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Automorphism group of Chein loops
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Abstract

In this paper we describe the automorphism group of Chein loops.

1. Introduction

First, we recall the de�nition of Chein loops (see [1]). Let G be a group and
the element u be an indeterminate. Let M(G, 2) = G ∪Gu be the disjoint
union of G and Gu and extend the operation on G to an operation (.) on
M(G, 2) by the rules

g.(hu) = (hg)u, (gu).h = (gh−1)u, (gu).(hu) = h−1g ∀ g, h ∈ G.

Then M(G, 2) is a Moufang loop, which is a group if and only if G is
an abelian group. Moufang loops of this type are called Chein loops.

We mostly use standard notation. If G is a group then we consider the
natural action of AutG on G. This de�ne a semidirect product AutG ×G
which is called the Holomorph of G and denoted by HolG. For g ∈ G and
ϕ ∈ AutG we write gϕ for the image of g under ϕ.

The set

StabAutG(g) = {ϕ ∈ AutG; gϕ = g}

is a subgroup of AutG, called the stabilizer of g in AutG. For any g, h ∈ G
we write [g, h] = g−1h−1gh.
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2. The automorphisms

Consider ψ ∈ Aut(G), we extend ψ to aψ : M(G, 2) →M(G, 2) as follows

aψ(guλ) = gψuλ, λ = 0, 1.

Now consider an element t ∈ G and let

dt(gu) = g(tu) = (tg)u, dt(g) = g, ∀g ∈ G.

Lemma 1. The set A = {aψ |ψ ∈ AutG} is a subgroup of AutM(G, 2)
isomorphic to Aut(G) and the set D = {dt | t ∈ G} is a subgroup of

AutM(G, 2) isomorphic to G. Moreover, [A,D] = D, A ∩ D = 1 and

the semidirect splitting extension AD is isomorphic to Hol(G).

Proof. By de�nition of the operation (.) in M(G, 2) we have

aψ(g.(hu)) = aψ((hg)u) = (hg)ψu
aψ(g).aψ(hu) = gψ.(hψu) = (hψgψ)u = (hg)ψu.

}
(1)

dt(g.(hu)) = dt((hg)u) = (thg)u,
dt(g).dt(hu)) = g.((th)u) = (thg)u.

}
(2)

Analogously, we get

aψ(gu.h) = aψ((gh−1)u) = (gh−1)ψu
aψ(gu).aψ(h) = gψu.hψ = (gψh−ψ)u = (gh−1)ψu.

}
(3)

dt(gu.h) = dt((gh−1)u) = (tgh−1)u
dt(gu).dt(h)) = (tg)u.h = (tgh−1)u.

}
(4)

Finally,

aψ(gu.hu) = aψ(h−1g) = (h−1g)ψ

aψ(gu).aψ(hu) = gψu.hψu = (h−ψgψ = (h−1g)ψ.

}
(5)

dt(gu.hu) = dt(h−1g) = h−1g

dt(gu).dt(hu)) = (tg)u.(th)u = (th)−1tg = h−1g.

}
(6)

Hence aψ and dt are automorphisms. It is easy to see that

aψ ◦ aφ = aψφ and dt ◦ dh = dht, aψ
−1 = aψ−1 , dt

−1 = dt−1
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hence A = {aψ |ψ ∈ AutG} is a subgroup of AutM(G, 2) isomorphic to
Aut(G) and the set D = {dt | t ∈ G} is a subgroup of AutM(G, 2) isomor-
phic to G.

We have aψ−1dtaψ(h) = h, aψ−1dtaψ(hu) = tψ
−1
h = d

tψ−1 (hu). Hence
aψ−1dtaψ = d

tψ
−1 . Therefore AD ' Hol(G).

Let G be a generalized dihedral group, i.e. a group such that there
exists an abelian subgroup G0 / G of index 2 and G = G0 ∪ G0v, where
v 6∈ G0, v

2 = 1; vgv = g−1,∀g ∈ G0.
In the Chein loop M(G, 2) we have an abelian subgroup

K = {1, u, v, w = uv = vu}

and M(G, 2) = G0K. For any φ ∈ AutK = S3 we can de�ne an automor-
phism of M(G, 2), which we denote by the same letter φ :

φ(gx) = gxφ ∀x ∈ K, g ∈ G0.

We have the following result.

Theorem 1. Let G be a group. If G is not a dihedral group, then the

automorphism group of the corresponding Chein loop M(G, 2) is Hol(G). If
G = G0 ∪ G0v is a dihedral group and G0 is not a group of period 2, then
AutM(G, 2) = Hol(G)S3.

Proof. If G is not a dihedral group then G is a characteristic subloop of
M(G, 2). Indeed, if for some φ ∈ AutM(G, 2) and x ∈ G we have y = xφ 6∈
G, then y2 = 1 and ygy = g−1, for any g ∈ G.

Let G0 = {h ∈ G |hφ ∈ G}, then G0 is a subgroup of index 2 of G and
Gφ = G0 ∪ G0y is a dihedral group, a contradiction, since G and Gφ are
isomorphic.

Let φ ∈ AutM(G, 2) and choose aψ ∈ A such that ψ(g) = φ(g), ∀g ∈ G.
Then τ = φa−1

ψ ∈ StabAutM(G,2)G. It is clear that StabAutM(G,2)G = D and
AutM(G, 2) = AD = Hol(G).

Let G = G0∪G0v be a dihedral group and N0 = {x ∈M(G, 2) |x2 6= 1},
N = {x ∈ M(G, 2) | [x,N0] = 1}. It is obvious that Nφ = N , for any
φ ∈ AutM(M, 2), and N = G0 if G is not of period 2. As above we have
AD ⊂ AutM(G, 2). If φ ∈ AutM(G, 2), then uφ = ga, vφ = hb, where
g, h ∈ G0, a, b ∈ K. Note that a 6= b. Indeed, if a = b, then (uv)φ = gaḣa =
gh−1 ∈ G0, but uv 6∈ G0 and G0 is a characteristic subloop, a contradiction.
Then there exists ψ ∈ S3 such that uψ = a, vψ = b and φψ−1 ∈ AD. This
means that AutM(G, 2) = ADS3 = Hol(G)S3.
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Remark 1. It is easy to see that Hol(G) = W(G0) is a Mikheev group
with triality with respect to the action of S3 and the corresponding loop is
G0 (see [2]).
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