
Quasigroups and Related Systems 10 (2003), 95− 114

See Otter digging for algebraic pearls

J. D. Phillips

Abstract
We give an introduction to Otter for the practicing loop theorist. Although this paper is
self-contained, it is intended as a supplement to the author's Otter workshop at Loops'03,
Prague, August 2003.

1. Introduction
Otter is an automated reasoning tool developed by William McCune (Ar-
gonne) which has proven to be e�ective at equational reasoning [17]. Mc-
Cune, R. Padmanabhan, Larry Wos, and many others have made good use
of Otter in many areas of algebra and logic, most notably in lattice theory
[17], [19], [20], [23]. For instance, in 1997, McCune used Otter to help him
solve one of the most celebrated open problems in mathematics, the so-
called Robbins Conjecture [18]. McCune's solution generated a buzz loud
enough to warrant press in the New York Times, a rare event indeed in
mathematics! Until recently, though, there were comparatively few Otter
applications in quasigroup and loop theory. Ken Kunen was the pioneer in
this regard. He used Otter to help show that Moufang quasigroups are loops
[14], among a number of other important early papers [15], [16]. Recently,
various subsets of {Kepka, Kinyon, Kunen, Phillips} have used Otter to
help

• solve an old open problem in loop theory, originating in Bruck's early
work, by showing that diassociative A-loops are Moufang [7],

• solve a long-standing open problem in quasigroup theory, the �rst
open problem listed in Belousov's book [2], by showing that F -quasi-
groups are isotopic to Moufang loops [6], [12],

2000 Mathematics Subject Classi�cation: 20N05
Keywords: otter, automated theorem proved, loop, quasigroup

96 J. D. Phillips

• show that commutants of Bol loops of odd order are subloops [11],

• solve other problems in loop theory [8], [9].

Thus, it is clear that Otter is a powerful tool for quasigroup and loop
theorists. It is also an unfertilized tool. And so the purpose of this paper is
to give the working quasigroup and loop theorist enough of a background
to teach himself Otter, if he is so inclined.

A word of caution. This paper is meant only as a primitive introduction.
It is not intended as an Otter manual. Herein, we limit ourselves to a few
brief remarks on �ve basic Otter input �les, two complete Otter proofs,
and a few �translated� proofs. As with most software, the user's ultimate
success and sense of agency depends mostly on his or her sense of adventure
and willingness to play around with and explore the program for himself
or herself. This especially obtains with Otter, which has a steep learning
curve, and (with all due respect to McCune) a hard-to-read manual. All
this is to say that my disciplinary expertise lies far a�eld from automated
theorem provers. This paper, then, is meant to be nothing more than a
loop theorist's rudimentary introduction to Otter, an invitation to other
loop theorists to explore Otter for themselves.

2. Quasigroups and loops
Otter's prowess with equational reasoning means that inquiries involving
quasigroups and loops are particularly well suited to this tool because they
can be de�ned equationally. To wit, a quasigroup is a set Q together with
three binary operations ·, \, and / satisfying: x\(x · y) = (x · y)/y = x and
x · (x\y) = (x/y) · y = x. See [2], [3], [4], and [21] for solid introductions to
the theory of quasigroups (and loops). We often denote · by juxtaposition.

In a quasigroup Q, de�ne left and right translations in the customary
manner: xR(y) = yL(x) = xy. The multiplication group of Q, denoted
Mlt(Q), is the group of permutations on Q generated by all of the right and
left translations. Clearly Mlt(Q) acts as a permutation group on Q.

A loop is a quasigroup with a 2-sided neutral element, 1: x·1 = 1·x = x.
The commutant of a loop, L, is the subset C(L) = {a : ax = xa,∀x}. It is
not necessarily a subloop [11]. We note that the commutant is known by
other names in the literature, for instance, centrum and Moufang center.
The left nucleus of a loop L is the subloop Nλ(L) = {a : a·xy = ax·y,∀x, y}.
The middle and right nuclei, Nµ(L) and Nρ(L) are de�ned analogously. The

See Otter digging for algebraic pearls 97

nucleus, N(L), of L is the subloop given by N(L) = Nλ(L)∩Nµ(L)∩Nρ(L).
The center, Z(L), of a loop L is the subloop given by Z(L) = N(L)∩C(L).

If L is a loop, the stabilizer in Mlt(L) of 1 is called the inner mapping
group of L, and is denoted by I(L). A subloop is normal if it is invariant as
a set under each inner mapping. The center, Z(L), is a normal subloop of
L. For many important varieties of loops, e.g., Moufang loops, the nucleus,
N(L), is normal. A loop is called an A-loop if every inner mapping is
an automorphism. Thus, A-loops are generalizations of both groups and
commutative Moufang loops. They are also equationally-de�ned, since I(L)
is generated by R(x, y) = R(x)R(y)R(xy)−1, L(x, y) = L(x)L(y)L(xy)−1,
and T (x) = R(x)L(x)−1 [3].

A loop is diassociative if any two elements generate a group; it is not
known if the variety of diassociative loops is �nitely based. A Moufang loop
is a loop satisfying the identity (xy · x)z = x(y · xz); there are many well
known equivalent identities. De�ne the right and left inverse maps, ρ and
λ on a loop L by xρ = x\1 and xλ = 1/x. A loop has the right inverse
property if it satis�es y/x = yxλ. There is an obvious left version of this
identity. If a loop satis�es both the left and right inverse properties, it has
the inverse property. If the right and left inverse maps coincide we usually
denote this map by x−1. A loop has the anti-automorphic inverse property
if it satis�es (xy)−1 = y−1x−1. The automorphic inverse property is given
by (xy)−1 = x−1y−1. A loop has the weak inverse property if it satis�es
x · (yx)−1 = y−1; it is �exible if it satis�es x · yx = xy · x. A loop is a
(left) Bol loop if it satis�es the following identity x(y · xz) = (x · yx)z. A
(left) Bruck loop is a (left) Bol loop with the automorphic inverse property.
A conjugacy closed loop is a loop in which the right translations are closed
under conjugation and the left translations are closed under conjugation
[9]. An Osborn loop satis�es (equivalent) generalized Moufang identities:
(x[yxλ ·x]) · (zx) = x(yz ·x) and (xy) · ([x ·xρz]x) = (x ·yz)x. These include
Moufang loops and conjugacy closed loops as special cases [1]. A principal
isotope of a loop is another operation on the same underlying set of the
form x ·a,b y := (x/a) ∗ (b\y).

3. Otter
Otter is an automated theorem prover. It can be downloaded from the
site http://www-unix.mcs.anl.gov/AR/otter/. There are UNIX, PC, and
Mac versions; all are easy to install. All versions come bundled with MACE,
a �nite model building program. This paper is about Otter; we will leave

98 J. D. Phillips

MACE and �nite model builders for another time. Otter implements the
Knuth-Bendix algorithm. More about this, and indeed about most of Ot-
ter's technical speci�cations can found in [20]. There is a large, and growing,
literature on Otter, including a number of books and manuals. Pointers to
all of them can found in [20].

I usually use Otter on a UNIX platform. My UNIX machine is a rela-
tively fast, small-sized server�a 1 gigahertz Pentium 3 machine with 765
megs of RAM. So keep in mind that some of the Otter statistics I give below
may vary a bit if you use a di�erent platform, or if your UNIX machine is
faster or slower than mine. There are many styles for Otter input �les. For
a sample of some that are di�erent from mine see [20].

Otter produces proofs that are often complicated, opaque, and very
nearly intractable to humans. A big part, then, of our Otter assisted in-
quiries is translating the proofs that Otter generates into a form that a
human can understand. We'll have more to say about this below. Here we
note that the practice of translating Otter proofs is not universal. There
are many examples of published Otter proofs with no accompanying trans-
lation [20]. One of the reasons that we translate our Otter proofs is that
most of our results are only Otter assisted. By that, I mean that we �nd
general patterns by examining a sequence of translated Otter proofs, and
then construct general proofs sans Otter. This is especially true of proofs of
theorems that make claims about all integers, since Otter cannot produce
such proofs. Of course, translating Otter proofs is decidedly labor inten-
sive. But the pay-o� is greater insight�untranslated Otter proofs reveal
only that a theorem is true, not why it is true.

4. An Input �le
In this section we examine a typical Otter input �le. Most of my input
�les are structured like the one in this section. This is mainly because this
format has proven e�ective for me; I don't know if it's the �best�.

First note what the �le below is asking Otter to prove: If L is a Moufang
loop, and if C is a commutant element, then (C, x3, y) = 1. I generally place
this �target� in the penultimate line of the input �le. Now let's examine the
�le's features.

The �rst line tells Otter that ∗ is a binary operation. The number 400
in this line is a code that tells Otter not to suppress parantheses, which is
obviously crucial in proofs about loops. The next �ve lines are technical �
Otter is to use the Knuth-Bendix algorithm, etc. I rarely change these lines

See Otter digging for algebraic pearls 99

in my Otter �les.
The next line declares 1, A, B, and C as constants, a(_,_,_) as a

ternary function (the associator, as we shall see), i(_) as a unary function
(the inverse), and ∗ (again) as a binary operation. This line also speci�es
the lexicographical order. Otter tries to express functions and operations
which are lower in the lexicographical order in terms of those which are
higher, so it is particularly sensitive to the order speci�ed here.

The next nine lines tell Otter how to limit the length of the identities it
deduces, etc. And as with the �ve lines above, I rarely change any of them,
except the �max_weight� speci�cation.

In the next line �sos� stands for �set of support�. The �rst six lines
following �list(sos)� tell Otter that the binary operation ∗ gives an inverse
property loop. [As with TEX, lines beginning with % are ignored by Otter;
we use them for documentation.] The next line tells Otter that the loop
satis�es the anti-automorphic inverse property. Of course, this property
follows from the inverse property. But it is sometimes useful to add clauses
which follow from the others in order to help Otter in its search. The
addition of the anti-automorphic inverse property in this input �le is a
typical example.

The next three lines are axiomatizations of three versions of the Mo-
ufang law, and the following line stipulates that the constant �C�, which
we o�cially declared in the lexicographical ordering, is in the commutant.
The next line de�nes the associator function, and the �nal line tells Otter
to stop making deductions when it produces the desired identity.

Finally we note that lower case letters at the end of the alphabet are
understood by Otter to be free variables. Let's have a look at the input �le:

op(400, xfx, *).

set(knuth_bendix).
clear(print_new_demod).
clear(print_back_demod).
clear(print_back_sub).
clear(print_kept).

lex([1,A,B,C,a(_,_,_),_*_,i(_)]).

assign(max_weight, 60).
assign(pick_given_ratio, 3).
assign(change_limit_after, 100).
assign(new_max_weight, 21).
assign(neg_weight, -4).

100 J. D. Phillips

list(usable).
(x = x).
end_of_list.

list(sos).

% Inverse property loop
1 * x = x.
x * 1 = x.
i(x) * x = 1.
x * i(x) = 1.
i(x) * (x * y) = y.
(y * x) * i(x) = y.

% Anti-automorphic inverse property
i(x * y) = i(y) * i(x).

% Moufang
((x * y) * x) * z = x * (y * (x * z)).
x * ((y * z) * x) = (x * y) * (z * x).
((z * x) * y) * x = z * (x * (y * x)).

% C in C(L)
x * C = C * x.

% Associator a(x,y,z) defined
a(x,y,z) = i(x * (y * z)) * ((x * y) * z).

% Theorem?
a(C,A * (A * A),B) != 1.

end_of_list.

It took Otter 1 hour, 13 minutes, and 34 seconds on my UNIX machine
to �nd a proof. This Otter proof is 15 printed pages long. In the language
of Otter the �Length of proof� is 276. The �Level of proof� is 33 (cf: the
much quicker and shorter proofs in [20]). The upshot is that this proof is
long enough to be a burden to translate into the form of a more traditional
proof that is palatable to human intelligence. So it's natural to ask if we can
coax Otter to produce a shorter proof. As we shall see in the next section,
indeed we can.

See Otter digging for algebraic pearls 101

5. A better Input �le, proof, and translation
Here is a slightly di�erent input �le that asks Otter to prove the same thing
as the input �le in the previous section, but without appealing to a specially
designated associator function:

op(400, xfx, *).

set(knuth_bendix).
clear(print_new_demod).
clear(print_back_demod).
clear(print_back_sub).
clear(print_kept).

lex([1,A,B,C,_*_,i(_)]).

assign(max_weight, 60).
assign(pick_given_ratio, 3).
assign(change_limit_after, 100).
assign(new_max_weight, 21).
assign(neg_weight, -4).

list(usable).
(x = x).
end_of_list.

list(sos).

% Inverse property loop
1 * x = x.
x * 1 = x.
i(x) * x = 1.
x * i(x) = 1.
i(x) * (x * y) = y.
(y * x) * i(x) = y.

% Anti-automorphic inverse property
i(x * y) = i(y) * i(x).

% Moufang
((x * y) * x) * z = x * (y * (x * z)).
x * ((y * z) * x) = (x * y) * (z * x).
((z * x) * y) * x = z * (x * (y * x)).

% C in C(L)

102 J. D. Phillips

x * C = C * x.

% Theorem?
C * (((A * A) * A) * B) != (C * ((A * A) * A)) * B.

end_of_list.

The Otter proof for this input �le is signi�cantly shorter than is the
Otter proof of the very similar input �le in the last section. In the technical
language of Otter, �Length of proof� is 28; �Level of proof� is 7. The point
is that Otter is decidedly sensitive to small perturbations in the input �le
(lexicographical order, extra functions, max_weight, etc.) Here is the proof,
followed by the standard compilation of Otter statistics; note in particular
how quickly Otter found a proof (7 seconds):

---------------- PROOF ----------------
3,2 [] 1*x=x.
5,4 [] x*1=x.
6 [] i(x)*x=1.
10 [] i(x)* (x*y)=y.
12 [] (x*y)*i(y)=x.
17,16 [] ((x*y)*x)*z=x* (y*(x*z)).
19 [] ((x*y)*z)*y=x* (y*(z*y)).
21 [] x*C=C*x.
22 [] C* (((A*A)*A)*B)!=(C*((A*A)*A))*B.
23 [copy,22,demod,17,flip.1] (C*((A*A)*A))*B!=C* (A*(A*(A*B))).
25 [copy,21,flip.1] C*x=x*C.
28 [para_into,10.1.1.2,25.1.1] i(C)*(x*C)=x.
35,34 [para_into,10.1.1.2,6.1.1,demod,5] i(i(x))=x.
38 [para_into,12.1.1.1,21.1.1] (C*x)*i(C)=x.
96 [para_into,16.1.1.1.1,10.1.1] (x*i(y))*z=i(y)*((y*x)*(i(y)*z)).
98,97 [para_into,16.1.1.1.1,4.1.1,demod,3] (x*x)*y=x* (x*y).
106,105 [para_into,16.1.1,4.1.1,demod,5] (x*y)*x=x*(y*x).
111 [copy,96,flip.1] i(x)*((x*y)*(i(x)*z))= (y*i(x))*z.
112 [back_demod,23,demod,98] (C*(A*(A*A)))*B!=C*(A*(A*(A*B))).
117,116 [back_demod,16,demod,106] (x*(y*x))*z=x*(y*(x*z)).
205 [para_into,19.1.1.1.1,21.1.1] ((C*x)*y)*C=x*(C*(y*C)).
221 [para_into,19.1.1.1,38.1.1,flip.1] C*(x*(i(C)*x))=x*x.
232 [para_into,19.1.1.1,4.1.1,demod,3] (x*y)*y=x*(y*y).
262 [para_from,19.1.1,28.1.1.2] i(C)*(x*(C*(y*C)))=(x*C)*y.
269 [copy,262,flip.1] (x*C)*y=i(C)*(x*(C*(y*C))).
448 [para_into,97.1.1,21.1.1] C*(x*x)=x*(x*C).
453 [copy,448,flip.1] x*(x*C)=C*(x*x).
551 [para_into,232.1.1.1,232.1.1] (x*(y*y))*y=(x*y)*(y*y).

See Otter digging for algebraic pearls 103

592,591 [para_into,232.1.1,19.1.1,flip.1] (x*y)*(y*y)=x*(y*(y*y)).
596,595 [back_demod,551,demod,592] (x*(y*y))*y=x*(y*(y*y)).
891 [para_from,453.1.1,10.1.1.2] i(x)*(C*(x*x))=x*C.
3225,3224 [para_into,111.1.1.2.1,891.1.1,demod,35,35,35,596,flip.1]

(C*(x*(x*x)))*y=x*((x*C)*(x*y)).
3297 [back_demod,112,demod,3225] A*((A*C)*(A*B))!=C*(A*(A*(A*B))).
5663 [para_into,205.1.1,21.1.1] C*((C*x)*y)=x*(C*(y*C)).
6858 [para_into,5663.1.1.2.1,221.1.1,demod,98,117]

C*(x*(x*y))=x*(i(C)*(x*(C*(y*C)))).
6865 [copy,6858,flip.1] x*(i(C)*(x*(C*(y*C))))=C*(x*(x*y)).
7052 [para_from,269.1.1,3297.1.1.2]

A*(i(C)*(A*(C*((A*B)*C))))!=C*(A*(A*(A*B))).
7053 [binary,7052.1,6865.1] $F.
------------ end of proof -------------

Search stopped by max_proofs option.

============ end of search ============

-------------- statistics -------------
clauses given 277
clauses generated 66537
para_from generated 30209
para_into generated 36328

demod & eval rewrites 262258
clauses wt,lit,sk delete 31763
tautologies deleted 0
clauses forward subsumed 33438
(subsumed by sos) 4720

unit deletions 0
factor simplifications 0
clauses kept 4519
new demodulators 2532
empty clauses 1
clauses back demodulated 1189
clauses back subsumed 220
usable size 244
sos size 2866
demodulators size 1657
passive size 0
hot size 0
Kbytes malloced 5779

----------- times (seconds) -----------
user CPU time 7.51 (0 hr, 0 min, 7 sec) system

104 J. D. Phillips

CPU time 0.41 (0 hr, 0 min, 0 sec) wall-clock time
16 (0 hr, 0 min, 16 sec)
.
.
.
That finishes the proof of the theorem.

This proof is clearly much easier to translate into a traditional proof
than is the �fteen page proof for the input �le from the previous section.
In the proof, �para_into� and �para_from� are short for �paramodulation
into� and �paramodulation from�, and they are the key steps in any Otter
proof. Very crudely, paramodulation is an inference rule that combines
variable instantiation and equality substitution into one step [20]. Here is
the translated proof, bu�ed and polished:

If c is in C(L) then x2 · cy = cx2c−1 ·yc = c(x2c−1 ·y)c = c(xc−1x ·y)c =
c(x[c−1 · xy])c = (cx)([c−1 · xy] · c) = xc · xy. Now multiply both sides on
the left by x.

6. Translation intemperance
Otter proofs can be vexing in other ways. Consider the following theorem:

Theorem 6.1. If L is a Moufang loop, and if c is in the commutant of L,
then the set {b : (c, b, x) = 1,∀x ∈ L} is a subloop.

Here is an input �le asking Otter to prove this theorem:

op(400, xfx, *).

set(knuth_bendix).
clear(print_new_demod).
clear(print_back_demod).
clear(print_back_sub).
clear(print_kept).

lex([1,A,B,C,D,_*_,i(_)]).

assign(max_weight, 60).
assign(pick_given_ratio, 3).
assign(change_limit_after, 100).
assign(new_max_weight, 21).
assign(neg_weight, -4).

See Otter digging for algebraic pearls 105

list(usable).
(x = x).
end_of_list.

list(sos).

% Inverse property loop
1 * x = x.
x * 1 = x.
i(x) * x = 1.
x * i(x) = 1.
i(x) * (x * y) = y.
(y * x) * i(x) = y.

% Anti-automorphic inverse property
i(x * y) = i(y) * i(x).

% Moufang
((x * y) * x) * z = x * (y * (x * z)).
x * ((y * z) * x) = (x * y) * (z * x).
((z * x) * y) * x = z * (x * (y * x)).

% C in C(L)
x * C = C * x.
(C * C) * (x * y) = (C * x) * (C * y).

% assumption
(C * A) * x = C * (A * x).
(C * B) * x = C * (B * x).

% Theorem?
(C * (A * B)) * D != C * ((A * B) * D).
end_of_list.

Otter �nds a proof in 4 minutes, 43 seconds. Length of proof is 170; level
of proof is 23. The Otter proof, though, is not particularly enlightening, so
I have not included it here. It is tedious and irksome to translate. Here is
the translation, which itself is not very enlightening:

If (c, b, x) = 1 = (c, f, x), then
c(fb · x) = c(x−1[xf · bx]) = c−2(c3[x−1(xf · bx)]) = c−2(x−1[c3(xf · bx)]) =
c−2(x−1[c(cxf · bxc)]) = c−2(x−1[c−1(c[(cxf · bxc)c])]) =
c−1[(c−1x−1c−1)(c[cxf · bxc]c)] = [(c−1x−1c−1)([cxc · f] · [b · cxc])]c−1 =
(fb · cxc)c−1 = ([(fb · c)x]c)c−1 = (c · fb)x. That is, (c, fb, x) = 1.

106 J. D. Phillips

But here is a better proof, a basic proof that does not rely on Otter at
all:

Note that (x, y, z) = 1 is invariant under permutations of x, y, z. Now
note that (a, x, y) = 1 if and only if aR(x, y) = a. But each R(x, y) is a
pseudo-automorphism, and the set of �xed points of any family of pseudo-
automorphisms is a subloop.

The point of all of this is to o�er a simple word of warning. The power
of Otter is seductive. As your appreciation of its virtues deepens, it's almost
inevitable that you will come increasingly to rely on it, so much so that it's
likely you will have Otter prove things�and that you will then devote a
considerable amount of time to translating the resulting complicated Otter
proof�that are quite easily proved without using Otter at all, as above.

7. Translation transcendence
In 1978, Stephen Doro asked about conditions under which a Moufang loop's
commutant is normal [5]. It seemed that not much work had been done
in the intervening years toward answering Doro. So we began exploring
possible responses to his question. Eventually, we found a very long and
complicated Otter proof of the following:

Theorem 7.1. If c is a commutant element in a Moufang loop, then
cR(a, b)3 = c.

Here is an early input �le asking Otter to prove this:
op(400, xfx, *).

set(knuth_bendix).
clear(print_new_demod).
clear(print_back_demod).
clear(print_back_sub).
clear(print_kept).

lex([1,A,B,C,D,E,F,_*_,i(_)]).

assign(max_weight, 50).
assign(pick_given_ratio, 3).
assign(change_limit_after, 100).
assign(new_max_weight, 21).
assign(neg_weight, -4).

list(usable).

See Otter digging for algebraic pearls 107

(x = x).
end_of_list.

list(sos).

% Inverse property loop
1 * x = x.
x * 1 = x.
i(x) * x = 1.
x * i(x) = 1.
i(i(x)) = x.
i(x) * (x * y) = y.
(y * x) * i(x) = y.

% Anti-automorphic inverse property
i(x * y) = i(y) * i(x).

% Moufang
((x * y) * x) * z = x * (y * (x * z)).
(x * y) * (z * x) = x * ((y * z) * x).
((x * y) * z) * y = x * (y * (z * y)).

% C in C(L)
C * x = x * C.

% R(A,B) and its powers act on C
((C * A) * B = D * (A * B).
((D * A) * B = E * (A * B).
((E * A) * B = F * (A * B).

% Theorem?
F != E.
end_of_list.

This seemed like an exciting result. But the 50 page Otter proof was
nearly intractable, so we worked hard to shorten it. Eventually we whittled
it down to something that, only with great e�ort, we could translate. Here
is our translated proof, which is itself dense and nearly opaque:
cR(a, b)R(a)R(b) = ([(ca · b)(ab)−1]a)b = (cb · a)(a−1b−1ab) =
a(a−1[(cb·a)(a−1b−1ab)]) = a([a−1 ·cb][b−1ab]) = a([b(b−1a−1 ·c)b][b−1ab]) =
a([b(c · b−1a−1)b][b−1ab]) = a([bc · b−1a−1b][b−1ab]) = a · cb =
(ab−1a−1)[a−1(a[(aba−1)(a · cb)])] = (ab−1a−1) · (a−1(a2b · cb)) =
(ab−1a−1)dot[a−1([(a2b · cb)b]b−1)] = (ab−1a−1)[a−1([a2 · cb3]b−1)] =
(ab−1a−1)[a−1([a2c · b3]b−1)] = (ab−1a−1)[a−1(a2c · b2)] =

108 J. D. Phillips

(ab−1a−1)[a−1(a[c · ab2])] = (ab−1a−1)(c · ab2) =
([(a[b−1a−1])(c · ab2)] · [b−1a−1])(ab) = (a[b · (c · b−1a−1)])(ab) =
[(a[b(c · b−1a−1)]a)a−1](ab) = [([ab][(c · b−1a−1)a])a−1](ab) =
([([([ab][(c·b−1a−1)a])b]b−1)]a−1)(ab) = ([(a[(b·[b−1a−1·c])(ab)])b−1]a−1)(ab)
= [([a([ab]([b−1a−1][b([b−1a−1] · c)])[ab])])b−1)a−1] · (ab) =
([(a[(ab)(b−1a−2 · c)(ab)])b−1]a−1)(ab) = ([(a[a−1(c · ab)])b−1]a−1)(ab) =
[([(c·ab)b−1]a−1)(ab) = [([bcb−1·ab]b−1)a−1](ab) = [([b(cb−1·a)b]b−1)a−1](ab)
= ([b(cb−1 ·a)]a−1)(ab) = [(cb·b−1a)a−1](ab) = [([(cb·a)(a−1b−1)]a)a−1](ab)
= [(cb · a)(a−1b−1)](ab) = cR(b, a)R(ab).

And since R(a, b)−1 = cR(b, a) [3] we have shown that cR(a, b)2 =
cR(a, b)−1, that is, cR(a, b)3 = c.

But �nally, after all of this hard work we rediscovered some old results
buried in [3] that render the proof of this theorem trivial:

First note that in any Moufang loop, R(x, y) = L(x−1, y−1). So here we
work with left inner mappings. The associator (c, x, y) lies in the center of
the subloop < c, x, y >. So for all n, cL(x, y)n = [c · (c, y, x)−1]L(x, y)n−1 =
cL(x, y)n−1 · (c, y, x)−1. Thus cL(x, y)3 = c · (c, y, x)−3 = c.

The point of all of this is again clear. As above, Otter is seductive,
and at times even bewitching. But still, a curse can be salutary: reproving
known, even classic, results with Otter, and then carefully translating the
proofs, as above, can sometimes lead to useful insights. In the case of our
long translation above, we stumbled upon the following charming identity,
that appears to have gone unnoticed until now:

Lemma 7.2. (ca · b−1)(ba−1) = (cb · a)(a−1b−1).

The proof of this lemma, and indeed much more, can found in [13].

8. A quick tease
In this section we underscore the e�cacy of Otter in inquiries involving
quasigroups and loops by mentioning a few not-yet-published results, to
whet the reader's appetite.

A-loops. We signi�cantly improved our main result in [7] by proving the
following theorem which we have not yet published.

Theorem 8.1. An inverse property loop with
(a) each T (x) = R(x)L(x)−1 an automorphism, and
(b) satisfying [R(xy), R(x)R(y)] = I

See Otter digging for algebraic pearls 109

is Moufang.

From this, our inquiries led us to the following conjecture.

Conjecture 8.2. The following varieties are distinct:
1. Moufang loops satisfying (a)
2. Moufang loops satisfying (a) and (b)
3. Moufang A-loops.

Finally, regarding A-loops, here is a sampling of our not-yet-published
results on general A-loops:

1. Every A-loop with the weak inverse property is Moufang.

2. Every A-loop has the anti-automorphic inverse property.

3. An A-loop Q with centrally endomorphic cubing and with Q/C(Q)
commutative is Moufang. And so clearly commutative A-loops of
exponent 3 are Moufang.

4. Every �nite simple A-loop of odd order is of exponent p for some odd
prime p.

Bruck loops. Turning our attention elsewhere, we note that Bruck loops
are a generalization of commutative Moufang loops. In fact, it is well known
that Bruck loops of exponent 3 are actually commutative Moufang loops.
It turns out that a bit more is true. We have shown that in a Bruck loop of
exponent 6 elements of order 3 are in the commutant. Elsewhere, the next
theorem gives a new Otter-assisted result that we haven't yet published and
that we think reveals something deep about the structure of (�nite) Bruck
loops:

Theorem 8.3. In a Bruck loop, elements of order a power of 2 commute
with elements of odd order.

Osborn loops. Commutative Moufang loops are perhaps the most widely
studied variety of nonassociative loops because of their connections with
combinatorics and geometry (e.g., Steiner triple systems). One of the most
striking algebraic features of commutative Moufang loops is that they have
centrally endomorphic cubing. This fact underscores the allure of the fol-
lowing generalization, which we found with the help of Otter and which
have not yet published.

Theorem 8.4. An Osborn loop with the automorphic inverse property has
centrally endomorphic cubing.

110 J. D. Phillips

There are indeed examples of nonMoufang Osborn loops with the au-
tomorphic inverse property. We think there is great potential for fruitful
inquiry into the structure of Osborn loops.

Isotopic Invariance. An important program in loop theory is to �nd iso-
topic invariant properties, that is, properties which hold in all isotopes of a
loop. For example, the property of being a Moufang loop is isotopically in-
variant. In a series of papers culminating in [22], Syrbu showed that inverse
property loops with isotopically invariant �exibility share many properties
with Moufang loops. Recently, Otter helped us prove that this is not sur-
prising [10]:

Theorem 8.5. Inverse property loops with isotopically invariant �exibility
are Moufang.

We also �nd some new varieties of diassociative loops in [10], comple-
menting the main result in [9].

Other varieties. Finally, in this section, we mention that we have scores
of not-yet-published Otter assisted results about i-loops, rectangular loops,
trimedial quasigroups, to name just a few, as well as some deep results
about nilpotency in many varieties of loop.

9. Coda, a quasigroup input �le
The four input �les we have examined up to this point all have asked Otter to
prove theorems about Moufang loops. And as we have seen, it is convenient
to axiomatize Moufang loops as sets with a single binary operation satisfying
certain identities (together with a unary operation giving inverses). But
for general quasigroups, it is necessary to use three binary operations to
axiomatize the variety. So here we give a typical Otter quasigroup input
�le. The �le below asks Otter to prove that quasigroups which are both left
and middle semimedial must also be right semimedial. This, by the way, is
a new result [6].

op(400, xfx, *).
op(400, xfx, \).
op(400, xfx, /).

set(knuth_bendix).
clear(print_new_demod).
clear(print_back_demod).

See Otter digging for algebraic pearls 111

clear(print_back_sub).
clear(print_kept).

lex([A,B,C,_*_,__,_/_]).

assign(max_weight, 50).
assign(pick_given_ratio, 3).
assign(change_limit_after, 100).
assign(new_max_weight, 21).
assign(neg_weight, -4).

list(usable).
(x = x).
end_of_list.

list(sos).

% Quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.

% Middle semimedial
(x * y) * (z * x) = (x * z) * (y * x).

% Left semimedial
(x * x) * (y * z) = (x * y) * (x * z).

% Right semimedial?
(B * C) * (A * A) != (B * A) * (C * A).
end_of_list.

Otter �nds the proof very quickly�in 30 seconds. Here is the short
proof, sans statistics, which you might enjoy translating for yourself.

Length of proof is 28. Level of proof is 8.

---------------- PROOF ----------------
3,2 [] x* (x\y)=y.
4 [] x\ (x*y)=y.
6 [] (x*y)/y=x.
9,8 [] (x/y)*y=x.
10 [] (x*y)* (z*x)= (x*z)* (y*x).
11 [] (x*x)* (y*z)= (x*y)* (x*z).

112 J. D. Phillips

12 [] (B*C)* (A*A)!= (B*A)* (C*A).
17,16 [para_from,8.1.1,4.1.1.2] (x/y)\x=y.
21 [para_into,10.1.1.1,2.1.1] x* (y*z)= (z*y)* ((z\x)*z).
23 [para_into,10.1.1.2,8.1.1] (x*y)*z= (x* (z/x))* (y*x).
26 [copy,21,flip.1] (x*y)* ((x\z)*x)=z* (y*x).
36 [para_into,11.1.1.2,8.1.1] (x*x)*y= (x* (y/z))* (x*z).
37 [para_into,11.1.1.2,2.1.1] (x*x)*y= (x*z)* (x* (z\y)).
44 [para_from,11.1.1,6.1.1.1] ((x*y)* (x*z))/ (y*z)=x*x.
46 [para_from,11.1.1,4.1.1.2] (x*x)\ ((x*y)* (x*z))=y*z.
92 [para_into,21.1.1,8.1.1,flip.1](x*y)* ((x\ (z/ (y*x)))*x)=z.
234 [para_into,26.1.1.1,2.1.1] x* ((y\z)*y)=z* ((y\x)*y).
326,325 [para_into,36.1.1,11.1.1,flip.1]

(x*((y*z)/u))*(x*u)=(x*y)*(x*z).
404 [para_into,37.1.1,2.1.1,flip.1] (x*y)*(x*(y\((x*x)\z)))=z.
768 [para_into,44.1.1.1.1,2.1.1] (x* (y*z))/ ((y\x)*z)=y*y.
883,882 [para_into,46.1.1.2.2,2.1.1] (x*x)\ ((x*y)*z)=y*(x\z).
884 [para_into,46.1.1.2,23.1.1,demod,883] ((x*y)/x)*(x\(z*x))=z*y.
1614 [para_from,92.1.1,4.1.1.2,flip.1] (x\(y/(z*x)))*x=(x*z)\y.
2321 [para_into,234.1.1,36.1.1,demod,326]

(x*(y\z))*(x*y)=z*((y\(x*x))*y).
3588 [para_from,404.1.1,4.1.1.2] (x*y)\z=x* (y\ ((x*x)\z)).
3610 [copy,3588,flip.1] x* (y\ ((x*x)\z))= (x*y)\z.
4362 [para_into,768.1.1.1.2,8.1.1] (x*y)/ (((y/z)\x)*z)=(y/z)*(y/z).
4364 [para_into,768.1.1.1.2,2.1.1](x*y)/ ((z\x)*(z\y))=z*z.
4898 [para_into,884.1.1.1.1,8.1.1] (x/(x/y))*((x/y)\(z*(x/y)))=z*y.
9835 [para_from,4364.1.1,16.1.1.1] (x*x)\(y*z)=(x\y)*(x\z).
15608,15607 [para_from,9835.1.1,3610.1.1.2.2,flip.1]

(x*y)\(z*u)=x*(y\((x\z)*(x\u))).
16487 [para_into,4362.1.1.2.1,16.1.1] (x*x)/(y*y)=(x/y)*(x/y).
16490,16489 [para_from,16487.1.1,1614.1.1.1.2,demod,15608,3]

(x\((y/x)*(y/x)))*x=(x\y)*(x\y).
16511 [para_from,4898.1.1,2321.1.1.1,demod,9,16490,17,17,flip.1]

(x*(y/z))*(z*z)=(x*z)*y.
16515 [para_into,16511.1.1.1.2,6.1.1] (x*y)*(z*z)=(x*z)*(y*z).
16516 [binary,16515.1,12.1] $F.
------------ end of proof -------------

Search stopped by max_proofs option.

============ end of search ============

See Otter digging for algebraic pearls 113

10. Possibilities
As should be clear by now, our Otter proofs tend to be rather long, especially
by comparison to many of the Otter proofs in other areas of algebra and
logic; see, for instance, the much shorter proofs in [20]. In fact, while our
translated proofs are hopefully concise and insightful, some of the actual
Otter proofs we've generated are Titanic in length. The grand champion
in this regard is a punishing proof about central nilpotency and Moufang
loops that is over 300 printed pages long, with a formal length of proof over
2500. It took Otter nearly 2 days to �nd it.

All of this suggests that there is an intriguing depth to many of these
results, and more importantly, betokens the huge potential in using Otter
to help reveal ever deeper insights into the theory of quasigroups and loops.

Acknowledgements. I am enormously indebted to Ken Kunen for
generously and patiently teaching me Otter, and to Michael Kinyon for
learning it with me. I thank them both. Many of the results mentioned
herein are joint work with one or both of them. I also thank the referee for
his or her thorough and helpful comments. The paper is greatly improved
because of them.

References
[1] A. S. Basarab: Osborn's G-loops, Quasigroups and Related Systems 1

(1994), 51− 56.

[2] V.D. Belousov: Foundations of the Theory of Quasigroups and Loops, Izdat
Nauka, Moscow 1967.

[3] R. H. Bruck: A Survey of Binary Systems, Springer-Verlag 1971.
[4] O. Chein, H. P�ugfelder and J. D. H. Smith: Quasigroups and Loops,

Theory and Applications, Helderman-Verlag 1990.
[5] S. Doro: Simple Moufang loops, Math. Proc. of Camb. Phil. Soc. 83 (1978),

377− 392.

[6] T. Kepka, M. K. Kinyon and J. D. Phillips: F -quasigroups are isotopic
to Moufang loops, (in preparation).

[7] M. K. Kinyon, K. Kunen and J. D. Phillips: Every diassociative A-loop
is Moufang, Proc. Amer. Math. Soc. 130 (2002), 619Ñ624, (electronic).

[8] M. K. Kinyon, K. Kunen and J. D. Phillips: A generalization of Mo-
ufang and Steiner loops, Algebra Universalis 48 (2002), 81− 101.

[9] M. K. Kinyon, K. Kunen and J. D. Phillips: Diassociativity in conju-
gacy closed loops, Communications in Algebra, (to appear).

114 J. D. Phillips

[10] M. K. Kinyon, K. Kunen and J. D. Phillips: Loops with isotopically
invariant �exibility, (submitted).

[11] M. K. Kinyon and J. D. Phillips: Commutants of Bol loops of odd order,
Proc. Amer. Math. Soc., (to appear).

[12] M. K. Kinyon and J. D. Phillips: A note on trimedial quasigroups, Quasi-
groups and Related Systems 9 (2002), 65− 66.

[13] M. K. Kinyon and J.D. Phillips: Moufang commutants, (submitted).
[14] K. Kunen: Moufang quasigroups, J. Algebra 183 (1996), 231− 234.

[15] K. Kunen: Single axioms for groups, J. Automated Reasoning 9(3) (1992),
291− 308.

[16] K. Kunen: G-loops and permutation groups, J. Algebra 220 (1999), 694 −
708.

[17] W. W. McCune: OTTER 3.0 Reference Manual and Guide, Tech-
nical Report ANL-94/6, Argonne National Laboratory, 1994; or see
http://www-fp.mcs.anl.gov/division/software

[18] W.W. McCune: Solution of the Robbins Problem, J. Automated Reasoning
19(3) (1997), 263− 276.

[19] W. W. McCune: http://www-unix.mcs.anl.gov/AR/new_results/.
[20] W. W. McCune and R. Padmanabhan: Automated Deduction in Equa-

tional Logic and Cubic Curves, Springer-Verlag 1996.
[21] H. P�ugfelder: Quasigroups and Loops, Introduction, Helderman-Verlag

1990.
[22] P. Syrbu: On loops with universal elasticity, Quasigroups and Related Sys-

tems 3 (1996), 41− 54.

[23] L. Wos: Automated reasoning answers open questions, Notices of the AMS
5(1) (1993), 15− 26.

Department of Mathematics & Computer Sciences Received May 30, 2003
Wabash College
Crawfordsville, IN 47933
USA
e-mail: philipj@ wabash.edu

