Embedding of an AG**-groupoid in a commutative monoid

Qaiser Mushtag and Ambreen Bano

Abstract

In this paper we have proved that if an AG^{**} -groupoid contains a left cancellative AG^{**} -subgroupoid then it can be embedded in a commutative monoid whose cancellative elements form a commutative group and the identity of this group coincides with the identity of the commutative monoid.

An AG-groupoid is an algebraic structure midway between a groupoid and a commutative semigroup. In [3] it has been defined as a groupoid S in which the left invertive law holds, that is,

$$(ab) c = (cb) a \quad \text{for all } a, b, c \in S.$$
 (1)

It is known [4] that S is medial, that is,

$$(ab) (cd) = (ac) (bd) \quad \text{for all } a, b, c, d \in S.$$
 (2)

An AG-groupoid with the condition that,

$$a(bc) = b(ac)$$
 for all $a, b, c \in S$, (3)

is called an AG^{**} -groupoid [6]. It has been proved in the same paper that the following law holds in an AG^{**} -groupoid S.

$$(ab) (cd) = (db) (ca) \text{ for all } a, b, c \in S.$$
 (4)

An element $a \in S$ is called *left cancellative*, if ab = ac implies b = c, and *right cancellative*, if ac = bc implies a = b.

In this paper we shall consider an AG^{**} -groupoid S containing a left cancellative AG^{**} -subgroupoid T, such that the elements of T commute with the elements of $S \setminus T$.

Example 1. The set $S = \{a, b, c, d, e\}$ with the binary operation defined by table:

is an example of a groupoid in which the subset $T = \{c, d, e\}$ is an AG^{**} -subgroupoid such that elements from T commute with the elements from $S \setminus T$.

We introduce in $S \times T$ an equivalence relation ρ such that an AG^{**} -groupoid $S \times T/\rho$ will be with right identity. By using number of results from [4] and [5], we shall show that $S \times T/\rho$ is a commutative monoidin which the cancellative elements of $S \times T/\rho$ form a commutative group.

Theorem 1. If S is an AG-groupoid, T is an AG-subgroupoid of S and elements of T commute with elements of $S \setminus T$, then the elements of T^2 commute with $S^2 \setminus T^2$.

Proof. Indeed, by (2), we have $(s_1s_2)(t_1t_2) = (s_1t_1)(s_2t_2) = (t_1s_1)(t_2s_2) = (t_1t_2)(s_1s_2)$.

Theorem 2. If S is an AG^{**} -groupoid, and T is a left cancellative AG^{**} -subgroupoid of S such that elements of T commute with the elements of $S \setminus T$, then S can be embedded in a commutative monoid.

Proof. Let $s_1, s_2, ... \in S$, $t_1, t_2, ... \in T$ and $(s_i, t_j)(s_k, t_l) = (s_i s_k, t_j t_l)$ for all $(s_i, t_j), (s_k, t_l) \in S \times T$. Then $S \times T$ with this operation is a groupoid.

Define on $S \times T$ the relation ρ by

$$(s_i, t_j)\rho(s_k, t_l) \Longleftrightarrow t_l s_i = t_j s_k.$$

It is obvious that ρ is reflexive and symmetric. To prove that it is transitive, let $(s_i,t_j)\rho(s_k,t_l)$ and $(s_k,t_l)\rho(s_m,t_n)$. Then $t_ls_i=t_js_k$ and $t_ns_k=t_ls_m$. Multiplying from left the first equality by t_n we obtain $t_n(t_ls_i)=t_n(t_js_k)$, which, by (3), gives $t_l(t_ns_i)=t_j(t_ns_k)$. But $t_ns_k=t_ls_m$, so, by (3), we obtain, $t_l(t_ns_i)=t_j(t_ls_m)=t_l(t_js_m)$. Hence, using the left cancellativity, we get $t_ns_i=t_js_m$. Thus $(s_i,t_j)\rho(s_m,t_n)$, means that ρ is transitive.

If $(s_i,t_j)\rho(s_k,t_l)$, then $t_ls_i=t_js_k$. Multiplying this equality by t_ns_m , we get $(t_ls_i)(t_ns_m)=(t_js_k)(t_ns_m)$. Whence $(t_lt_n)(s_is_m)=(t_jt_n)(s_ks_m)$. Thus $(s_is_m,t_jt_n)\rho(s_ks_m,t_lt_n)$, i.e. $(s_i,t_j)(s_m,t_n)\rho(s_k,t_l)(s_m,t_n)$. This shows that ρ is right compatible. Similarly, it can be shown that ρ is left compatible. Hence ρ is a congruence on $S\times T$.

Let $M = S \times T/\rho = \{[(s_i,t_j)] | s_i \in S \text{ and } t_j \in T\}$. It is straight forward to see that M is an AG^{**} -groupoid. It can easily be shown that $[(t_o,t_o)]$ is the right identity in M, where t_o is an arbitrary element of T. If $[(s_i,t_j)]$ is an arbitrary element in M, then, by (3) and the fact that the elements from T and $S \setminus T$ commute, we have $t_j(s_it_o) = s_i(t_jt_o) = (t_jt_o)s_i$. So, $(s_it_o,t_jt_o)\rho(s_i,t_j)$, i.e. $(s_i,t_j)(t_o,t_o)\rho(s_i,t_j)$. Hence $|(s_i,t_j)||(t_o,t_o)| = [(s_i,t_j)]$. This shows that $[(t_o,t_o)]$ is the right identity in M. The uniqueness follows from Theorem 2.2 of [2]. Since M is an AG^{**} -groupoid with right identity, it becomes a commutative monoid.

Let t_x be a fixed element of T. We define $\Phi: S \longrightarrow M$ by

$$(s_i)\Phi = [(s_it_x, t_x)]$$
 for all $s_i \in S$ and $t_x \in T$.

Suppose $[(s_it_x, t_x)] \neq [(s_jt_x, t_x)]$. This implies that (s_it_x, t_x) is not ρ equivalent to (s_jt_x, t_x) , i.e. $t_x(s_it_x) \neq t_x(s_jt_x)$. Thus $(s_it_x) \neq (s_jt_x)$ and $s_i \neq s_j$, so, Φ is well defined.

Next we show that $(s_i s_j) \Phi = (s_i) \Phi(s_j) \Phi$.

Indeed, $(s_i)\Phi(s_j)\Phi=[(s_it_x,t_x)||(s_jt_x,t_x)]=[((s_it_x)(s_jt_x),t_xt_x)]=[((s_is_j)(t_xt_x),t_xt_x)]$. But $((s_is_j)(t_xt_x),t_xt_x)\rho((s_is_j)t_x,t_x)$, because we have $t_x((s_is_j)(t_xt_x))=(t_xt_x)((s_is_j)t_x)$, as $(t_xt_x)((s_is_j)t_x)=(t_xt_x)(t_x(s_is_j))$, due to the assumption that T commutes with $S\setminus T$. Also, by (3), we obtain $(t_xt_x)((s_is_j)t_x)=t_x((s_is_j)(t_xt_x))$. Hence $((s_is_j)(t_xt_x),t_xt_x)\rho((s_is_j)t_x,t_x)$ and so

$$[((s_is_i)(t_xt_x), t_xt_x)] = [((s_is_i)t_x, t_x)] = (s_is_i)\Phi,$$

shows that $(s_i)\Phi(s_j)\Phi=(s_is_j)\Phi$. Thus Φ is a homomorphism.

It is one-to-one, because $(s_i)\Phi = (s_j)\Phi$ implies $[(s_it_x, t_x)] = [(s_jt_x, t_x)]$, i.e. $(s_it_x, t_x)\rho(s_jt_x, t_x)$. Thus $t_x(s_it_x) = t_x(s_jt_x)$ and $s_it_x = s_jt_x$. So $s_i = s_j$, because the elements of T and $S \setminus T$ commute.

If $A = \{[(s_it_x, t_x)]s_i \in S \text{ and } t_x \in T\}$ then $A \subset M$ and monomorphism $\Phi: S \longrightarrow A$ is onto. Thus for every $[(s_it_x, t_x)]$ in A, there exists s_i such that $(s_i)\Phi = [(s_it_x, t_x)]$. Thus S can be embedded into M.

Theorem 3. The elements $[(t_i, t_j)]$ of M are cancellative in M and form a commutative group G such that the identity of G is the identity of M.

Proof. Suppose $[(t_i, t_j)]$ $[(s_k, t_l)] = [(t_i, t_j)]$ $[(s_m, t_l)]$. Then $[(t_i s_k, t_j t_l)] = [(t_i s_m, t_j t_n)]$ or $(t_i s_k, t_j t_l) \rho(t_i s_m, t_j t_n)$, which further implies $(t_j t_n) (t_i s_k) = (t_j t_l) (t_i s_m)$. So, by (4), we get $(t_i s_k) (t_j t_n) = (t_i s_m) (t_j t_l)$. From $(t_i s_k) (t_j t_n) = (t_i s_m) (t_j t_l)$, the application of medial law yields $(t_i t_j) (s_k t_n) = (t_i t_j) (s_m t_l)$. Hence by the left cancellation it follows that $s_k t_n = s_m t_l$. Now, $t_n s_k = t_l s_m$, because these elements commute.

Hence $(s_k, t_l) \rho(s_m, t_n)$, that is, $[(s_k, t_l)] = [(s_m, t_n)]$, imply that for all i and j, $[(t_i, t_j)]$ are left cancellative in M. Similarly, it can be shown that elements of the form $[(t_i, t_j)]$ are right cancellative. These elements of M are the only cancellative elements in M. For, it is enough to show that the elements of the form $[(s_i, t_j)]$ are non-cancellative in M. Therefore there exist elements s_k and s_l with $s_k \neq s_l$ and $s_k s_i = s_l s_i$, or there exist elements s_m and s_n with $s_m \neq s_n$ and $s_i s_m = s_i s_n$.

In the first case $(s_k s_i)(t_x t_y) = (s_l s_i)(t_x t_y)$ or $(s_k s_i, t_x t_y) \rho(s_l s_i, t_x t_y)$ or $[(s_k, t_x)][(s_i, t_y)] = [(s_l, t_x)][(s_i, t_y)]$, with $[(s_k, t_x)]$ not ρ equivalent to $[(s_l, t_x)]$. In the second case the result follows similarly. Hence all the cancellative elements of M are of the form $[(t_i, t_j)]$ and these are the only cancellative elements in M, which form a group G in M.

We have proved in Theorem 1, that $[(t_o, t_o)]$ is the identity element of M. Since G contains elements of the form $[(t_x, t_y)]$, therefore $[(t_o, t_o)]$ is in G which is unique because G is a group.

We can sum up Theorem 1 and Theorem 2 as follows.

If S is an AG^{**} -groupoid and T is left cancellative AG^{**} -subgroupoid of S then S can be embedded in a commutative monoid provided elements of T commute with elements of $S \setminus T$.

References

- [1] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, AMS Surveys, 7, 1961/67.
- P. Holgate: Groupoids satisfying a left invertive law, Math. Stud. 61 (1992), 101 - 106.
- [3] M. A. Kazim and M. Naseerudin: On almost semigroups, The Alig. Bull. Math. 2 (1972), 1-7.
- [4] Q. Mushtaq and S. M. Yusuf: On LA-semigroups, The Alig. Bull. Math. 8 (1978), 65-70.
- [5] Q. Mushtaq: Abelian groups defined by LA-semigroups, Studia Sci. Math. Hungar. 18 (1983), 427 – 428.
- [6] P. V. Protić and N. Stevanović: AG-test and some general properties of Abel-Grassmann's groupoids, P.U.M.A. 6 (1995), 371 383.

Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan E-mail: gmushtaq@apollo.net.pk Received November 11, 2003 Revised September 4, 2004