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Quasigroups with an inverse property

and generalized parastrophic identities

Anthony D. Keedwell and Victor A. Shcherbacov

Abstract

We study quasigroups (and loops) which have an inverse property. We show that each
such quasigroup satis�es a generalized parastrophic identity and that, when investigating
properties related to the nuclei, quasigroups which possess any type of inverse property
can all be treated in the same way. By means of our approach using autostrophies, we
obtain results concerning isomorphisms between or equality of these nuclei. Also, we
�nd conditions for a groupoid which satis�es a generalized parastrophic identity to be a
quasigroup. Some of these results generalize our results on (r, s, t)-inverse quasigroups.

1. Introduction

Almost all the well-known (classical) kinds of quasigroup and loop such
as IP -, LIP -, WIP - and CI-loops and quasigroups are included among
the classes of quasigroup which have some kind of inverse property. We
recall that IP - and LIP -quasigroups and loops were studied, for example,
in [7, 17, 18], WIP -loops in [4, 28], CI-loops in [1, 2], WIP -quasigroups in
[30], CI-quasigroups in [14, 21], I-, PI-quasigroups and loops in [11, 12].

Most recently, (r, s, t)-inverse quasigroups were de�ned as a generaliza-
tion of various kinds of �crossed-inverse" property quasigroup and loop: in
particular, they generalize CI-, WIP - and m-inverse loops [20].

In this paper, we show that all the abovementioned kinds of inverse
property can be classi�ed into three types which we call λ-inverse, ρ-inverse
and (α, β, γ)-inverse. (The last of these three types was introduced in [23,
24].)
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A main result is that which of the three nuclei of a loop coincide depends
precisely on which of these types the loop belongs to, thus incorporating
earlier results of Artzy, Bruck, Belousov, Karklin and Osborn among others.

For a quasigroup, the concept of a nucleus is not well-de�ned but we
consider instead the so-called A-nuclei (autotopy nuclei) and obtain analo-
gous results for these. In the case that the quasigroup is a loop, the latter
results reduce to the previous ones.

For example, all three nuclei of any (α, β, γ)-inverse loop in which α or
β or γ is the identity map coincide and all three autotopy nuclei of any
(α, β, γ)-inverse quasigroup are isomorphic [24].

Our method of proof in [24] and in the present paper using an approach
via autostrophisms has its origins in [3, 11] and in the book [29].

Note 1. Various other generalizations of the concept of nucleus applicable
to quasigroups have been introduced and studied in the past: for example,
in [13], [15], [16] and [25].

2. De�nitions

We shall use basic terms and concepts from the books [7], [19] and [29].
However, for completeness, we give the de�nitions of a groupoid, quasigroup
and loop.

De�nitions 2.1. A non-empty set Q on which a binary operation (◦) is
de�ned is called a groupoid if, for all a, b ∈ Q, a ◦ b ∈ Q.

A groupoid (Q, ◦) is called a right quasigroup if, for all a, b ∈ Q, there
exists a unique solution x ∈ Q to the equation x ◦ a = b, i.e. in this case
any right translation of the groupoid (Q, ◦) is a permutation of the set Q.

A groupoid (Q, ◦) is called a left quasigroup if, for all a, b ∈ Q, there
exists unique solution y ∈ Q to the equation a ◦ y = b, i.e. in this case any
left translation of the groupoid (Q, ◦) is a permutation of the set Q.

A left and right quasigroup (Q, ◦) is called a quasigroup. If also there is
an identity element e ∈ Q such that e ◦ a = a = a ◦ e for every a ∈ Q, the
quasigroup is called a loop.

A groupoid (Q, ◦) is isotopic to the groupoid (Q, ·) if there exist permu-
tations θ, φ, ψ of the set Q such that (x ◦ y)ψ = xθ · yφ for all x, y ∈ Q.

Any isotope of a groupoid (Q, ◦) is a groupoid [29], any isotope of a left
(right) quasigroup (Q, ◦) is a left (right) quasigroup. In fact, let (Q, ◦) be
a (θ, φ, ψ) isotope of a left quasigroup (Q, ·). Then x ◦ y = (xθ · yφ)ψ−1 for
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all x, y ∈ Q. Hence, yL(◦)
x = yφL

(·)
xθψ

−1 and the map L
(◦)
x is a permutation

since the map L
(·)
xθ is a permutation.

Now we give the de�nitions of some well-known classes of quasigroups
and loops which have an inverse property.

De�nitions 2.2.
1) A quasigroup (Q, ◦) has the left inverse-property if there exists a

permutation x→ xλ of the set Q such that

xλ ◦ (x ◦ y) = y (2.1)

for all x, y ∈ Q [7];
2) a quasigroup (Q, ◦) has the right inverse-property if there exists a

permutation x→ xρ of the set Q such that

(x ◦ y) ◦ yρ = x (2.2)

for all x, y ∈ Q [7];
3) a quasigroup (Q, ◦) has the inverse property (is an IP -quasigroup

[7, 29]) if both (2.1) and (2.2) hold. If (Q, ◦) is a loop, then λ = ρ and we
write xλ = xρ = x−1. However, in the case when (Q, ◦) is a quasigroup,
xλ 6= xρ is possible. See Note 2 below.

4) A quasigroup (Q, ◦) has the weak-inverse-property if there exists a
permutation x→ xJ of the set Q such that

x ◦ (y ◦ x)J = yJ (2.3)

for all x, y ∈ Q [4, 23, 30];
5) a quasigroup (Q, ◦) has the crossed-inverse-property if there exists a

permutation x→ xJ of the set Q such that

(x ◦ y) ◦ xJ = y (2.4)

for all x, y ∈ Q [2, 23];
6) a quasigroup (Q, ◦) has the m-inverse-property if there exists a per-

mutation x→ xJ of the set Q such that

(x ◦ y)Jm ◦ xJm+1 = yJm (2.5)

for all x, y ∈ Q [20, 22];
7) a quasigroup (Q, ◦) has the (r, s, t)-inverse-property if there exists a

permutation x→ xJ of the set Q such that

(x ◦ y)Jr ◦ xJs = yJ t (2.6)
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for all x, y ∈ Q [23, 24].

We can generalize the last de�nition (which itself generalizes (2.4) and
(2.5)) by calling a quasigroup an (α, β, γ)-inverse quasigroup (as was done
in [24]) if there exist permutations α, β, γ of the set Q such that

(x ◦ y)α ◦ xβ = yγ (2.7)

for all x, y ∈ Q.
In a similar way, we can generalize (2.1) and (2.2) by the following

de�nitions:
8) a quasigroup (Q, ◦) has the λ-inverse-property if there exist permu-

tations λ1, λ2, λ3 of the set Q such that

xλ1 ◦ (x ◦ y)λ2 = yλ3 (2.8)

for all x, y ∈ Q [11];
9) a quasigroup (Q, ◦) has the ρ-inverse-property if there exist permu-

tations ρ1, ρ2, ρ3 of the set Q such that

(x ◦ y)ρ1 ◦ yρ2 = xρ3 (2.9)

for all x, y ∈ Q [11].

We shall show that these last three classes of quasigroup (and conse-
quently also the earlier ones) can all be treated in a similar way.

Note 2. Belousov [10] has given an example of a quasigroup which satis�es
both (2.1) and (2.2) but with λ 6= ρ, as follows:

Let(G,+) be a �nite abelian group. De�ne a quasigroup (Q, ·) on the
ordered pairs of G by (ai, bi) · (aj , bj) = (ai + aj , bj − bi). Then (Q, ·) is
both an LIP -quasigroup with (a, b)λ = (−a,−b) and a RIP -quasigroup
with (a, b)ρ = (−a, b).

We have
(ai, bi)λ · [(ai, bi) · (aj , bj)] = (−ai,−bi) · (ai + aj , bj − bi)

= [−ai + (ai + aj), (bj − bi)− (−bi)] = (aj , bj)
and

[(aj , bj) · (ai, bi)] · (ai, bi)ρ = (aj + ai, bi − bj) · (−ai, bi)
= [(aj + ai)− ai, bi − (bi − bj)] = (aj , bj).

Note 3. It might appear that, as well as quasigroups which satisfy (2.7),
we should also consider (α∗, β∗, γ∗)-inverse quasigroups which satisfy the
identity xα∗ ◦ (y ◦ x)β∗ = yγ∗. However, it turns out that every (α, β, γ)-
inverse quasigroup is also an (α∗, β∗, γ∗)-inverse quasigroup with α∗ = β−1,
β∗ = γ−1 and γ∗ = α−1.
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Proof. We see that (x◦y)α◦xβ = yγ implies that yLxαRz = yγ, where z =
xβ. Equivalently, wγ−1LxαRz = w, where w = yγ. So, (γ−1Lx)(αRz) = I,
where I denotes the identity mapping and Lx, Rz, α, γ are permutations of
Q (and so lie in the symmetric group SQ).

It follows that (αRz)(γ−1Lx) = I, so yαRzγ
−1Lx = y or x◦(yα◦xβ)γ−1

= y. Thus, uβ−1 ◦ (v ◦ u)γ−1 = vα−1, where u = xβ and v = yα. So,
(x ◦ y)α ◦ xβ = yγ for all x, y ∈ Q =⇒ xβ−1 ◦ (y ◦ x)γ−1 = yα−1 for all
x, y ∈ Q, and conversely by reversing the steps.

As in [24], we de�ne the left, right and middle autotopy nuclei of a
quasigroup as the groups of autotopisms of the forms (α, ε, γ), (α, β, ε) and
(ε, β, γ), where ε is the identity mapping. As before, we shall denote these
three groups of mappings by NA

l , NA
m and NA

r respectively and call them
A-nuclei.

Also, with any quasigroup (Q,⊗) it is possible to associate �ve further
quasigroups called parastrophes of (Q,⊗). If we denote the quasigroup oper-
ation by the letter A, then with the quasigroup operation A we can associate
the following quasigroup operations (see [7, 8, 9, 19, 26, 29]: A(x1, x2) =
x3 ⇔ A(12)(x2, x1) = x3 ⇔ A(13)(x3, x2) = x1 ⇔ A(23)(x1, x3) = x2 ⇔
A(123)(x2, x3) = x1 ⇔ A(132)(x3, x1) = x2.

In other words Aσ(x1σ, x2σ) = x3σ ⇔ A(x1, x2) = x3 where σ ∈ S3. For
example, A(132)(x3, x1) = x2 ⇔ A(x1, x2) = x3: that is,

A(132)(x1(132), x2(132)) = x3(132) ⇔ A(x1, x2) = x3.

We shall also �nd it convenient to employ the alternative notation

x1 ⊗ x2 = x3 ⇔ x1σ ⊗σ x2σ = x3σ,

where σ ∈ S3, for parastrophic operations.

A collection of permutations [σ, (α1, α2, α3)] = [σ, α], where σ ∈ S3

and α1, α2, α3 are permutations of the set Q, is called an autostrophism

of the quasigroup (Q,A) if and only if Aσ(x1α1, x2α2) = x3α3 [9] for all
(x1, x2, x3) ∈ A or, in our alternative notation, if and only if x1 ⊗ x2 =
x3 ⇔ x1α1 ⊗σ x2α2 = x3α3.

Lemma 2.1. Let α = (α1, α2, α3) and β = (β1, β2, β3) be isotopisms from

(Q,A) to (Q,B). Then ασ = (α1σ, α2σ, α3σ) and βσ = (β1σ, β2σ, β3σ) are

isotopisms from (Q,Aσ) to (Q,Bσ) and (αβ)σ = ασβσ, where σ ∈ S3.

Proof. The �rst statement is obvious from the de�nitions. For the second
statement, we have

(αβ)σ = (α1β1, α2β2, α3β3)σ = (α1σβ1σ, α2σβ2σ, α3σβ3σ) = ασβσ.
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Lemma 2.2. The set of all autostrophisms Aus(Q,⊗) of the quasigroup

(Q,⊗) form a group with respect to the operation [σ, α] · [τ, β] = [στ, βατ ].
The inverse of the autostrophism [σ, α] in this group is the autostrophism

[σ−1, (α−1)σ−1
].

Proof. See [24] for the proof.

Theorem 2.3. A quasigroup (Q,⊗) is an (α, β, γ)-inverse quasigroup if

and only if it has a [(1 2 3), (β, γ, α)] autostrophism. It has the λ-inverse
property if and only if it has a [(2 3), (λ1, λ3, λ2)] autostrophism. It has the

ρ-inverse property if and only if it has a [(1 3), (ρ3, ρ2, ρ1)] autostrophism.

Proof. The �rst fact follows almost immediately from the de�nition: for
a quasigroup (Q,⊗) is an (α, β, γ)-quasigroup if and only if there exist
permutations α, β, γ of Q such that (x ⊗ y)α ⊗ xβ = yγ for all x, y ∈ Q.
But then xβ ⊗(1 2 3) yγ = (x ⊗ y)α from which the �rst result follows at
once.

(Q,⊗) has the λ-inverse-property if there exist permutations λ1, λ2, λ3

of the set Q such that xλ1 ⊗ (x ⊗ y)λ2 = yλ3 for all x, y ∈ Q. But then
xλ1 ⊗(2 3)) yλ3 = (x⊗ y)λ2 from which the second result follows.

(Q,⊗) has the ρ-inverse-property if there exist permutations ρ1, ρ2, ρ3

of the set Q such that (x ⊗ y)ρ1 ⊗ yρ2 = xρ3 for all x, y ∈ Q. Then
xρ3 ⊗(1 3) yρ2 = (x⊗ y)ρ1 and so the third result follows.

Corollary 2.4. A quasigroup which has the λ-inverse-property has a

(λ1λ1, λ3λ2, λ2λ3) autotopism. One which has the ρ-inverse-property has

a (ρ3ρ1, ρ2ρ2, ρ1ρ3)] autotopism.

Proof. By Lemma 2.2,
[(2 3), (λ1, λ3, λ2)].[(2 3), (λ1, λ3, λ2)] = [ε, (λ1, λ3, λ2)(λ1, λ3, λ2)(2 3)] and
so (λ1λ1, λ3λ2, λ2λ3) is an autotopism. Similarly,
[(1 3), (ρ3, ρ2, ρ1)].[(1 3), (ρ3, ρ2, ρ1)] = [ε, (ρ3, ρ2, ρ1)(ρ3, ρ2, ρ1)(1 3)]

= [ε, (ρ3ρ1, ρ2ρ2, ρ1ρ3)].

3. Nuclei of (α, β, γ)-inverse quasigroups

Let (Q,⊗) be an (α, β, γ)-inverse quasigroup. By Theorem 2.3, [(1 2 3), (β, γ, α)]
is an autostrophism of (Q,⊗).

Let H = [(1 2 3), (β, γ, α)] = [(1 2 3), J̌ ] say.
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Then

H−1 = [(1 3 2), (J̌−1)(1 3 2)] = [(1 3 2), (β−1, γ−1, α−1)(1 3 2)]

= [(1 3 2), (α−1, β−1, γ−1)].

If θ = (θ1, θ2, θ3) is an autotopism of (Q,⊗), this is equivalent to saying
that [ε, θ] is an autostrophism, so

H−1[ε, θ]H = [(1 3 2), (J̌−1)(1 3 2)] · [ε, θ] · [(1 2 3), J̌ ]

= [(1 3 2), θ(J̌−1)(1 3 2)] · [(1 2 3), J̌ ]

= [(1 3 2)(1 2 3), J̌ [θ(J̌−1)(1 3 2)](1 2 3)]

= [ε, J̌θ(1 2 3)J̌−1] = [ε, (βθ2β−1, γθ3γ
−1, αθ1α

−1)],

which is another autotopism. Also,

H[ε, θ]H−1 = [(1 2 3), J̌ ] · [ε, θ] · [(1 3 2), (J̌−1)(1 3 2)]

= [(1 2 3), θJ̌ ] · [(1 3 2), (J̌−1)(1 3 2)]

= [ε, (J̌−1)(1 3 2)(θJ̌)(1 3 2)] = [ε, (J̌−1θJ̌)(1 3 2)]

= [ε, (α−1θ3α, β
−1θ1β, γ

−1θ2γ)],

which is again an autotopism.
Let (Q,⊗) be an (α, β, γ)-inverse quasigroup and let νl = (θ1, ε, θ3) be

in NA
l . Then, from above,

H−1νlH = (ε, γθ3γ−1, αθ1α
−1) ∈ NA

r ,

HνlH
−1 = (α−1θ3α, β

−1θ1β, ε) ∈ NA
m.

Let νr = (ε, θ2, θ3) ∈ NA
r . Then,

H−1νrH = (βθ2β−1, γθ3γ
−1, ε) ∈ NA

m,

HνrH
−1 = (α−1θ3α, ε, γ

−1θ2γ) ∈ NA
l .

Let νm = (θ1, θ2, ε) ∈ NA
m. Then

H−1νmH = (βθ2β−1, ε, αθ1α
−1) ∈ NA

l ,

HνmH
−1 = (ε, β−1θ1β, γ

−1θ2γ) ∈ NA
r .

Theorem 3.1. In an (α, β, γ)-inverse quasigroup (Q,⊗), the left, right

and middle A-nuclei are isomorphic in pairs. More exactly, we may say

that NA
r = H−1NA

l H, NA
m = H−1NA

r H and NA
l = H−1NA

mH.
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Proof. From the equalities above, it follows that H−1NA
l H ⊆ NA

r and
HNA

r H
−1 ⊆ NA

l . From the second relation, NA
r ⊆ H−1NA

l H since
Aus(Q,⊗) is a group. Hence, NA

r = H−1NA
l H.

Similarly, H−1NA
r H ⊆ NA

m and HNA
mH

−1 ⊆ NA
r . Also, H−1NA

mH ⊆
NA

l and HNA
l H

−1 ⊆ NA
m. Therefore, NA

m = H−1NA
r H and NA

l =
H−1NA

mH.

Notation. From Lemma 5.1 of [24], it follows that the �rst, second and
third components of NA

l , NA
m and NA

r each form groups. For brevity, we
shall denote these nine groups by 1N

A
l , 2N

A
l , 3N

A
l , 1N

A
m, 2N

A
m, 3N

A
m, 1N

A
r ,

2N
A
r and 3N

A
r .

Corollary 3.2. In an (α, β, γ)-inverse quasigroup (Q,⊗), the following

equalities hold:

γ( 3N
A
l )γ−1 = 2N

A
r (3.1)

α( 1N
A
l )α−1 = 3N

A
r (3.2)

β( 2N
A
r )β−1 = 1N

A
m (3.3)

γ( 3N
A
r )γ−1 = 2N

A
m (3.4)

α( 1N
A
m)α−1 = 3N

A
l (3.5)

β( 2N
A
m)β−1 = 1N

A
l (3.6)

Proof. We can re-write the equality H−1NA
l H = NA

r in the form
[(132), (α−1, β−1, γ−1)] · [ε, (1NA

l , ε, 3N
A
l ] · [(123), (β, γ, α)] = [ε, (ε, 2N

A
r ,

3N
A
r )].
That is, [ε, (ε, γ( 3N

A
l )γ−1, α( 1N

A
l )α−1)] = [ε, (ε, 2N

A
r , 3N

A
r )] and so

γ( 3N
A
l )γ−1 = 2N

A
r and α( 1N

A
l )α−1 = 3N

A
r . The equalities (3.3), (3.4),

(3.5) and (3.6) can be proved in a similar way.

In Theorem 5.2 of [24], we proved that, in a loop (Q,⊗) with identity
element e,

λi ∈ 1N
A
l = 3N

A
l ⇔ eλi ∈ Nl,

µj ∈ 2N
A
r = 3N

A
r ⇔ eµj ∈ Nr,

(σk, τk, ε) ∈ NA
m ⇔ eσk ∈ Nm and eσk = eτ−1

k .

Equivalently,

1N
A
l = 3N

A
l = 〈λi : i ∈ I〉 ⇔ 〈eλi : i ∈ I〉 = Nl,

2N
A
r = 3N

A
r = 〈µj : j ∈ J〉 ⇔ 〈eµj : j ∈ J〉 = Nr and

1N
A
m = 〈σk : k ∈ K〉,

2N
A
m = 〈τk : k ∈ K〉 = 〈τ−1

k : k ∈ K〉 ⇔ 〈eσk : k ∈ K〉 = Nm and
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eσk = eτ−1
k , where i ∈ I if (λi, ε, λi) ∈ NA

l , j ∈ J if (ε, µj , µj) ∈ NA
r

and k ∈ K if (σk, τk, ε) ∈ NA
m.

We shall use this result several times.

Theorem 3.3. In an (α, β, γ)-inverse quasigroup (Q,⊗), the automorphism

αβγ commutes with each of the groups 3N
A
l and 3N

A
r .

Proof. It follows from equations (3.1), (3.3) and (3.5) that

αβγ( 3N
A
l )γ−1β−1α−1 = αβ( 2N

A
r )β−1α−1 = α( 1N

A
m)α−1 = 3N

A
l

and so αβγ commutes with 3N
A
l . Also, we have 3N

A
l = 1N

A
l if (Q,⊗) is a

loop by Theorem 5.2 of [24] (see above).
It follows from equations (3.4), (3.6) and (3.2) that

αβγ( 3N
A
r )γ−1β−1α−1 = αβ( 2N

A
m)β−1α−1 = α( 1N

A
l )α−1 = 3N

A
r

and so αβγ commutes with 3N
A
r . Also, we have 3N

A
r = 2N

A
r if (Q,⊗) is a

loop by Theorem 5.2 of [24].

Theorem 3.4. In an (α, β, γ)-inverse loop (Q,⊗), the left, right and middle

nuclei coincide if

(i) α or β or γ is the identity mapping, or

(ii) αβ or βγ or γα is the identity mapping.

Proof. Proof of (i). If α = ε, it follows from equations (3.2) and (3.5) that

1N
A
l = 3N

A
r and that 1N

A
m = 3N

A
l so 〈λi : i ∈ I〉 = 〈µj : j ∈ J〉 and

〈σk : k ∈ K〉 = 〈λi : i ∈ I〉 by Theorem 5.2 of [24]. Also, Nl = 〈eλi : i ∈ I〉,
Nr = 〈eµj : j ∈ J〉 and Nm = 〈eσk : k ∈ K〉 whence Nl = Nr = Nm. The
proofs for the cases β = ε or γ = ε are similar.

Proof of (ii). From equations (3.3) and (3.5),

αβ( 2N
A
r )β−1α−1 = α( 1N

A
m)α−1 = 3N

A
l .

From Theorem 5.2 of [24] and equations (3.2) and (3.3),

βα( 1N
A
l )α−1β−1 = β( 3N

A
r )β−1 = β( 2N

A
r )β−1 = 1N

A
m.

Since αβ = ε implies that βα = ε, we have 2N
A
r = 3N

A
l and 1N

A
l = 1N

A
m.

Using Theorem 5.2 of [24] again, Nr = Nl and Nl = Nm when αβ = ε. The
other statements are proved similarly.

Corollary 3.5. In a CI-loop or a WIP -loop, Nl = Nr = Nm.
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Proof. Since a CI-loop is a (ε, J, ε)-inverse loop and a WIP -loop is a
(J−1, ε, J−1)-inverse loop (where a ◦ aJ = e for all a and e is the iden-
tity element), the result follows immediately from Theorem 3.4.

Theorem 3.6. In a k-inverse loop (Q,⊗), Nl = Nm = Nr.

Proof. It follows from equations (3.3) and (3.4) that, in a k-inverse loop,
Nm = Jk+1NrJ

−(k+1) and Nm = JkNrJ
−k so JNrJ

−1 = Nr and hence
Nm = Nr. Also, from equations (3.5) and (3.6), Nl = Jk+1NmJ

−(k+1) and
Nl = JkNmJ

−k so JNmJ
−1 = Nm and hence Nl = Nm.

This theorem was �rst proved in [20].

Also, since every (r, s, t)-inverse loop (L, ◦) in which a ◦ aJ = e for all
a ∈ L (where e is the identity element) is an r-inverse loop, Theorem 3.6
shows that the left, right and middle nuclei coincide in every such loop.

Remark. Loops which satisfy the equation (2.6) and for which a ◦ aJ 6= e
also exist. If r = 0, s = 0 or t = 0 or if s = −r, t = −s or r = −t in such a
loop then Theorem 3.4 shows that its three nuclei coincide.

4. Nuclei of λ-IP and ρ-IP quasigroups

Let (Q,⊗) be a quasigroup which has the λ-inverse property. By Theorem
2.3, [(2 3), (λ1, λ3, λ2)] is an autostrophism of (Q,⊗).

Let K = [(2 3), (λ1, λ3, λ2)] = [(2 3), J ] say. Then, obviously, K−1 =
[(2 3), (J−1)(2 3)].

If θ = (θ1, θ2, θ3) is an autotopism of a quasigroup (Q,⊗) which has the
λ-inverse-property,

K−1[ε, θ]K = [(2 3), (J−1)(2 3)] · [ε, θ] · [(2 3), J ]

= [(2 3), θ(J−1)(2 3)] · [(2 3), J ] = [(2 3)(2 3), J{θ(J−1)(2 3)}(2 3)]

= [ε, Jθ(2 3)J−1] = [ε, (λ1θ1λ
−1
1 , λ3θ3λ

−1
3 , λ2θ2λ

−1
2 )],

which is another autotopism. Also,

K[ε, θ]K−1 = [(2 3), J ] · [ε, θ] · [(2 3), (J−1)(2 3)]

= [(2 3), θJ ] · [(2 3), (J−1)(2 3)] = [(2 3)(2 3), (J−1)(2 3)(θJ)(2 3)]

= [ε, (J−1)(2 3)θ(2 3)J (2 3)] = [ε, (λ−1
1 θ1λ1, λ

−1
2 θ3λ2, λ

−1
3 θ2λ3)],

which is again an autotopism.
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Let (Q,⊗) be a quasigrooup with the λ-inverse property and let νl =
(θ1, ε, θ3) ∈ NA

l . Then, from above,

K−1νlK = (λ1θ1λ
−1
1 , λ3θ3λ

−1
3 , ε) ∈ NA

m, (4.1)

KνlK
−1 = (λ−1

1 θ1λ1, λ
−1
2 θ3λ2, ε) ∈ NA

m. (4.2)

Let νr = (ε, θ2, θ3) ∈ NA
r . Then,

K−1νrK = (ε, λ3θ3λ
−1
3 , λ2θ2λ

−1
2 ) ∈ NA

r , (4.3)

KνrK
−1 = (ε, λ−1

2 θ3λ2, λ
−1
3 θ2λ3) ∈ NA

r . (4.4)

Let νm = (θ1, θ2, ε) ∈ NA
m. Then

K−1νmK = (λ1θ1λ
−1
1 , ε, λ2θ2λ

−1
2 ) ∈ NA

l , (4.5)

KνmK
−1 = (λ−1

1 θ1λ1, ε, λ
−1
3 θ2λ3) ∈ NA

l . (4.6)

Theorem 4.1. In a quasigroup with the λ-inverse property, the left and

middle A-nuclei are isomorphic. More exactly, we may say that NA
m =

K−1NA
l K = KNA

l K
−1.

Proof. From the equalities (4.1) and (4.6) above, it follows thatK−1NA
l K ⊆

NA
m and KNA

mK
−1 ⊆ NA

l . From the second relation, NA
m ⊆ K−1NA

l K
since Aus(Q,⊗) is a group. Hence, NA

m = K−1NA
l K. Also, from the

equalities (4.2) and (4.5), it follows that NA
m = KNA

l K
−1. We conclude

that K−1NA
l K = KNA

l K
−1 or NA

l K
2 = K2NA

l so the autotopism K2 =
(λ1λ1, λ3λ2, λ2λ3) commutes with NA

l and similarly it also commutes with
NA

m.

Corollary 4.2. In a quasigroup with the λ-inverse property, the following

equalities hold:

λ1( 1N
A
l )λ−1

1 = 1N
A
m = λ−1

1 ( 1N
A
l )λ1 (4.7)

λ3( 3N
A
l )λ−1

3 = 2N
A
m = λ−1

2 ( 3N
A
l )λ2 (4.8)

Proof. We can re-write the equality K−1NA
l K = NA

m in the form

[(2 3), (λ−1
1 , λ−1

2 , λ−1
3 )] · [ε, (1NA

l , ε, 3N
A
l )] · [(2 3), (λ1, λ3, λ2)]

= [ε, (1NA
m, 2N

A
m, ε)].
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That is,

[ε, (λ1( 1N
A
l )λ−1

1 , λ3( 3N
A
l )λ−1

3 , ε)] = [ε, (1NA
m, 2N

A
m, ε)]

and so λ1( 1N
A
l )λ−1

1 = 1N
A
m and λ3( 3N

A
l )λ−1

3 = 2N
A
m.

We can re-write the equality KNA
l K

−1 = NA
m in the form

[(2 3), (λ1, λ3, λ2)] · [ε, (1NA
l , ε, 3N

A
l )] · [(2 3), (λ−1

1 , λ−1
2 , λ−1

3 )]
= [ε, (1NA

m, 2N
A
m, ε)].

That is,

[ε, (λ−1
1 ( 1N

A
l )λ1, λ

−1
2 ( 3N

A
l )λ2, ε)] = [ε, (1NA

m, 2N
A
m, ε)]

and so λ−1
1 ( 1N

A
l )λ1 = 1N

A
m and λ−1

2 ( 3N
A
l )λ2 = 2N

A
m.

Theorem 4.3. In a λ-inverse-property loop, the left and middle nuclei

coincide if any one of λ1, λ2 or λ3 = I.

Proof. This follows immediately from Corollary 4.2 and Theorem 5.2 of [24]
(which we stated in the previous Section).

Corollary 4.4. The left and middle nuclei coincide in an LIP -loop.

Proof. In every such loop, both λ2 and λ3 = I. (See Equation 2.1.)

Remark. Corollary 4.4 is well known, see, for example, [3, 27].

By means of an exactly similar analysis of ρ-inverse-property quasi-
groups to that just made for λ-inverse-property quasigroups, it is easy to
prove that

Theorem 4.5.

(i) In a quasigroup with the ρ-inverse property, the middle and right

A-nuclei are isomorphic. More exactly, we may say that NA
m

= K−1NA
r K = KNA

r K
−1, where K = [(1 3), (ρ3, ρ2, ρ1).

(ii) In a ρ-inverse property loop, the middle and right nuclei coincide

if any one of ρ1, ρ2 or ρ3 = I.

(iii) The middle and right nuclei coincide in an RIP -loop.

From Corollary 4.4 and Theorem 4.5(iii), we may deduce among other
things the well-known fact that Nl = Nr = Nm in every IP -loop.
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5. Generalized balanced parastrophic identities

of length two

If we examine the equations (2.1)-(2.9) carefully, we notice that they are all
of the form

Aσ(xν1, yν2) = [A(x, y)]ν3, (5.1)

where Aσ is some parastrophe of the operation A and ν1, ν2, ν3 are permu-
tations of the set Q, i.e. [(σ, (ν1, ν2, ν3)] is an autostrophy of the quasigroup
(Q,A).

For example, equation(2.3) is x ⊗ (y ⊗ x)J = yJ and is equivalent to
x⊗(2 3)yJ = (y⊗x)J or to x⊗(2 3)yJ = (x⊗(1 2)y)J . If we write ⊗(1 2) = ⊕,
we get ⊗(2 3) = ⊕(1 2)(2 3) = ⊕(1 3 2) and so x⊕(1 3 2) yJ = (x⊕ y)J which is
of the above form.

This fact suggests that we should make the following generalization:

De�nition 5.1. An identity of the form

[Aσ(xν1, yν2)]ν3 = [Aτ (xν4, yν5)]ν6 (5.2)

on a groupoid (Q,A) where Aσ, Aτ are some parastrophes of the operation
A, x, y ∈ Q and νi for i = 1, 2, ..., 6 are some permutations of the set Q,
will be called a generalized balanced parastrophic identity of length two on
the groupoid (Q,A).

Note 4. In calling identity (5.2) balanced and of length two we follow [6].

Theorem 5.1. Any generalized balanced parastrophic identity of length two

on a quasigroup (Q,A) is equivalent to an identity of type (5.1).

Proof. It will be convenient to use (x1, x2, x3) in place of (x, y, z) and to
write A(x1, x2, x3) to denote that A(x1, x2) = x3 in the quasigroup (Q,A).

From the identity (5.2), we have [Aσ(x1ν1, x2ν2)]ν3ν
−1
6 = Aτ (x1ν4, x2ν5).

Put y1 = x1ν4, y2 = x2ν5. Then [Aσ(y1ν
−1
4 ν1, y2ν

−1
5 ν2)]ν3ν

−1
6 = Aτ (y1, y2).

That is, [Aσ(y1θ1, y2θ2)]θ−1
3 = Aτ (y1, y2), where θ1 = ν−1

4 ν1, θ2 = ν−1
5 ν2

and θ3 = ν3ν
−1
6 . So there exists an isotopism (θ1, θ2, θ3) from (Q,Aσ) to

(Q,Aτ ) and we have

Aσ(y1θ1, y2θ2, y3θ3) ⇔ Aτ (y1, y2, y3) ⇔ A(y1τ−1 , y2τ−1 , y3τ−1).

Therefore,

Aσ(z1τθ1, z2τθ2, z3τθ3) ⇔ A(z1, z2, z3), where zi = yiτ−1 .
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So, Aστ−1
(z1θ1τ−1 , z2θ2τ−1 , z3θ3τ−1) ⇔ A(z1, z2, z3).

That is, Aστ−1
(z1θ1τ−1 , z2θ2τ−1)θ−1

3τ−1 = A(z1, z2)
or Aστ−1

(z1θ1τ−1 , z2θ2τ−1) = [A(z1, z2)]θ3τ−1 which is of the form (5.1).

Theorem 5.2. If a groupoid (Q,A) has a (1 3)-autostrophy, it is a right

quasigroup. If it has a (2 3)-autostrophy, it is a left quasigroup. If it has a

(1 2 3)-autostrophy, it also has a (1 3 2)-autostrophy and is a quasigroup.

Proof. Suppose that the groupoid (Q,A) has the autostrophy [(1 3), (α1, α2,
α3)]. This is equivalent to saying that (Q,A) is isotopic to (Q,A(1 3)) and
so the latter is a groupoid. That is, for all a, b ∈ Q, A(1 3)(a, b) = x is
uniquely soluble for x. Equivalently, A(x, b) = a is uniquely soluble for x
and so (Q,A) is a right quasigroup.

The proof of the second statement is similar.
For the third statement, we note that, by Lemma 2.2, the product of a

(1 2 3)-autostrophy with itself is a (1 3 2)-autostrophy. The remainder of
the proof is similar to the foregoing.

Corollary 5.3. A right quasigroup which has a (2 3)-autostrophy is a

quasigroup. Likewise, a left quasigroup which has a (1 3)-autostrophy is a

quasigroup.

Note 5. The concepts of isotopy and parastrophy have well-known geo-
metrical interpretations in the language of 3-nets(3-webs). The de�nition
and some properties of nets, including their inter-relationships with quasi-
groups, are given in [5, 7, 8, 19, 29]. In particular, both [8] and Section 10
of the extensive paper [5] include mention of the geometrical interpretation
of isostrophy in terms of collineations.
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