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Fuzzy subquasigroups

Wiesªaw A. Dudek

Abstract

Our work in this paper is concerned with the fuzzi�cation of subasigroups in quasi-
groups. We investigate the connection between normal, maximal and completely
normal fuzzy subquasigroups in unipotent quasigroups.

1. Introduction
Following the introduction of fuzzy sets by Zadeh [10], the fuzzy set
theory developed by Zadeh himself and others have found many appli-
cations in the domain of mathematics and elsewhere. For example, in
[7] are studied fuzzy subrings as well as fuzzy ideals in rings. Properties
of some fuzzy ideals in semirings are investigated in [6]. Very similar
results for some fuzzy ideals in BCI-algebras are proved in [5]. Con-
nections between fuzzy groups and so-called level subgroups are �nd
in [2], [3] and [9]. These algebras (i.e., rings, groups, BCI-algebras)
are not similar, but used methods are very similar.

In this note some modi�cations of these methods will be applied
to quasigroups.

2. Preliminaries
As it is well known a groupoid (G, ·) is called a quasigroup if each of
the equations ax = b, xa = b has a unique solution for any a, b ∈ G.
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A quasigroup (G, ·) may be also de�ned as an algebra (G, ·, \, /) with
the three binary operations ·, \, / satisfying the identities

(xy)/y = x, x \ (xy) = y, (x/y)y = x, x(x \ y) = y

(cf. [1] or [8]). We say also that (G, ·, \, /) is an equasigroup (i.e.
equationally de�nable quasigroup) [8] or a primitive quasigroup [1].

The equasigroup (G, ·, \, /) corresponds to quasigroup (G, ·) where
x \ y = z ⇐⇒ xz = y, x/y = z ⇐⇒ zy = x.

In the theory of quasigroups, so-called unipotent quasigroups, i.e.,
quasigroups with the identity xx = yy, play an important role. These
quasigroups are connected with Latin squares which have one �xed
element in the diagonal (cf. [4]). Such quasigroups may be de�ned
as quasigroups G with the special element θ satisfying the identity
xx = θ. Obviously, θ is uniquely determined and it is an idempotent,
but, in general, it is not the (left, right) neutral element.

A nonempty subset S of a quasigroup G = (G, ·, \, /) is called a
subquasigroup it is closed with respect to these three operations, i.e.,
if x ∗ y ∈ G for all ∗ ∈ {·, \, /} and x, y ∈ G.

A function µ : G → [0, 1] is called a fuzzy set in a quasigroup G.
The set µt = {x ∈ G : µ(x) > t}, where t ∈ [0, 1] is �xed, is called
a level subset of µ. The set {x ∈ G : µ(x) = µ(θ) }, where G is a
unipotent quasigroup, is denoted by Gµ. Im(µ) denotes the image
set of µ .

Let µ and ρ be two fuzzy set de�ned on G. According to [10]
we say that µ is contained in ρ , and denote this fact by µ ⊆ ρ , i�
µ(x) 6 ρ(x) for all x ∈ G. Obviously µ = ρ i� µ(x) = ρ(x) for all
x ∈ G.

3. Fuzzy subquasigroups
De�nition 3.1. A fuzzy set µ in a quasigroup G = (G, ·, \, /) is called
a fuzzy subquasigroup of G if

min{µ(xy), µ(x \ y), µ(x/y)} > min{µ(x), µ(y)} ∀x, y ∈ G .

It is clear, that this de�nition is equivalent to the following
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De�nition 3.2. A fuzzy set µ in a quasigroup G = (G, ·, \, /) is a
fuzzy subquasigroup of G if

µ(x ∗ y) > min{µ(x), µ(y)}

for all ∗ ∈ {·, \, /} and x, y ∈ G.
Proposition 3.3. If µ is a fuzzy subquasigroup of a unipotent quasi-
group (G, ·, \, /, θ), then µ(θ) > µ(x) for any x ∈ G.
Proof. Since xx = θ for any x ∈ G, then

µ(θ) = µ(xx) > min{µ(x), µ(x)} = µ(x),

which completes the proof.

Proposition 3.4. If µ is a fuzzy subquasigroup of a quasigroup G,
then for all x, y ∈ G we have

(a) min{µ(x ∗ y), µ(x)} = min{µ(x ∗ y), µ(y)} = min{µ(x), µ(y)},
(b) µ(x) < µ(y) implies µ(x ∗ y) = µ(x),
(c) µ(x) > µ(y) implies µ(x ∗ y) = µ(y),
(d) µ(x) 6= µ(y) implies µ(x ∗ y) = min{µ(x), µ(y)}.

Proof. (a) At �rst we consider the case x ∗ y = xy. Since (xy)/y = x
for all x, y ∈ G, then
min{µ(xy), µ(y)}> min{min{µ(x), µ(y)}, µ(y)}

= min{µ(x), µ(y)} = min{µ((xy)/y), µ(y)}
> min{min{µ(xy), µ(y)}, µ(y)} = min{µ(xy), µ(y)},

which proves that
min{µ(xy), µ(y)} = min{µ(x), µ(y)}.

In the similar way, using x \ (xy) = y, we prove the second identity.
Thus (a) holds for x ∗ y = xy.

Now let x ∗ y = x \ y. As in the previous case it is not di�cult to
see that

min{µ(x \ y), µ(x)} > min{µ(x), µ(y)}.
Since y = x(x \ y) for all x, y ∈ G, then
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min{µ(x), µ(y)} = min{µ(x), µ(x(x \ y))}
> min{µ(x), min{µ(x), µ(x \ y)}}
= min{µ(x \ y), µ(x)} ,

which gives
min{µ(x \ y), µ(x)} = min{µ(x), µ(y)}.

At is well known x \ y = z ⇐⇒ xz = y. Thus, applying this fact to
(a), where x ∗ y = xy, we obtain

min{µ(x \ y), µ(y)} = min{µ(z), µ(xz)} = min{µ(z), µ(x)}
= min{µ(x \ y), µ(x)} = min{µ(x), µ(y)}.

Hence (a) holds also in the case x ∗ y = x \ y.

If x ∗ y = x/y then min{µ(x/y), µ(y)} > min{µ(x), µ(y)} by
the assumption on µ. Thus, using the identity x = (x/y)y, we get

min{µ(x), µ(y)} = min{µ((x/y)y), µ(y)}
> min{min{µ(x/y), µ(y)}, µ(y)}
= min{µ(x/y), µ(y)}

.

Hence
min{µ(x/y), µ(y)} = min{µ(x), µ(y)}.

Since, by the de�nition, xy = u ⇐⇒ uy = x, then, as in the previous
case, we obtain

min{µ(x/y), µ(x)} = min{µ(u) µ(uy)} = min{µ(u), µ(y)}
= min{µ(x/y), µ(y)} = min{µ(x), µ(y)},

which completes the proof of (a).

(b) Let µ(x) < µ(y). Then from (a) we get
min{µ(x ∗ y), µ(y)} = min{µ(x), µ(y)} = µ(x).

This implies µ(x ∗ y) = µ(x).
(c) similarly as (b).
(d) is an immediate consequence of (b) and (c).

Proposition 3.5. A fuzzy set µ of a quasigroup G = (G, ·, \, /) is
a fuzzy subquasigroup i� for every t ∈ [0, 1], µt is either empty or a
subquasigroup of G.
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Proof. If µ is a fuzzy subquasigroup of G and µt 6= ∅, then for any
x, y ∈ µt we have µ(x) > t, µ(y) > t. Thus

µ(x ∗ y) > min{µ(x), µ(y)} > t

for any ∗ ∈ {·, \, /}, which implies x ∗ y ∈ µt. This proves that µt is
a subquasigroup of G.

Conversely, let x, y ∈ G and t = min{µ(x), µ(y)}. Then, by the
assumption, µt is a subquasigroup of G, which gives x∗y ∈ µt. Hence
µ(x ∗ y) > t = min{µ(x), µ(y)}. Thus µ is a fuzzy subquasigroup of a
quasigroup G.
Proposition 3.6. Any subquasigroup of a quasigroup G can be real-
ized as a level subquasigroup of some fuzzy subquasigroup of G.
Proof. Let S be a subquasigroup of a given quasigroup G and let µ
be a fuzzy set in G de�ned by

µ(x) =

{
t if x ∈ S,
s if x 6∈ S,

where 0 6 s < t 6 1 are �xed. It is clear that µt = S.
We prove that such de�ned µ is a fuzzy subquasigroup of G. Let

x, y ∈ G. If x, y ∈ S, then also x ∗ y ∈ S. Hence µ(x) = µ(y) =
µ(x∗y) = t and µ(x∗y) > min{µ(x), µ(y)}. If x, y 6∈ S, then µ(x) =
µ(y) = s, and, in the consequence, µ(x ∗ y) > min{µ(x), µ(y)} = s. If
at most one of x, y belongs to S, then at least one of µ(x) and µ(y)
is equal to t. Therefore min{µ(x), µ(y)} = s and µ(x∗y) > s, which
completes the proof.

Proposition 3.7. Two level subquasigroups µs, µt (s < t) of a fuzzy
subquasigroup are equal i� there is no x ∈ G such that s 6 µ(x) < t.
Proof. Let µs = µt for some s < t. If there exists x ∈ G such
that s 6 µ(x) < t, then µt is a proper subset of µs, which is a
contradiction. Conversely assume that there is no x ∈ G such that
s 6 µ(x) < t. If x ∈ µs, then µ(x) > s, and so µ(x) > t, because
µ(x) does not lie between s and t. Thus x ∈ µt, which gives µs ⊆ µt.
The converse inclusion is obvious since s < t. Therefore µs = µt.
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From the above theorem it follows that the set of all level subquasi-
groups of a given fuzzy quasigroup µ of G is linearly ordered. If G is a
unipotent quasigroup, then µt0 , where t0 = µ(θ), is the smallest level
subquasigroup (because µ(x) 6 µ(θ) for all x ∈ G). In this case we
have the chain

µt0 ⊂ µt1 ⊂ ... ⊂ µtp = G,
where t0 > t1 > ... > tp.

Corollary 3.8. Let µ be a fuzzy subquasigroup of G. If Im(µ) =
{t1, t2, ..., tn}, where t1 < t2 < ... < tn, then the family of levels µti,
1 6 i 6 n, constitutes all the level subquasigroups of µ.

Proof. Let µs, where s ∈ [0, 1] and s 6∈ Im(µ), be a some level
subquasigroups. If s < t1, then µt1 ⊆ µs. Since µt1 = G, it follows
that µs = G and µs = µt1 . If ti < s < ti+1, then there is no x ∈ G
such that s 6 µ(x) < µti+1

. Thus µs = µti+1
, by Proposition 3.7.

Obviously µs = ∅ for s > tn. This proves that for any s ∈ [0, 1] µs is
either empty or belongs to {µti : 1 6 i 6 n}.

The construction used in the proof of Proposition 3.6 shows that
two di�erent fuzzy subquasigroups may have an identical family of
level subquasigroups. For example, only S and G \ S.

Proposition 3.9. Let µ be a fuzzy subquasigroup with �nite image.
If µs = µt for some s, t ∈ Im(µ), then s = t.

Proof. Without loss of generality, let s < t. Since s ∈ Im(µ), then
there exists x ∈ G such that µ(x) = s < t, and so x ∈ µs and x 6∈ µt,
which is a contradiction.

Proposition 3.10. Let µ and ρ be two fuzzy subquasigroups of a
quasigroup G with identical family of level subquasigroups. If Im(µ) =
{t1, ..., tn} and Im(ρ) = {s1, ..., sm}, where t1 > t2 > ... > tn and
s1 > s2 > ... > sm, then

a) m = n,
b) µti = ρsi

for i = 1, ..., n,
c) if µ(x) = ti, then ρ(x) = si for x ∈ G and i = 1, ..., n.
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Proof. (a) By Corollary 3.8 fuzzy subquasigroups µ and ρ have (re-
spectively) the only {µti} and {ρsi

} as the families of level subquasi-
groups. Since, by the assumption, these families are identical, then
m = n.
(b) Follows from Corollary 3.8 and Proposition 3.7.
(c) Let x ∈ G be such that µ(x) = ti and ρ(x) = sj. From (b)
and µ(x) = ti follows x ∈ ρsi

. Thus ρ(x) > si and sj > si, i.e.
ρsj

⊆ ρsi
. Since x ∈ ρsj

= µtj , we obtain ti = µ(x) > tj. This gives
µti ⊆ µtj , and, in the consequence (by (b)) ρsi

= µti ⊆ µtj = ρsj
.

Thus ρsi
= ρsj

. But, by Proposition 3.9, si = sj. Hence ρ(x) = si.

Proposition 3.11. Let µ and ρ be two fuzzy subquasigroups of G
with identical family of levels. Then µ = ρ i� Im(µ) = Im(ρ).

Proof. Let Im(µ) = Im(ρ) = {s1, ..., sn} and s1 > ....sn. By Propo-
sition 3.10 for any x ∈ G there exists si such that µ(x) = si = ρ(x).
Thus µ(x) = ρ(x) for all x ∈ G, which gives µ = ρ.

Proposition 3.12. Let {St : t ∈ T}, where ∅ 6= T ⊆ [0, 1], be a
collection of subquasigroups of a quasigroup G such that

(i) G =
⋃
t∈T

St,

(ii) s > t ⇐⇒ Ss ⊂ St for all s, t ∈ T .

Then µ de�ned by
µ(x) = sup{t ∈ T : x ∈ St}

is a fuzzy subquasigroup of G.
Proof. By Proposition 3.5, it is su�cient to show that every nonempty
level µs is a subquasigroup of G. Assume µs 6= ∅ for some �xed
s ∈ [0, 1]. Then

s = sup{t ∈ T : t < s} = sup{t ∈ T : Ss ⊂ St}
or

s 6= sup{t ∈ T : t < s} = sup{t ∈ T : Ss ⊂ St}.
In the �rst case we have µs =

⋂
t<s

St, because

x ∈ µs ⇐⇒ x ∈ St for all t < s ⇐⇒ x ∈ ⋂
t<s

St .

In the second, there exists ε > 0 such that (s−ε, s)∩T = ∅. We prove
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that in this case µs =
⋃
t>s

St. Indeed, if x ∈ ⋃
t>s

St, then x ∈ St for

some t > s, which gives µ(x) > t > s. Thus x ∈ µs, i.e.
⋃
t>s

St ⊆ µs.

Conversely, if x 6∈ ⋃
t>s

St, then x 6∈ St for all t > s, which implies
that x 6∈ St for all t > s − ε, i.e. if x ∈ St then t 6 s − ε. Thus
µ(x) 6 s − ε. Therefore x 6∈ µs. Hence µs ⊆

⋃
t>s

St, and in the con-

sequence µs =
⋃
t>s

St. This completes our proof because (as it is not

di�cult to see)
⋃
t>s

St and
⋂
t<s

St are subquasigroups.

Proposition 3.13. Let µ be a fuzzy set in G and let Im(µ) =
{t0, t1, ..., tn}, where t0 > t1 > ... > tn. If S0 ⊂ S1 ⊂ ... ⊂ Sn = G
are subquasigroups of G such that µ(Sk \Sk−1) = tk for k = 0, 1, ..., n,
where S−1 = ∅, then µ is a fuzzy subquasigroup.
Proof. Let x, y be an arbitrary elements of G. For any �xed op-
eration ∗ ∈ {·, \, / } there exists only one k = 0, 1, ..., n such that
x ∗ y ∈ Sk \ Sk−1 ( k depends on x, y and ∗ ).

We consider the following four cases:
1o x ∗ y ∈ Sk \ Sk−1, x, y ∈ Sk \ Sk−1 ,

2o x ∗ y ∈ Sk \ Sk−1, x, y 6∈ Sk \ Sk−1 ,

3o x ∗ y, x ∈ Sk \ Sk−1, y 6∈ Sk \ Sk−1 ,

4o x ∗ y, y ∈ Sk \ Sk−1, x 6∈ Sk \ Sk−1 .

In the �rst case we have µ(x ∗ y) = µ(x) = µ(y) = tk. Hence

µ(x ∗ y) = tk = min{µ(x), µ(y)} .

In the second case there exist m 6= k and n 6= k such that x ∈
Sm \ Sm−1 and y ∈ Sn \ Sn−1. Without loss of generality, we can
assume m 6 n.

If m 6 n < k, then Sm ⊆ Sn ⊆ Sk−1 ⊂ Sk and x, y ∈ Sn. Thus
x ∗ y ∈ Sn ⊆ Sk−1, which is impossible.

If m < k < n, then x, x ∗ y ∈ Sk ⊆ Sn−1 ⊂ Sn, which for
x ∗ y = xy gives y = x \ (xy) ∈ Sk. This is a contradiction. The case
when x ∗ y = x \ y = u also is impossible because, by the assumption
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and the de�nition of \ we have y = xu ∈ Sk. If x ∗ y = x/y = v.
Then vy = x implies y ∈ Sk. A contradiction.

Thus must be k < m 6 n. Hence µ(x ∗ y) = tk , µ(x) = tm ,
µ(y) = tn and, in the consequence,

µ(x ∗ y) = tk > tn = min{µ(x), µ(y)}.

The last two cases are obvious.

Corollary 3.14. Let µ be a fuzzy set in G with Im(µ) = {t0, t1, ..., tn},
where t0 > t1 > ... > tn. If S0 ⊂ S1 ⊂ ... ⊂ Sn = G are subquasi-
groups of G such that µ(Sk) > tk for k = 0, 1, ..., n, then µ is a fuzzy
subquasigroup in G.
Corollary 3.15. If Im(µ) = {t0, t1, ..., tn}, where t0 > t1 > ... > tn,
is the image of a fuzzy subquasigroup µ in G, then all levels µtk are
subquasigroups of G such that µ(µt0) = t0 and µ(µtk \ µtk−1

) = tk for
k = 1, 2, ..., n.
Proof. All µtk are subquasigroups by Proposition 3.5. Obviously
µ(µt0) = t0. Since µ(µt1) > t1, then µ(x) = t0 for x ∈ µt0 and
µ(x) = t1 for x ∈ µt0 \ µt1 . Repeating this procedure, we conclude
that µ(µtk \ µtk−1

) = tk for k = 1, 2, ..., n.

Proposition 3.16. Let G be a unipotent quasigroup. If µ is a
fuzzy subquasigroup in G with the image Im(µ) = {ti : i ∈ I} and
Ω = {µt : t ∈ Im(µ)} , then

(a) there exists a unique t0 ∈ Im(µ) such that t0 > t for all
t ∈ Im(µ),

(b) G is the set-theoretic union of all µt ∈ Ω,
(c) the members of Ω form a chain,
(d) Ω contains all level subquasigroups of µ i� µ attains its

in�mum on all subquasigroups of G.
Proof. (a) Follows from the fact that in a unipotent quasigroup t0 =
µ(θ) > µ(x) for all x ∈ G (see Proposition 3.3).

(b) If x ∈ G, then µ(x) = t(x) ∈ Im(µ). This implies x ∈ µt(x) ⊆⋃
µt ⊆ G, where t ∈ Im(µ), which proves (b).
(c) Since µti ⊆ µtj ⇐⇒ ti > tj for i, j ∈ I, then the set Ω is

totally ordered by inclusion.



90 W. A. Dudek

(d) Suppose that Ω contains all level subquasigroups of µ. Let
S be a subquasigroup of G. If µ is constant on S, then we are done.
Assume that µ is not constant on AS. We consider two cases: (1)
S = G and (2) S ⊂ G. For S = G let β = inf Im(µ). Then β 6 t ∈
Im(µ), i.e. µβ ⊇ µt for all t ∈ Im(µ). But µ0 = G ∈ Ω because Ω
contains all level subquasigroups of µ. Hence there exists t′ ∈ Im(µ)
such that µt′ = G. It follows that µβ ⊃ µt′ = G so that µβ = µt′ = G
because every level subquasigroup of µ is a subquasigroup of G.

Now it su�cient to show that β = t′. If β < t′, then there exists
t′′ ∈ Im(µ) such that β ≤ t′′ < t′. This implies µt′′ ⊃ µt′ = G, which
is a contradiction. Therefore β = t′ ∈ Im(µ).

In the case S ⊂ G we consider the fuzzy set µS de�ned by

µS(x) =

{
α for x ∈ S,
0 for x ∈ G \ S.

From the proof of our Proposition 3.6 it follows that µA is a fuzzy
subquasigroup of G.

Let
J = {i ∈ I : µ(y) = ti for some y ∈ S}

and ΩS = {(µS)ti : i ∈ J}. Noticing that ΩS contains all level
subquasigroups of µS, then there exists x0 ∈ S such that µ(x0) =
inf{µS(x) : x ∈ S}, which implies that µ(x0) = {µ(x) : x ∈ S}. This
proves that µ attains its in�mum on all subquasigroups of G.

To prove the converse let µα be a level subquasigroup of µ. If
α = t for some t ∈ Im(µ), then clearly µα ∈ Ω. If α 6= t for all
t ∈ Im(µ), then there does not exist x ∈ G such that µ(x) = α.
Let S = {x ∈ G : µ(x) > α}. Obviously θ ∈ S. Let now x, y ∈ S.
Then µ(x) > α and µ(y) > α. From the fact that µ is a fuzzy
subquasigroup we obtain

µ(x ∗ y) > min{µ(x), µ(y)} > α ,

which proves x∗y ∈ S for all ∗ ∈ {·, \, /}. Hence S is a subquasigroup.
By hypothesis, there exists y ∈ S such that µ(y) = inf{µ(x) : x ∈ S}.
But µ(y) ∈ Im(µ) implies µ(y) = t′ for some t′ ∈ Im(µ). Hence
inf{µ(x) : x ∈ S} = t′ > α. Note that there does not exist z ∈ G
such that α ≤ µ(z) < t′. This gives µα = µt′ . Hence µα ∈ Ω. Thus
Ω contains all level subquasigroups of µ.
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Proposition 3.17. Let G be a quasigroup such that every descending
chain S1 ⊃ S2 ⊃ ... of subquasigroups of G terminates at �nite step.
If µ is a fuzzy subquasigroup in G such that a sequence of elements
of Im(µ) is strictly increasing, then µ has �nite number of values.

Proof. Assume that Im(µ) is not �nite. Let 0 6 t1 < t2 < ... 6 1
be a strictly increasing sequence of elements of Im(µ). Then every
µi = {x ∈ G : µ(x) > ti} is a subquasigroup of G. For x ∈ µi we have
µ(x) > ti > ti−1, which implies x ∈ µi−1 . Thus µi ⊆ µi−1 . But for
ti−1 ∈ Im(µ) there exists xi−1 ∈ G such that µ(xi−1) = ti−1 . This
gives xi−1 ∈ µi−1 and xi−1 6∈ µi . Hence µi ⊂ µi−1 , and so we obtain
a strictly descending chain µ1 ⊃ µ2 ⊃ µ3 ⊃ ... of subquasigroups,
which is not terminating. This contradiction completes the proof.

Proposition 3.18. If every fuzzy subquasigroup µ in G has the �nite
image, then every descending chain of subquasigroup of G terminates
at �nite step.

Proof. Suppose there exists a strictly descending chain
S0 ⊃ S1 ⊃ S2 ⊃ ...

of subquasigroups of G which does not terminate at �nite step. We
prove that µ de�ned by

µ(x) =

{ n
n+1

for x ∈ Sn \ Sn+1,

1 for x ∈ ⋂
Sn,

where n = 0, 1, 2, ... and S0 = G, is a fuzzy subquasigroup with an
in�nite number of values.

If x ∗ y ∈ ⋂
Sn, then obviously µ(x ∗ y) = 1 > min{µ(x), µ(y)}.

If x ∗ y 6∈ ⋂
Sn, then x ∗ y ∈ Sp \ Sp+1 for some p > 0. Since

x, y ∈ ⋂
Sn implies x ∗ y ∈ ⋂

Sn then at least one of x, y belongs
to some St \ St+1 . Let x ∈ ⋂

Sn and y ∈ St \ St+1, where t 6 p.
The case t > p is impossible because gives x, y ∈ St and, in the
consequence, x ∗ y ∈ St ⊆ Sp+1, which is a contradiction.

For t 6 p we have

µ(x ∗ y) =
p

p + 1
> min{µ(x), µ(y)} =

t

t + 1
.
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If x ∗ y ∈ Sp \ Sp+1, x ∈ Ss \ Ss+1 and y ∈ St \ St+1 , then s 6 p or
t 6 p. Indeed, s > p and t > p give x, y ∈ Sm for m = min{s, t}.
Thus m > p and x ∗ y ∈ Sm ⊂ Sp+1, which is impossible. Hence
s 6 p or t 6 p and

µ(x ∗ y) =
p

p + 1
> min{µ(x), µ(y)} = min

{
s

s + 1
,

t

t + 1

}
.

This proves that µ is a fuzzy subquasigroup with an in�nite number
of di�erent values. Obtained contradiction completes our proof.

Proposition 3.19. Every ascending chain of subquasigroups of a
quasigroup G terminates at �nite step i� the set of values of any fuzzy
subquasigroup in G is a well-ordered subset of [0, 1].
Proof. If the set of values of a fuzzy subquasigroup µ is not well-
ordered, then there exists a strictly decreasing sequence {tn} such
that tn = µ(xn) for some xn ∈ G. But in this case subquasigroups
Bn = {x ∈ G : µ(x) > tn} form a strictly ascending chain, which is a
contradiction.

To prove the converse suppose that there exist a strictly ascending
chain A1 ⊂ A2 ⊂ A3 ⊂ ... of subquasigroups. Then S =

⋃
n∈N

An is a
subquasigroup of G and µ de�ned by

µ(x) =

{
0 for x 6∈ S ,
1
k

where k = min{n ∈ N : x ∈ An}
is a fuzzy set on G.

We prove that µ is a fuzzy subquasigroup. If x 6∈ S or y 6∈ S,
then

µ(x ∗ y) > min{µ(x), µ(y)} = 0 .

If x, y ∈ S, then also x ∗ y ∈ S. Let m,n, p be minimal such that
x ∈ Am, y ∈ An and x ∗ y ∈ Ap. Obviously x, y, x ∗ y ∈ Ak, where
k = max{m, n} > p. Thus

µ(x ∗ y) =
1

p
> 1

k
= min{µ(x), µ(y)} .

This proves that µ is a fuzzy subquasigroup. Since the chain of sub-
quasigroups A1 ⊂ A2 ⊂ A3 ⊂ ... is not terminating, µ has a strictly
descending sequence of values. This contradicts that the value set of
any fuzzy subquasigroup is well-ordered. The proof is complete.
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4. Normal fuzzy subquasigroups
De�nition 4.1. A fuzzy set µ of G is said to be normal if there exists
x ∈ G such that µ(x) = 1.

A simple example of a normal fuzzy set is a characteristic function
χA , where A is a �xed subset of G.

Note that if µ is a normal fuzzy subquasigroup of a unipotent
quasigroup G, then µ(θ) = 1, and hence in a unipotent quasigroup µ
is normal i� µ(θ) = 1.

Proposition 4.2. Given a fuzzy subquasigroup µ of a unipotent quasi-
group G let µ+ be a fuzzy set in G de�ned by µ+(x) = µ(x)+ 1−µ(θ)
for all x ∈ G. Then µ+ is a normal fuzzy subquasigroup of G which
contains µ.
Proof. We have µ+(θ) = µ(θ) + 1 − µ(θ) = 1 > µ+(x) for all x ∈ G.
Let x, y, z ∈ G. Then

min{µ+(x ∗ y), µ+(y)} = min{µ(x ∗ y) + 1− µ(θ), µ(y) + 1− µ(θ)}
= min{µ(x ∗ y), µ(y)}+ 1− µ(θ)
6 µ(x ∗ y) + 1− µ(θ)
= µ+(x ∗ y).

This shows that µ+ is a fuzzy subquasigroup of a unipotent quasigroup
G. Clearly µ ⊆ µ+, completing the proof.

Corollary 4.3. Let µ and µ+ be as in the above Proposition. If there
is x ∈ G such that µ+(x) = 0, then µ(x) = 0.
Proof. Since µ ⊆ µ+, it is straightforward.

It is clear that in a unipotent quasigroup a fuzzy set µ is normal
i� µ+ = µ.
Proposition 4.4. If µ is a fuzzy subquasigroup of a unipotent quasi-
group G, then (µ+)+ = µ+. Moreover if µ is normal, then (µ+)+ = µ.
Proof. Straightforward.

Proposition 4.5. If µ and ν are fuzzy subquasigroups of a unipotent
quasigroup G such that µ ⊆ ν and µ(θ) = ν(theta), then Gµ ⊆ Gν.
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Proof. Let x ∈ Gµ. Then ν(x) > µ(x) = µ(θ) = ν(θ) and so
ν(x) = ν(θ), i.e., x ∈ Gν , proving Gµ ⊆ Gν .

Corollary 4.6. If µ and ν are normal fuzzy subquasigroups of a unipo-
tent quasigroups G such that µ ⊆ ν, then Gµ ⊆ Gν .

Proposition 4.7. Let µ be a fuzzy subquasigroup of a unipotent quasi-
group G. If there exists a fuzzy subquasigroup ν of G such that ν+ ⊆ µ,
then µ is normal.
Proof. Assume that there exists a fuzzy subquasigroup ν such that
ν+ ⊆ µ. Then 1 = ν+(θ) 6 µ(theta), and so µ(θ) = 1 and we are
done.

Denote by N (G) the set of all normal fuzzy subquasigroups of G.
Note that N (G) is a poset under the set inclusion.
Proposition 4.8. Let µ be a non-constant fuzzy subquasigroup of
a unipotent quasigroup G. If µ is a maximal element of (N (G),⊆),
then µ takes only the values 0 and 1.
Proof. Observe that µ(θ) = 1 since µ is normal. Let x ∈ G be such
that µ(x) 6= 1. We claim that µ(x) = 0. If not, then there exists
a ∈ G such that 0 < µ(a) < 1. Let ν be a fuzzy set in G de�ned by
ν(x) := 1

2
(µ(x) + µ(a)) for all x ∈ G. Then clearly ν is well-de�ned,

and we have that for all x ∈ G,

ν(θ) =
1

2
(µ(θ) + µ(a)) =

1

2
(1 + µ(a)) > 1

2
(µ(x) + µ(a)) = ν(x).

Moreover, for any x, y ∈ G we obtain

ν(x ∗ y) = 1
2
(µ(x ∗ y) + µ(a)) > 1

2
(min{µ(x), µ(y)}+ µ(a))

= min{1
2
(µ(x) + µ(a)), 1

2
(µ(y) + µ(a))}

= min{ν(x), ν(y)}.

Hence ν is a fuzzy subquasigroup of G. It follows from Proposition 4.2
that ν+ ∈ N (G) where ν+ is de�ned by ν+(x) = ν(x) + 1 − ν(θ) for
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all x ∈ G. Clearly ν+(x) > µ(x) for all x ∈ G. Note that
ν+(a) = ν(a) + 1− ν(θ)

= 1
2
(µ(a) + µ(a)) + 1− 1

2
(µ(θ) + µ(a))

= 1
2
(µ(a) + 1) > µ(a)

and ν+(a) < 1 = ν+(θ). Hence ν+ is non-constant, and µ is not a
maximal element of N (G). This is a contradiction.

We construct a new fuzzy subquasigroup from old. Let t > 0 be
a real number. If α ∈ [0, 1], αt shall mean the positive root in case
t < 1. We de�ne µt : G → [0, 1] by µt(x) := (µ(x))t for all x ∈ G.
Proposition 4.9. If µ is a fuzzy subquasigroup of a unipotent quasi-
group G, then so is µt and Gµt = Gµ.
Proof. For any x, y ∈ G, we have µt(θ) = (µ(θ))t > (µ(x))t = µt(x)
and

µt(x ∗ y) = (µ(x ∗ y))t > (min{µ(x), µ(y)})t

= min{(µ(x))t, (µ(y))t} = min{µt(x), µt(y)}.
Hence µt is a fuzzy subquasigroup. Moreover

Gµt = {x ∈ G : µt(x) = µt(θ)} = {x ∈ G : (µ(x))t = (µ(θ))t}
= {x ∈ G : µ(x) = µ(theta)} = Gµ .

This completes the proof.

Corollary 4.10. If µ ∈ N (G), then so is µt.
Proof. Straightforward.

De�nition 4.11. A fuzzy set µ de�ned on G is called maximal if it
is non-constant and µ+ is a maximal element of the poset (N (G),⊆).
Proposition 4.12. If µ is a maximal fuzzy subquasigroup of a unipo-
tent quasigroup G, then

(i) µ is normal,
(ii) µ takes only the values 0 and 1,
(iii) µGµ = µ,
(iv) Gµ is a maximal subquasigroup.
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Proof. Let µ be a maximal fuzzy subquasigroup. Then µ+ is a non-
constant maximal element of the poset (N (G),⊆). It follows from
Proposition 4.8 that µ+ takes only the values 0 and 1. Note that
µ+(x) = 1 i� µ(x) = µ(θ), and µ+(x) = 0 i� µ(x) = µ(θ) − 1. By
Corollary 4.3, we have µ(x) = 0, that is, µ(θ) = 1. Hence µ is normal,
and clearly µ+ = µ. This proves (i) and (ii).

(iii) Clearly µGµ ⊆ µ and µGµ takes only the values 0 and 1. Let
x ∈ G. If µ(x) = 0, then obviously µ ⊆ µGµ . If µ(x) = 1, then x ∈ Gµ,
and so µGµ(x) = 1. This shows that µ ⊆ µGµ .

(iv) Gµ is a proper subquasigroup because µ is non-constant. Let
S be a subquasigroup of G such that Gµ ⊆ S. Noticing that, for any
subquasigroups A and B of G, A ⊆ B i� µA ⊆ µB, then we obtain
µ = µGµ ⊆ µS. Since µ and µS are normal and since µ = µ+ is a
maximal element of N (G), we have that either µ = µS or µS = 1
where 1 : G → [0, 1] is a fuzzy set de�ned by 1(x) = 1 for all x ∈ G.
The later case implies that S = G. If µ = µS, then Gµ = GµS

= S,
which follows from the prof of Proposition 4.6. This proves that Gµ is
a maximal subquasigroup of G, ending the proof.

De�nition 4.13. A normal fuzzy subquasigroup µ of G is called com-
pletely normal if there exists x ∈ G such that µ(x) = 0. The set of all
completely normal fuzzy subquasigroups of G is denoted by C(G).

It is clear that C(G) ⊆ N (G). The restriction of the partial order-
ing ⊆ of N (G) gives a partial ordering of C(G).
Proposition 4.14. If G is a unipotent quasigroup, then any non-
constant maximal element of (N (G),⊆) is also a maximal element of
(C(G),⊆).
Proof. Let µ be a non-constant maximal element of (N (G),⊆). By
Proposition 4.8, µ takes only the values 0 and 1, and so µ(θ) = 1 and
µ(x) = 0 for some x ∈ G. Hence µ ∈ C(G). Assume that there exists
ν ∈ C(G) such that µ ⊆ ν. Obviously µ ⊆ ν also in N (G). Since µ is
maximal in (N (G),⊆) and since ν is non-constant, therefore µ = ν.
Thus µ is maximal element of (C(G),⊆), ending the proof.

Proposition 4.15. In a unipotent quasigroup every maximal fuzzy
subquasigroup is completely normal.
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Proof. Let µ be a maximal fuzzy subquasigroup. By Proposition 4.12
µ is normal and µ = µ+ takes only the values 0 and 1. Since µ is
non-constant, it follows that µ(θ) = 1 and µ(x) = 0 for some x ∈ G,
which completes the proof.

Proposition 4.16. Let µ be a fuzzy subquasigroup of a unipotent
quasigroup G . If f : [0, µ(θ)] → [0, 1] is an increasing function, then
a fuzzy set µf de�ned on G by µf (x) = f(µ(x)) is a fuzzy quasigroup.
Moreover,

a) if f(µ(θ)) = 1, then µf is normal,
b) if f(t) > t for all t 6 µ(θ), then µ ⊆ µf .

Proof. Since f is increasing, then for all x, y ∈ G we have
µf (x ∗ y) = f(µ(x ∗ y)) > f(min{µ(x), µ(y)})

= min{f(µ(x)), f(µ(y))}
= min{µf (x), µf (y)} .

This proves that µf is a fuzzy subquasigroup.
If f(µ(θ)) = 1, then clearly µf is normal.
If f(t) > t for all t 6 µ(θ), then µ(x) 6 f(µ(x)) = µf (x) for all

x ∈ G, which implies µ ⊆ µf .
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