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Fuzzy subquasigroups

Wiestaw A. Dudek

Abstract

Our work in this paper is concerned with the fuzzification of subasigroups in quasi-
groups. We investigate the connection between normal, maximal and completely

normal fuzzy subquasigroups in unipotent quasigroups.

1. Introduction

Following the introduction of fuzzy sets by Zadeh [10], the fuzzy set
theory developed by Zadeh himself and others have found many appli-
cations in the domain of mathematics and elsewhere. For example, in
[7] are studied fuzzy subrings as well as fuzzy ideals in rings. Properties
of some fuzzy ideals in semirings are investigated in [6]. Very similar
results for some fuzzy ideals in BCl-algebras are proved in [5]. Con-
nections between fuzzy groups and so-called level subgroups are find
in [2], [3] and [9]. These algebras (i.e., rings, groups, BCI-algebras)
are not, similar, but used methods are very similar.

In this note some modifications of these methods will be applied
to quasigroups.

2. Preliminaries

As it is well known a groupoid (G,-) is called a quasigroup if each of
the equations ax = b, za = b has a unique solution for any a,b € G.
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A quasigroup (G, ) may be also defined as an algebra (G,-,\, /) with
the three binary operations -, \, / satisfying the identities

(zy)/y ==, z\(vy)=y, (/y)y=z, x(xz\y) =y

(cf. [1] or [8]). We say also that (G,-,\,/) is an equasigroup (i.e.
equationally definable quasigroup) [8] or a primitive quasigroup [1].
The equasigroup (G, -, \, /) corresponds to quasigroup (G, -) where

r\y=z<=ax2=y, x/y=2z<=2y==2x.

In the theory of quasigroups, so-called unipotent quasigroups, i.e.,
quasigroups with the identity xo = yy, play an important role. These
quasigroups are connected with Latin squares which have one fixed
element in the diagonal (cf. [4]). Such quasigroups may be defined
as quasigroups G with the special element 0 satisfying the identity
xx = 0. Obviously, 6 is uniquely determined and it is an idempotent,
but, in general, it is not the (left, right) neutral element.

A nonempty subset S of a quasigroup G = (G, -, \,/) is called a
subquasigroup it is closed with respect to these three operations, i.e.,
if rxy e Gforall xe{\,/} and z,y € G.

A function p : G — [0,1] is called a fuzzy set in a quasigroup G.
The set p; = {z € G : u(x) > t}, where t € [0,1] is fixed, is called
a level subset of p. The set {z € G : p(z) = p(f) }, where G is a
unipotent quasigroup, is denoted by G,. Im(u) denotes the image
set of .

Let 1 and p be two fuzzy set defined on G. According to [10]
we say that p is contained in p, and denote this fact by p C p, iff
pu(z) < p(z) for all z € G. Obviously u = p iff u(z) = p(z) for all
z € G.

3. Fuzzy subquasigroups

Definition 3.1. A fuzzy set u in a quasigroup G = (G, -, \, /) is called
a fuzzy subquasigroup of G if

min{u(zy), p(z\y), p(z/y)} > min{u(@), p(y)} Yo,y €G.

It is clear, that this definition is equivalent to the following
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Definition 3.2. A fuzzy set p in a quasigroup G = (G, -,\,/) is a
fuzzy subquasigroup of G if

pw(z *y) = min{u(z), p(y)}

forall e {-,\,/} and z,y € G.

Proposition 3.3. If u is a fuzzy subquasigroup of a unipotent quasi-
group (G,+,\, /,0), then 1u(6) > p(x) for any @ € G.

Proof. Since zx =60 for any z € G, then

p(0) = p(zz) = min{p(z), p(z)} = u(z),
which completes the proof. O

Proposition 3.4. If p is a fuzzy subquasigroup of a quasigroup G,
then for all x,y € G we have

(@) min{p(z*y), p(z)} = min{p(z +y), u(y)} = min{u(z), u(y)},

(0) p(x) < ply) implies p(x *y) = (@),

() p(x) > ply) implies p(x *y) = u(y),

(d) w(x) # ply) implies p(x xy) = min{p(z), p(y)}.
Proof. (a) At first we consider the case x xy = xy. Since (zy)/y ==
for all z,y € G, then
min{z(zy), p(y)} = min{min{u(x), u(y)}, p(y)}

= min{pu(z), p(y)} = min{p((zy)/y), n(y)}

> min{min{u(zy), u(y)}, p(y)} = min{u(zy), u(y)},
which proves that

min{u(zy), p(y)} = min{p(z), p(y)}.

In the similar way, using z \ (zy) =y, we prove the second identity.
Thus (a) holds for z *y = zy.

Now let z*y =z \y. As in the previous case it is not difficult to
see that

min{u(z \ y), p(z)} = min{u(z), u(y)}.
Since y = xz(z \y) for all z,y € G, then
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min{u(z), p(y)} = min{p(z), p(z(z\y))}

> min{u(z), min{u(z), p(z\ y)}}

= min{u(z \ y), p(z)},
which gives

min{yu(z \ y), p(z)} = min{u(z), p(y)}-
At is well known z \ y = z <= xz = y. Thus, applying this fact to
(a), where z x y = zy, we obtain
min{u(z \ y), p(y)} = min{u(z), p(rz)} = min{p(z), p(z)}
= min{pu(z \ y), p(x)} = min{u(z), p(y)}-

Hence (a) holds also in the case xxy =\ y.

If zxy = x/y then min{u(z/y), p(y)} > min{u(z), u(y)} by
the assumption on p. Thus, using the identity = = (x/y)y, we get
min{pu(x), p(y)} = min{u((z/y)y), ny)}
> min{min{u(z/y), u(y)}, ny)}.

= min{u(z/y), n(y)}
Hence

min{p(x/y), p(y)} = min{u(z), u(y)}-
Since, by the definition, xy = u <= wuy = z, then, as in the previous
case, we obtain
min{pu(z/y), p(x)} = min{p(u) p(uy)} = minfu(u), py)}
= min{u(z/y), py)} = min{u(z), uy)},
which completes the proof of (a).

(b) Let u(x) < u(y). Then from (a) we get

min{y(z +y), p(y)} = min{u(z), p(y)} = ().
This implies u(x * y) = p(z).
(c) similarly as (b).
(d) is an immediate consequence of (b) and (c). O

Proposition 3.5. A fuzzy set p of a quasigroup G = (G,-,\,/) is
a fuzzy subquasigroup iff for every t € [0,1], p; is either empty or a
subquasigroup of G.
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Proof. If p is a fuzzy subquasigroup of G and p; # (), then for any
x,y € uy we have u(x) >t, u(y) = t. Thus

p(z *y) = min{u(x), p(y)} >t

for any * € {-,\,/}, which implies x *y € ;. This proves that p; is
a subquasigroup of G.

Conversely, let z,y € G and t = min{u(x), u(y)}. Then, by the
assumption, u; is a subquasigroup of G, which gives x*y € u;. Hence
p(xxy) =t =min{u(x), u(y)}. Thus p is a fuzzy subquasigroup of a
quasigroup G. O

Proposition 3.6. Any subquasigroup of a quasigroup G can be real-
ized as a level subquasigroup of some fuzzy subquasigroup of G.

Proof. Let S be a subquasigroup of a given quasigroup G and let u
be a fuzzy set in G defined by

t if vebs,
,u(:ic):{ s if v &S,
where 0 < s <t <1 are fixed. It is clear that p; = S.

We prove that such defined p is a fuzzy subquasigroup of G. Let
z,y € G. If z,y € S, then also x xy € S. Hence u(x) = u(y) =
p(z+y) =t and p(z+y) = min{p(@), p(y)}. If 2,y € S, then p(z) =
p(y) = s, and, in the consequence, pu(x*y) > min{u(x), u(y)} =s. If
at most one of z,y belongs to S, then at least one of u(z) and u(y)

is equal to t. Therefore min{u(z), u(y)} = s and p(zxy) > s, which
completes the proof. O

Proposition 3.7. Two level subquasigroups s, e (s < t) of a fuzzy
subquasigroup are equal iff there is no x € G such that s < p(x) < t.

Proof. Let ps = p for some s < t. If there exists x € G such
that s < p(z) < t, then p, is a proper subset of g, which is a
contradiction. Conversely assume that there is no x € G such that
s < p(z) <t If x € pg, then p(zr) > s, and so u(x) > t, because
p(x) does not lie between s and ¢t. Thus x € py, which gives s C .
The converse inclusion is obvious since s < t. Therefore s = p;. U
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From the above theorem it follows that the set of all level subquasi-
groups of a given fuzzy quasigroup p of G is linearly ordered. If G is a
unipotent quasigroup, then gy, where to = p(60), is the smallest level
subquasigroup (because pu(x) < p(f) for all € G). In this case we
have the chain

Mo C Mty C ...C ,utp = G,

where 1o > t; > ... > 1.

Corollary 3.8. Let p be a fuzzy subquasigroup of G. If Im(u) =
{t1,ta, ..., tn}, where t, < ty < ... < t,, then the family of levels wuy,,
1 < i < n, constitutes all the level subquasigroups of .

Proof. Let ps, where s € [0,1] and s &€ Im(u), be a some level
subquasigroups. If s < ¢;, then p;, C ps. Since py, = G, it follows
that pus =G and ps = py,. If t; < s < t;11, then there is no z € GG
such that s < p(x) < py,,,. Thus ps = p,,,, by Proposition 3.7.
Obviously pus = 0 for s > t,. This proves that for any s € [0,1] p, is
either empty or belongs to {u, : 1 <i < n}. O

The construction used in the proof of Proposition 3.6 shows that
two different fuzzy subquasigroups may have an identical family of
level subquasigroups. For example, only S and G \ S.

Proposition 3.9. Let p be a fuzzy subquasigroup with finite image.
If ps = pu for some s,t € Im(u), then s =t.

Proof. Without loss of generality, let s < t. Since s € I'm(u), then
there exists « € G such that p(x) = s <t,andso = € p, and = & p,
which is a contradiction. O

Proposition 3.10. Let p and p be two fuzzy subquasigroups of a
quasigroup G with identical family of level subquasigroups. If Im(u) =
{t1,....tn} and Im(p) = {s1,...,Sm}, where t1 > ty > ... > t, and
§1 > 89 > ... > Sy, then

a) m=n,

b) g, =ps, fori=1,..n,

c) if plz) =t;, then p(x)=s; for t € G and i =1,...,n.
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Proof. (a) By Corollary 3.8 fuzzy subquasigroups p and p have (re-
spectively) the only {u,} and {ps,} as the families of level subquasi-
groups. Since, by the assumption, these families are identical, then
m=n.

(b) Follows from Corollary 3.8 and Proposition 3.7.

(c) Let € G be such that pu(z) = t; and p(z) = s;. From (b)
and p(x) = t; follows = € ps,. Thus p(x) > s; and s; > s, ie.
ps; € ps,. Since = € ps; = py;, we obtain t; = p(x) > t;. This gives
e, € p;y and, in the consequence (by (b)) ps, = py, S pe; = ps;-
Thus p,, = ps;. But, by Proposition 3.9, s; = s;. Hence p(r) =s;. O

Proposition 3.11. Let p and p be two fuzzy subquasigroups of G
with identical family of levels. Then = p iff Im(u) = Im(p).

Proof. Let Im(u) = Im(p) = {s1,...,s,} and s; > ....s,. By Propo-
sition 3.10 for any = € G there exists s; such that p(z) = s; = p(x).
Thus u(x) = p(z) for all € G, which gives u = p. O

Proposition 3.12. Let {S; : t € T}, where § # T C [0,1], be a
collection of subquasigroups of a quasigroup G such that

(2) G = U St:

teT
(i1) s>t < S;C S forall s,teT.

Then v defined by
p(z) =sup{t € T : x € Si}

is a fuzzy subquasigroup of G.
Proof. By Proposition 3.5, it is sufficient to show that every nonempty
level pg is a subquasigroup of G. Assume pu, # () for some fixed
s € [0,1]. Then

s=sup{teT :t<s}=sup{teT:S;C S}
or

s#sup{t €Tt <s}=sup{t € T:S; C S}
In the first case we have us = () Si, because

t<s

rEps == xS forall t<s<=uzxze ().
t<s

In the second, there exists ¢ > 0 such that (s—e, s)NT = (). We prove
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that in this case us = |J S;. Indeed, if = € |J S;, then = € S; for

t>s t>s
some t > s, which gives u(x) >t > s. Thus z € pg, i.e. |JS; C ps.
t>s
Conversely, if z & |J Sy, then x € S; for all t > s, which implies
t>s

that © ¢ S; for all t > s — ¢, i.e. if x € 5, then t < s —e. Thus
pu(x) < s —e. Therefore © & ps. Hence ps € |J S;, and in the con-

t>s
sequence s = J S;. This completes our proof because (as it is not
t>s
difficult to see) |J S; and () S; are subquasigroups. O
t2s t<s

Proposition 3.13. Let p be a fuzzy set in G and let Im(p) =
{to,tl,...,tn}, where tyg >t > ... > t,. ]f So C Sl C ... C Sn =G
are subquasigroups of G such that p(Sk\ Sk—1) =t fork=0,1,....n,
where S_y =0, then p is a fuzzy subquasigroup.

Proof. Let z,y be an arbitrary elements of G. For any fixed op-
eration x € {-,\,/} there exists only one k& = 0,1,...,n such that
rxy € Sk \ Sk—1 (k depends on z,y and *).

We consider the following four cases:

1° zxy € Sk \ Sk-1, 2,y € S\ Sk—1,
20 xxy € Sp\ k-1, ¥y & Sk \ k-1,
3° xxy, x €Sk \ Sk—1, Y&k \ Sk1,
4° zxy,y € Sk \ Sk—1, © & Sk \ Sk_1-

In the first case we have u(x *y) = u(x) = pu(y) = ti. Hence

p(z = y) =t = min{u(z), p(y)}-

In the second case there exist m # k and n # k such that = €
Sm \ Sm—1 and y € S, \ S,—1. Without loss of generality, we can
assume m < n.

If m<n<k, then S5,, €S, C S,_1 CS, and x,y € S,. Thus
xxy €5, C Sg_1, which is impossible.

If m <k <mn, then z,zxy € S C S,_1 C S,, which for
rxy=uxy gives y =1\ (ry) € Sg. This is a contradiction. The case
when x*xy =2\ y = u also is impossible because, by the assumption
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and the definition of \ we have y = a2u € Sy. Wz xy = x/y = v.
Then vy = x implies y € Sk. A contradiction.

Thus must be & < m < n. Hence p(z *xy) = t, plz) = tn,
u(y) =t, and, in the consequence,

p(x s y) =ty > tn = min{p(z), p(y)}-
The last two cases are obvious. O

Corollary 3.14. Let pu be a fuzzy set in G with Im(u) = {to, t1, ..., tn},
where tg >ty > ... >t,. If S C S C ... C S, = G are subquasi-
groups of G such that u(Sy) =ty for k=0,1,....,n, then p is a fuzzy
subquasigroup in G. o

Corollary 3.15. If Im(u) = {to,t1,....tn}, where tog > t1 > ... > tp,
is the tmage of a fuzzy subquasigroup p in G, then all levels p, are

subquasigroups of G such that p1(py,) = to and p(pe, \ p,_,) = ti for
k=1,2,...,n.

Proof. All 14, are subquasigroups by Proposition 3.5. Obviously
p(pe,) = to. Since p(py,) = ti, then p(x) = to for = € py and
p(z) =ty for © € py, \ f1e,. Repeating this procedure, we conclude
that w(ue, \ pe,_,) =tx for k=1,2,...,n. O

Proposition 3.16. Let G be a unipotent quasigroup. If p is a
fuzzy subquasigroup in G with the image Im(p) = {t; : i € I} and
Q={u:t€Im(u)}, then
(a) there erists a unique to € Im(u) such that to >t for all
t e Im(u),
(b) G is the set-theoretic union of all i € §2,
(c) the members of Q0 form a chain,
(d) Q contains all level subquasigroups of 1 iff p attains its
infimum on all subquasigroups of G.

Proof. (a) Follows from the fact that in a unipotent quasigroup to =
w(0) = p(z) for all x € G (see Proposition 3.3).

(b) If z € G, then p(x) = t(x) € Im(p). This implies € fy) C
U € G, where t € Im(u), which proves (b).

(c) Since pu, C py; <= t; > t; for i,j € I, then the set Q is
totally ordered by inclusion.
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(d) Suppose that Q contains all level subquasigroups of p. Let
S be a subquasigroup of G. If p is constant on S, then we are done.
Assume that p is not constant on AS. We consider two cases: (1)
S=G and (2) S C G. For S =G let § =inf Im(u). Then g <t €
Im(p), i.e. pg 2 g for all t € Im(p). But po = G € 2 because €2
contains all level subquasigroups of u. Hence there exists t' € Im(u)
such that py = G. It follows that pg D puy = G so that pg = py =G
because every level subquasigroup of u is a subquasigroup of G.

Now it sufficient to show that 8 =1t'. If 3 < t/, then there exists
t" € Im(p) such that g <t” < t'. This implies p O py = G, which
is a contradiction. Therefore § =1t € Im(u).

In the case S C G we consider the fuzzy set pug defined by

| a for ze€S,
us(ﬂf)—{o for xeG\S.

From the proof of our Proposition 3.6 it follows that ps is a fuzzy
subquasigroup of G.
Let
J={iel:uly) =t; for somey e S}

and Q¢ = {(us)y, : ¢ € J}. Noticing that Qg contains all level
subquasigroups of pg, then there exists zo € S such that p(zg) =
inf{us(z) : x € S}, which implies that p(zy) = {p(z) : © € S}. This
proves that p attains its infimum on all subquasigroups of G.

To prove the converse let pu, be a level subquasigroup of pu. If
a =t for some t € Im(u), then clearly p, € Q. If a # ¢ for all
t € Im(u), then there does not exist x € G such that u(x) = a.
Let S ={x € G: u(x) > a}. Obviously 6 € S. Let now z,y € S.
Then p(x) > a and p(y) > a. From the fact that p is a fuzzy
subquasigroup we obtain

p(x s+ y) 2 min{u(z), uly)} > a,

which proves xzxy € S forall x € {-,\,/}. Hence S is a subquasigroup.
By hypothesis, there exists y € S such that u(y) = inf{u(z) : x € S}.
But u(y) € Im(p) implies pu(y) = t' for some ¢ € Im(p). Hence
inf{u(z) : © € S} =t > a. Note that there does not exist z € G
such that o < p(z) < t’. This gives p, = py . Hence p, € 2. Thus
) contains all level subquasigroups of . O
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Proposition 3.17. Let G be a quasigroup such that every descending
chain S1 D So D ... of subquasigroups of G terminates at finite step.
If 1 is a fuzzy subquasigroup in G such that a sequence of elements
of Im(u) is strictly increasing, then p has finite number of values.

Proof. Assume that Im(p) is not finite. Let 0 < t; <ty < ... < 1
be a strictly increasing sequence of elements of Im(u). Then every
w; ={x € G : pu(xr) > t;} is a subquasigroup of G. For = € u; we have
p(x) = t; > t;_y, which implies = € p;—1. Thus u; C p;—. But for
ti—1 € Im(p) there exists z;_y € G such that p(x;—1) = t;—1. This
gives x; 1 € p;—1 and x;_1 & p; . Hence p; C p;—1, and so we obtain
a strictly descending chain gy D pug D ps D ... of subquasigroups,
which is not terminating. This contradiction completes the proof. O

Proposition 3.18. If every fuzzy subquasigroup p in G has the finite
image, then every descending chain of subquasigroup of G terminates
at finite step.

Proof. Suppose there exists a strictly descending chain
So DS D8 D ..

of subquasigroups of G which does not terminate at finite step. We
prove that p defined by

5 for x €S, \ Shy,
1 for xze€()S,

where n = 0,1,2,... and Sy = G, is a fuzzy subquasigroup with an
infinite number of values.

If x %y €()Sy, then obviously u(x*y) =1 > min{u(x), u(y)}.

If txy & ()Sh, then zxy € S, \ Syp11 for some p > 0. Since
z,y € (S, implies x *xy € (S, then at least one of z,y belongs
to some S; \ Si11. Let o € (S, and y € S; \ Si1, where ¢ < p.
The case t > p is impossible because gives x,y € S; and, in the
consequence, T *y € S; C S,41, which is a contradiction.

For t < p we have

p(z *y) = ]% > min{u(z), p(y)} = —-
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If exyeS,\Spr1, € 55\ Ssr1 and y € S\ Sei1, then s <p or
t < p. Indeed, s > p and t > p give x,y € S,, for m = min{s, t}.
Thus m > p and z*xy € S,, C Spy1, which is impossible. Hence
s<port<p and

o) = 2 > minfua), )} =min{ 2

p+1 s+17t+1
This proves that p is a fuzzy subquasigroup with an infinite number
of different values. Obtained contradiction completes our proof. O

Proposition 3.19. FEvery ascending chain of subquasigroups of a
quasigroup G terminates at finite step iff the set of values of any fuzzy
subquasigroup in G is a well-ordered subset of [0, 1].

Proof. 1f the set of values of a fuzzy subquasigroup p is not well-
ordered, then there exists a strictly decreasing sequence {t,} such
that ¢, = u(x,) for some z,, € G. But in this case subquasigroups
B, ={z € G: u(x) > t,} form a strictly ascending chain, which is a
contradiction.

To prove the converse suppose that there exist a strictly ascending

chain A; C Ay C Az C ... of subquasigroups. Then S = [(J A, isa
neN
subquasigroup of G and p defined by

M(@:{ for xS,

where k =min{n € N :z € A,}
is a fuzzy set on G.

We prove that p is a fuzzy subquasigroup. If ©x € S or y & 5,
then

e}

=

p(z *y) = min{p(x), p(y)} =0.
If z,y € S, then also x *y € S. Let m,n,p be minimal such that
x €Ay, ye A, and zxy € A, Obviously z,y,z *xy € Ai, where
k = max{m, n} > p. Thus
1

1
plrxy) =—2 -
p

7 = min{u(z), p(y)}.

This proves that p is a fuzzy subquasigroup. Since the chain of sub-
quasigroups A; C Ay C A3 C ... is not terminating, p has a strictly
descending sequence of values. This contradicts that the value set of
any fuzzy subquasigroup is well-ordered. The proof is complete. U
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4. Normal fuzzy subquasigroups

Definition 4.1. A fuzzy set p of G is said to be normal if there exists
x € G such that u(x) = 1.

A simple example of a normal fuzzy set is a characteristic function
X4, where A is a fixed subset of G.

Note that if p is a normal fuzzy subquasigroup of a unipotent
quasigroup G, then p(0) = 1, and hence in a unipotent quasigroup pu
is normal iff u(0) = 1.

Proposition 4.2. Given a fuzzy subquasigroup p of a unipotent quasi-
group G let p* be a fuzzy set in G defined by pt(x) = p(x) +1— pu(0)
for all x € G. Then " is a normal fuzzy subquasigroup of G which
contains (.

Proof. We have u™(0) = p(0) +1—p(@) =1 > pt(z) forall z € G.
Let z,y,z € G. Then

min{p ™ (z xy), p*(y)} = min{p(z xy) + 1 — p(0), u(y) + 1 — pu(0)}
= min{p(z *y), u(y)} + 1 — p(0)
Sp(zxy)+1—p(d)
= pt(z*y).

This shows that ut is a fuzzy subquasigroup of a unipotent quasigroup
G. Clearly u C pt, completing the proof. O

Corollary 4.3. Let i and put be as in the above Proposition. If there
is © € G such that u*(x) =0, then u(x) = 0.

Proof. Since u C p™, it is straightforward. O

It is clear that in a unipotent quasigroup a fuzzy set p is normal
iff ut = p.

Proposition 4.4. If u is a fuzzy subquasigroup of a unipotent quasi-
group G, then (ut)* = u*. Moreover if i is normal, then (u™)" = p.
Proof. Straightforward. o

Proposition 4.5. If p and v are fuzzy subquasigroups of a unipotent
quasigroup G such that p C v and p(0) = v(theta), then G, C G,.
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Proof. Let x € G,. Then v(z) > p(zr) = p) = v(f) and so
v(z) =v(0), ie., v € G,, proving G, C G,. O

Corollary 4.6. If in and v are normal fuzzy subquasigroups of a unipo-
tent quasigroups G such that p C v, then G, C G,. O

Proposition 4.7. Let i be a fuzzy subquasigroup of a unipotent quasi-
group G. If there exists a fuzzy subquasigroup v of G such that v C p,
then 1 1s normal.

Proof. Assume that there exists a fuzzy subquasigroup v such that
v C p. Then 1 = v(0) < u(theta), and so p(f) = 1 and we are
done. O

Denote by N(G) the set of all normal fuzzy subquasigroups of G.
Note that AV(G) is a poset under the set inclusion.

Proposition 4.8. Let o be a non-constant fuzzy subquasigroup of
a unipotent quasigroup G. If p is a maximal element of (N(G), C),
then p takes only the values 0 and 1.

Proof. Observe that p(f) = 1 since p is normal. Let x € G be such
that p(z) # 1. We claim that u(x) = 0. If not, then there exists
a € G such that 0 < p(a) < 1. Let v be a fuzzy set in G defined by
v(z) = 3(u(x) + p(a)) for all z € G. Then clearly v is well-defined,
and we have that for all z € G,

(u(x) + pla)) = v(@).

N —

A(0) = 5(u(0) + pla) = 51 + pla) >

Moreover, for any z,y € G we obtain

v(zxy) = §(ule*y) + pla)) = 5(min{u(z), w(y)} + p(a))
= min{3(u(z) + p(a)), 5(u(y) + pla))}
= min{v(z),v(y)}.

Hence v is a fuzzy subquasigroup of G. It follows from Proposition 4.2
that vt € N(G) where v is defined by v*(z) = v(z) + 1 — v(6) for
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all z € G. Clearly vt (z) > p(x) for all x € G. Note that
v(a) =v(a) +1-v(0)
(@) + pla)) +1 = 5(u(0) + pla))
(u(a) +1) > p(a)

and vT(a) < 1 =v"(0
maximal element of N/(

D= N |=

). Hence v* is non-constant, and x is not a
(). This is a contradiction. O

We construct a new fuzzy subquasigroup from old. Let ¢ > 0 be
a real number. If o € [0, 1], o' shall mean the positive root in case
t < 1. We define p' : G — [0,1] by p!(z) := (u(x))" for all x € G.

Proposition 4.9. If u is a fuzzy subquasigroup of a unipotent quasi-
group G, then so is p' and G = G,,.

Proof. For any z,y € G, we have u'(6) = (u(0))"
and

v
=
=
||
t@#
=

pi(xy) = (p(x*y))" 2 (min{u(z), p(y)})’
= min{(p(2))", (u(y))'} = min{p'(z), p'(y)}.
Hence p' is a fuzzy subquasigroup. Moreover
G = {w € G () = p(0)} = {z € G : (ul@))’ = (u(0))'}
={r e G: p(x) = p(theta)} = G,.
This completes the proof. U

Corollary 4.10. If u € N(G), then so is u'.
Proof. Straightforward. o

Definition 4.11. A fuzzy set p defined on G is called mazimal if it
is non-constant and p* is a maximal element of the poset (N(G), C).

Proposition 4.12. If i is a maximal fuzzy subquasigroup of a unipo-
tent quasigroup G, then

(i)  w is normal,

(ii)  p takes only the values 0 and 1,
(iil)  pa, = u,
(iv) G, is a mazimal subquasigroup.
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Proof. Let p be a maximal fuzzy subquasigroup. Then p* is a non-
constant maximal element of the poset (N(G),C). It follows from
Proposition 4.8 that u™ takes only the values 0 and 1. Note that
pt(z) =1 i p(z) = p(0), and pt(z) =0 iff p(z) = p(@) — 1. By
Corollary 4.3, we have u(x) = 0, that is, x(0) = 1. Hence p is normal,
and clearly ut = u. This proves (i) and (ii).

(iii) Clearly pg, € p and pug, takes only the values 0 and 1. Let
r € G. If u(x) = 0, then obviously  C pg,. If p(x) = 1, then z € G,
and so pq, (v) = 1. This shows that p C pg,.

(iv) G, is a proper subquasigroup because f is non-constant. Let
S be a subquasigroup of G such that G, C S. Noticing that, for any
subquasigroups A and B of G, A C B iff us C up, then we obtain
p = pg, S ps. Since p and pg are normal and since g = pt is a
maximal element of AV(G), we have that either u = pg or pug = 1
where 1 : G — [0, 1] is a fuzzy set defined by 1(z) =1 for all x € G.
The later case implies that S = G. If p = ug, then G, = G5 = S,
which follows from the prof of Proposition 4.6. This proves that G, is
a maximal subquasigroup of G, ending the proof. O

Definition 4.13. A normal fuzzy subquasigroup p of G is called com-
pletely normal if there exists x € G such that pu(xz) = 0. The set of all
completely normal fuzzy subquasigroups of G is denoted by C(G).

It is clear that C(G) € N(G). The restriction of the partial order-
ing C of N(G) gives a partial ordering of C(G).

Proposition 4.14. If G s a unipotent quasigroup, then any non-
constant mazimal element of (N (G), C) is also a mazimal element of

(C(G), ).

Proof. Let p be a non-constant maximal element of (MV(G),C). By
Proposition 4.8, i takes only the values 0 and 1, and so p(6) =1 and
p(z) =0 for some = € G. Hence p € C(G). Assume that there exists
v € C(G) such that p C v. Obviously p C v also in N(G). Since pu is
maximal in (N(G), C) and since v is non-constant, therefore u = v.
Thus p is maximal element of (C(G), C), ending the proof. O

Proposition 4.15. In a unipotent quasigroup every mazximal fuzzy
subquasigroup is completely normal.
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Proof. Let p be a maximal fuzzy subquasigroup. By Proposition 4.12
w is normal and p = T takes only the values 0 and 1. Since p is
non-constant, it follows that ©(#) =1 and p(z) =0 for some z € G,
which completes the proof. O

Proposition 4.16. Let p be a fuzzy subquasigroup of a unipotent
quasigroup G . If f: [0, u(0)] — [0,1] is an increasing function, then

a fuzzy set py defined on G by pe(x) = f(u(x)) is a fuzzy quasigroup.
Moreover,

a) if f(u(0)) =1, then py is normal,
b) if f(t) =t forall t < p(f), then p C puy.
Proof. Since f is increasing, then for all z,y € G we have

pp(xxy) = f(p(zxy)) = fmin{u(z), puly)})
= min{f(u(z)), f(u(y))}
= min{ys(2), pe(y)} -
This proves that py is a fuzzy subquasigroup.
If f(u(f)) =1, then clearly p; is normal.

If f(t) >t forall t < p(f), then pu(zr) < f(u(x)) = py(z) for all
x € G, which implies p C py. a
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