a constant in the component

of u perpendicular to v.

The left translations have some nice properties. First, each left transla-
tion Ly is a projective automorphism of D,. To appreciate the projective
geometry at work here, envision the action of L, on D, as follows. Fix a ve-
t
ut
in the inertial system K and the plane IT = {(1,r) : r € R}. Let K’ be an
inertial system moving with relative velocity v with respect to K. Applying
the Lorentz transformation from K to K’ to the line L yields a line L’ in
K’ whose intersection with Il is v &5 u.

The second nice property is closure under inverses. In fact Ly! = L_,.
The above two properties combine to make the following useful character-
ization of the group Auty,(D,) of all projective automorphisms of D,. Let
1 be any projective automorphism of D,. Set v = %(0) and U = L 4.
Then U is a projective map that maps 0 — 0 and is thus a linear map which
can be represented by a 3 x 3 matrix. Since U maps D, onto itself, it is an
isometry and is represented by an orthogonal matrix. Since ¢ = LU, the
group Aut,(D,) is defined by

Auty(Dy) ={LyU : v e D,, U e O(3)}. (12)

locity u € D,,. Identify u with the intersection of the world-line L =

We write Ly 7 instead of L,U.
The group Aut,(D,) is a representation of the Lorentz group by affine
maps. It is a real Lie group of dimension 6, since any element of the group
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is determined by an element v of the three-dimensional open ball of radius
cin R3 and an element U of the three-dimensional orthogonal group O(3).

The dynamics equation (10) will be constructed from the elements of
the Lie algebra auty(D,) of Aut,(D,). The elements of a Lie algebra are, by
definition, the tangent space of the identity of the corresponding Lie group.
To obtain the elements of auty,(D,), let g(s) be a differentiable curve from
a neighborhood Iy of 0 into Auty(D,), with g(0) = Lo, the identity of
Auty(D,). Then g(s) has the form

9(8) = Ly(s),0(s)> (13)

where v : Iy — D, is a differentiable function satisfying v(0) = 0 and
U(s) : In — O(3) is differentiable and satisfies U(0) = I.

For an example of such a curve g(s), fix v € D,. Let j = v/|v| and
define k& = tanh~!(|v|/c). For s € R, define b(s) = tanh(sk)cj. The
resulting curve g(s) := Ly, is called the one-parameter subgroup generated
by L. See Figure 2.

X 1()8

Figure 2. Action of a one-parameter subgroup on D,.
The effect on a two-dimensional section of D, by the one-parameter subgroup g(s) gen-
erated by the map Ly, for s = —1,0,1,2. One cell of the grid has been darkened
along with its images to help visualize the effect of the transformation. Note that
g(—=1) = Ly' = L_, g(0) = I-the identity, g(1) = Ly and g(2) = L2 = Lvg gv-
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We denote by 0 the element of aut,(D,) generated by g(s). For any
fixed u € Dy, g(s)(u) is a smooth curve in D,,, with ¢(0)(u) = u, and é(u)
is a tangent vector to this line. Thus, the elements of aut,(D,) are vector
fields 6(u) on D, defined by

5w) = - g(s)w)| (14)
Note that (14) is equivalent to using dv ®g v and not v @ dv for the
velocity at time ¢ + dt.
The explicit form of §(u) is calculated in [1]. There it is shown that the
Lie algebra
auty(D,) = {ér B : E,B € R3}, (15)

where g B : Dy — R3 is the vector field defined by
gs(u) =E+uxB-c?u|E)u (16)

Note that each generator ég g(u) is a second-degree polynomial in u. The
quadratic term can be used to derive the triple product associated with
D, as a Bounded Symmetric Domain. Moreover, these generators give the
correct formulas for the transformation of an electromagnetic field between
two inertial systems. Two examples of these vector fields are shown in
Figures 3 and 4.

L e w N

i

A O O N
A
LT N S S S A A

“ e

R

“ - > = =

-3 *2‘ 71‘ \;)X ‘1 ‘Z ‘3 XlDE

Figure 3. The vector field generated by an electric field E.
The vector field ¢/m - 6g,B on a two-dimensional section of D,, with ¢/m = 107°C/kg,
E = (2,0,0)V/m and B = 0. Since E is in the positive direction of the v -axis, the
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field tends to move particles in this direction. However, near the edge of D,, the vectors
either shrink to zero magnitude or become nearly tangent to D,, reflecting the fact that

the flow generated by this field cannot leave D,,.

x10°

Figure 4. The vector field generated by an electromagnetic field E, B.
The vector field g/m - 6r,B on a two-dimensional section of D,, with ¢/m = 107C/kg,
E =(2,0,0)V/m and ¢B = (0,0, 3)V/m. Here, the addition of a magnetic field B causes

a rotation.
Using the generator dg B € auty(D,) defined by (16) to represent the

force on a particle with charge ¢ and rest-mass mg, we obtain the relativistic
dynamics equation

d‘;(TT) = mio(SE,B(V(T))
mB0 B ) xB OB, (7

where 7 is the proper time of the particle. It is shown in [1| that (17) is
equivalent to (3).

4. Right translations

When we try to mimic the development of the previous section using the
right translations, we run into problems.
For each v € D,, we define the right translation Ry : D, — D, by

Ry(u)=udgv. (18)
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Unfortunately, the right translations do not possess any of the nice prop-
erties of the left translations. The map Ry is not projective. It’s not even
analytic. Moreover,

R;'#R_,. (19)

In fact, Ry! is not a right translation at all. We will express Ry !(u)
using Ungar’s gyration operator [6]. For x,y € D,, define gyr[x,y]: D, —
D, by

gyr[x,y)(z) = —(x®py) ®p (x&p (y ©£ 2)). (20)

Then
Ry (w) = u@p — gyrfu, v]v. (21)

This last equation shows that Ry ! is not a right translation. It is not clear
at all how to proceed from this point in developing relativistic dynamics.
We think the difficulties might be overcome by using the triple product
associated with D, as a Bounded Symmetric Domain, but this approach is
still in the beginning stages. See Section 7.

5. Symmetric velocity addition

In this section, we construct the loop (Ds, @s) of symmetric velocities. We
derive the formula for the addition of symmetric velocities from the physical
definition of this addition. The left translations of (Ds, @), which belong
to the group Aut.(Ds) of all conformal automorphisms of Dy, are then
used to derive the relativistic dynamics equation for symmetric velocities.
The elements of the Lie algebra aut.(Ds) will be expressed in terms of
a triple product. We also obtain a very useful two-dimensional version of
(Ds, ®s). This version is usually simpler to work with and yet captures all
of the properties of the full three-dimensional version. Here too, in the case
of symmetric velocity, we will see that while the left translations yield a
nice development of relativistic dynamics, the right translations are rather
problematic, even in the simpler, two-dimensional case.

The definition of symmetric velocity is as follows. If the relative velocity
between two inertial systems is v, then the symmetric velocity between the
systems is the unique velocity w; such that

w1+ wp . 2w
14 bl 14wy 2/e?

V=W bp W =
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Instead of wy, we use a dimensionless vector w = w1 /c and call it s-velocity.
Thus, the relationship between an s-velocity w and its corresponding ve-
locity v is given by the two formulas

v/c
w=U(Y) = s i I (22)
and 9w
v=0"1(w)= T we (23)
The set of all relativistically admissible s-velocities form a unit ball
Ds={weR: |w| <1} (24)

The physical meaning of symmetric velocity is as follows. Consider two
inertial systems with relative velocity v between them. Place two objects of
equal mass (test masses) at the origin of each inertial system. The center of
mass of the two objects will be called the center of the two inertial systems.
The symmetric velocity is the velocity of each system with respect to the
center of the systems, and the s-velocity is the dimensionless velocity of the
systems with respect to their center (see Figure 5).

=

Figure 5. The physical meaning of symmetric velocity.
The physical meaning of symmetric velocity. Two inertial systems K and K’ with relative
velocity v between them are viewed from the system connected to their center. In this

system, K and K’ are each moving with velocity +w.
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The physical definition of s-velocity addition is as follows. Consider
three inertial systems K7, Ko and K3. We choose the space axes of Ky
to be parallel to the axes of K7 and the axes of K3 to be parallel to those
of K5. Denote their origins by O1,02 and O3, respectively. Denote by a
the s-velocity of system Ka with respect to K1 and by w the s-velocity of
system K3 with respect to Ko. Then the s-velocity ws of system K3 with
respect to Kj (i-e., the velocity of K3 with respect to the center of systems
K and K3) is called the sum of the s-velocities a and w and is denoted by
a®sw (see Figure 6). In other words, if ca®pca=v and cw &g cw = u,
then a @ w is 1/c times the relativistic half of v &g u.

Figure 6. The sum of s-velocities.

The sum of s-velocities. Inertial systems K1, Ko and K3, with origins O1,O2 and Os,
respectively, had a common origin at time ¢ = 0. The line 1?12 is the world-line of the
center of the two inertial systems K; and K>. Similarly, the lines Ks and K13 represent
the world-lines of the centers of the systems Ks, K3 and K;, K3, respectively. The
velocity of system Ko with respect to system K is v, and its s-velocity a is the velocity
of Ko with respect to I?lg. Similarly, the velocity of system K3 with respect to system
K> is u, and its s-velocity w is the velocity of K3 with respect to Kos. By definition
of Einstein velocity addition, the velocity of system K3 with respect to system K is
v ®g u. The s-velocity of K3 with respect to Ki, meaning the dimensionless velocity of
K5 with respect to I~(13, is called the sum of symmetric velocities a and w and is denoted
by a @, w.
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Using the above definition and formula (7) for Einstein velocity addition,
we obtain the s-velocity-addition formula:

(L+ W +2(a | w))a+ (1 — Ja]*)w

AW = 1+ [al2lw]2 + 2(a | w)

(25)

As in the case of Einstein velocity addition, it can be shown that a®,w =
w @ a if and only if a and w are parallel.

Note that a @©; w is a linear combination of a and w and therefore be-
longs to the plane II generated by a and w. This allows us to obtain a
two-dimensional version of s-velocity addition. It is often sufficient (and
easier!) to work with the two-dimensional version. Moreover, we obtain a
new method of solving relativistic dynamic equations. If the motion under
investigation has an invariant plane, then the relativistic dynamic equa-
tion for the symmetric velocity becomes a first-order analytic differential
equation in one complex variable.

We obtain the two-dimensional version of s-velocity addition by impos-
ing a complex structure on the plane II. In other words, we treat the disk
A = DsN1II as a copy of the unit disk |z| < 1 of the complex plane C.
Denote by a the complex number corresponding to the vector a and by w
the complex number corresponding to the vector w. We use the identities

aw + aw | |2

Rela|w) = —F5—,

= ww, (26)

where the bar denotes complex conjugation, to convert (25) into our two-
dimensional version:

0w = (1+ww+a_w —l_—a@_)a-i— (1_— aa)w (27)
1+ aaww + aw + aw

_ (a+w)(I+aw) atw
 (l4+aw)(l+aw) 1l+aw

(28)

This is the well-known Mobius transformation of the complex unit disk.
Thus, s-velocity addition is a generalization of the Mobius addition of com-
plex numbers (see Figure 7).
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Figure 7. Symmetric velocity addition on D;.

Symmetric velocity addition a @s w for a = 0.4. The lower circle in the figure is the
unit disc of the complex plane, representing a two-dimensional section of the s-velocity
ball D,. The upper circle is the image of the lower circle under the transformation w —
%. Each circle is enhanced with a grid to highlight the effect of this transformation.
Notice how a typical square of the lower grid is deformed and changes in size under the

transformation.

For each s-velocity a € D;, we define the left translation Ly : Dy — Dy
by
La(w) =a®, w. (29)
Each left translation L, is a conformal automorphism of D,. In addition,
the inverse of a left translation is again a left translation. In fact L;! =
L_,. As a result, the same argument as that in Section 3 shows that the
group Aut.(Ds) of all conformal automorphisms of Dy has the following
characterization:

Auto(Ds) = {LaU : a € Dy, U € O(3)}. (30)

We write La  instead of LaU.

The group Aut.(Ds) is a representation of the Lorentz group by confor-
mal maps. It is a real Lie group of dimension 6, since any element of the
group is determined by an element a of the three-dimensional open unit ball
in R? and an element U of the three-dimensional orthogonal group O(3).

The two groups Aut,(D,) and Aut.(Ds) are isomorphic. In fact, the
isomorphism is given by

Lyy «— ULy y¥ . (31)
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Nevertheless, they lead to different dynamics, as we will see.

The relativistic dynamics equation for symmetric velocities will be con-
structed from the elements of the Lie algebra aut.(Ds) of Aut.(Ds). To
define the elements of aut.(Ds), consider differentiable curves g(s) from a
neighborhood Iy of zero into Aut.(Ds), with g(0) = Lo s, the identity of
Aute(Ds). Then

9(5) = La(s),U(s)> (32)
where a : Iy — D; is a differentiable function satisfying a(0) = 0 and
U(s) : In — O(3) is differentiable and satisfies U(0) = I. We denote by &
the element of aut.(Ds) generated by g(s). For any fixed w € Ds, g(s)(w)
is a smooth curve in D, with ¢g(0)(w) = w, and {(w) is a tangent vector
to this line. Thus, the elements of aut.(Ds) are vector fields £(w) on Dy
defined by

§w) = —-g(s)(w)| _. (33)

The explicit form of £(w) is calculated in [1]. There it is shown that
aute(Ds) = {&p,a: b € R3, A is a 3 x 3 antisymmetric matrix},  (34)

where
&bA(W) = b+ Aw — 2(blw)w + |w|’b. (35)
It is useful to express the generator {, 4 in terms of the triple product
{a,b,c} = (a|b)c + (c[b)a — (alc)b, (36)

where a,b,c € R?. This product is called the spin triple product. The
bounded symmetric domain Ds endowed with the spin triple product is
called the spin factor and is a domain of type IV in Cartan’s classification.
See Chapters 2 and 3 of [1] for a full treatment of the spin triple product in
the theory of Bounded Symmetric Domains and Special Relativity.
Rewriting the generators (35) using the triple product, we find that

aute(Ds) = {ép8 : b, B € R*}, (37)
where {p, B 1 Ds — R3 is the vector field defined by
¢pB(W) =b+wxB—{w,b,w}. (38)

See Figures 8 and 9 for two examples of these vector fields.

The similarities between Figures 3 and 8 and between Figures 4 and 9
can be misleading. For example, the flow generating Figure 4 is elliptical,
while the trajectories in Figure 9 are circles.
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Figure 8. The vector field of the electric field E on Dsy.
The vector field &, B, with b = (0.07,0,0) and B = 0, on a two-dimensional section of
the s-velocity ball D,. Note that this vector field is similar to the corresponding one for
the Lie algebra aut,(D,) of the velocity ball (see Figure 3).
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Figure 9. The vector field of the electromagnetic field £, B on Ds.
The vector field &, 8 with b = (0.07,0,0) and B = (0,0,0.1), on a two-dimensional
section of the s-velocity ball D,. Note that this vector field is similar to the corresponding

one for the Lie algebra aut,(D,) of the velocity ball (see Figure 4).
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To obtain the relativistic dynamics equation for symmetric velocities,
we start with

d
mo (;Ztv) = ¢(E +v x B) (39)
and change variables from velocity v to s-velocity w. We obtain
dw(T)
moc—— = q(E/2 + w(r) x B — {w(r), E/2,W(7)}) = ¢€g/2.8(W(T)).

(40)

Thus the left translations yield a nice development of relativistic dy-
namics also in the case of symmetric velocity. The right translations, on
the other hand, are again problematic. Even in the ostensibly simpler two-
dimensional version of symmetric velocity addition, the inverses of right
translations are rather unwieldy. Recall that the two-dimensional version
of s-velocity addition is

a-+b
sb= . 41
COO=TT (41)
The left inverses are well-behaved, and we have
—a+b
LY (D) = = L_4(b). 42
o O)=7—+ (0) (42)

Compare this to the right inverse, which is not even analytic:

_ b —laf’) —a(l — |b]*)
N 1= [b]*]al?

Again the right translations have lead to an apparent dead end.

6. Why are the left and right
translations so different?

Why are the left translations so well-suited for relativistic dynamics, while
the right translations are not? Who told forces that they have to act on
the left?

Let’s take another look at the physical definition of the Einstein velocity
addition. Suppose an observer is at rest in an inertial system K. For
any velocity a € D, let K, denote the inertial system whose axes are
parallel to those of K and moves with relative velocity a with respect to K.
Then the inverse functions L' and R;' now have the following physical
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interpretation. The question “What is the value of L;!(u)?” is equivalent to
the question “Which wvelocity measured in the system K, will be measured by
our observer as u?” whereas the question “What is the value of Rg!(u)?”
is equivalent to the question “In which system K’ will the velocity a be
measured by our observer as u?”’ In other words, the two inverse functions
are answering fundamentally different questions.

This might explain why the left and right translations behave differently.
But it still does not explain the preferred status of left over right.

7. Suggestions for further research

As mentioned previously, we believe that the triple product might be helpful
in overcoming the difficulties inherent in using the right translations. In
the two-dimensional version of s-velocity addition, for example, the triple
product is derived from (36) and takes the form

{z,b,w} = zbw, (44)

where z,b,w € C. Then, although neither the right translation R, nor
its inverse is analytic, each of these functions does have a power series
expansion. More explicitly, for the right translation we have

Ro(b) = 0 =3 (-1)"Dlab)"(a + D), (43
n=0

where D(a,b)z = {a,b,z} and D(a,b)? = Id. For the inverse, we have

— a2 — Qa — 2 =
- ‘1|—)|b\z|c(qlz "=y Qb -atn, )
n=0

where Q(a,b)r = {a,z,b} and Q(a,b)? = Id. It will be interesting to see if
these power series make the right translations more amenable to relativistic
dynamics.

Another line of investigation involves the Fquivalence Principle. This
principle has several versions. The classical version ([3], p. 244) states that
motion in a uniformly accelerated system is the same as that in an inertial
system in the presence of a gravitational field. According to the generalized
Equivalence Principle, motion in a uniformly accelerated system is the same
as that in an inertial system in the presence of any force. We believe that
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using the left translations of either the Einstein or the symmetric velocity
loop is equivalent to the generalized Equivalence Principle. In other words,
the right translations are the wrong ones to use because they contradict
the generalized Equivalence Principle. Moreover, if our belief is correct,
then, once we succeed in developing relativistic dynamics from the right
translations, we will have a way of testing the correctness of the Equivalence
Principle itself. These ideas will be taken up in a forthcoming paper.
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